
VOLTTRON Documentation
Release 8.0 Release Candidate

The VOLTTRON Community

Nov 11, 2020

Introduction

1 Features 3

2 Indices and tables 203

Index 205

i

ii

VOLTTRON Documentation, Release 8.0 Release Candidate

VOLTTRON™ is an open-source platform for distributed sensing and control. The platform provides services for
collecting and storing data from buildings and devices and provides an environment for developing applications that
interact with that data.

Introduction 1

VOLTTRON Documentation, Release 8.0 Release Candidate

2 Introduction

CHAPTER 1

Features

• a secure message bus allowing connectivity between modules on individual platforms and between platform
instances in large scale deployments

• a flexible agent framework allowing users to adapt the platform to their unique use-cases

• a configurable driver framework for collecting data from and sending control signals to buildings and devices

• automatic data capture and retrieval through our historian framework

• an extensible web framework allowing users and services to securely connect to the platform from anywhere

VOLTTRON™ is open source and publicly available from GitHub. The project is supported by the U.S. Department
of Energy and receives ongoing updates from a team of core developers at PNNL. The VOLTTRON team encourages
and appreciates community involvement including issues and pull requests on Github, meetings at our bi-weekly
office-hours and on Slack. To be invited to office-hours or slack, please send the team an email.

1.1 What is VOLTTRON?

VOLTTRON™ is a software platform on which software modules called “agents” and device driver modules to con-
nect to a message bus to interact. Users may configure included drivers for industry standard device communication
protocols such as BACnet or Modbus, or develop and configure their own. Additionally, agents can be installed or
developed to perform a vast variety of tasks.

1.1.1 Design Philosophy

VOLTTRON was designed by Pacific Northwest National Laboratory to service building efficiency, building-grid
integration and transactive controls systems. These systems are working to improve energy efficiency and resiliency
in critical infrastructure. To this end, VOLTTRON was built with the following pillars in mind:

• Cost-Effectiveness - Open source software (free to users) and can be hosted on inexpensive computing resources

• Scalability - Can be used in one building or a fleet of buildings

3

https://github.com/volttron/volttron.git
mailto:volttron@pnnl.gov

VOLTTRON Documentation, Release 8.0 Release Candidate

• Interoperability - Enables interaction/connection with various systems and subsystems, in and out of the energy
sector

• Security - Underpinned with a robust security foundation to combat today’s cyber vulnerabilities and attacks

1.1.2 Basic Components

• Message bus - The VOLTTRON message bus uses message queueing software to exchange messages between
agents and drivers installed on the platform. VOLTTRON messages are exchanged using a publish/suscriber
paradigm, or messages can be routed to specific agents through the bus using remote procedure calls.

• Agents - Agents are software modules which autonomously perform a set of desired functions on behalf of
a user. VOLTTRON agents are often use to collect data, send control signals to devices, implement control
algorithms or perform simulations.

• Drivers - Drivers can be installed on the platform and configured to communicate with industrial or Internet of
Things devices. Drivers provide a set of pre-defined functions which can be mapped to device communication
methods to read or set values on the device.

• Historians - Historians are special purpose agents which are used to subscribe to sources broadcasting on the
message bus and store their messages for later use.

• Web Framework - The VOLTTRON web framework

1.2 How Does it Work?

The VOLTTRON platform is built around the concept of software agents. Software agents perform autonomous
functions on behalf of a user. The VOLTTRON platform was created to allow a suite of agents installed by a user to
work together to achieve the user’s goals.

1.2.1 Major Components

The platform comprises several components that allow agents to operate and connect to the platform.

• The Message Bus is central to the platform. All other VOLTTRON components communicate through it using
VOLTTRON Interconnect Protocol (VIP). VIP implements the publish/subscribe paradigm over a variety of
topics or directed communication using Remote Procedure Calls.

• Agents on the platform extend the base agent which provides a VIP connection to the message bus and an agent
lifecycle. Agents subscribe to topics which allow it to read. The agent lifecycle is controlled by the Agent
Instantiation and Packaging (AIP) component which launches agents in an agent execution environment.

• The Master Driver Agent can be configured with a number of driver configurations and will spawn corresponding
driver instances. Each driver instance provides functions for collecting device data and setting values on the
device. These functions implement device protocol or remote communication endpoint interfaces. Driver data
is published to the message bus or if requested by an agent will be delivered in an RPC response.

• Agents can control devices by interacting with the Actuator Agent to schedule and send commands.

• The Historian framework subscribes to data published on the messages bus and stores it to a database or file, or
sends it to another location.

4 Chapter 1. Features

https://en.wikipedia.org/wiki/Message-oriented_middleware

VOLTTRON Documentation, Release 8.0 Release Candidate

1.2.2 Usability Components

Usability components exist to enhance the base capabilities of the platform for deployments.

• VOLTTRON Control is the command line interface to controlling a platform instance. VOLTTRON Control can
be used to operate agents, configure drivers, get status and health details, etc.

• Data collection, command and control can be achieved in large deployments by connecting multiple platform
instances.

• VOLTTRON Central is an agent which can be installed on a platform to provide a single management interface
to multiple VOLTTRON platform instances.

• JSON, static and websocket endpoints can be registered to agents via the Web Framework and platform web
server. This allows remote agent communication as well as for agents to serve web pages.

1.3 Installing the Platform

VOLTTRON is written in Python 3.6+ and runs on Linux Operating Systems. For users unfamiliar with those tech-
nologies, the following resources are recommended:

• Python 3.6 Tutorial

• Linux Tutorial

This guide will specify commands to use to successfully install the platform on supported Linux distributions, but a
working knowledge of Linux will be helpful for troubleshooting and may improve your ability to get more out of your
deployment.

Note: Volttron version 7.0rc1 is currently tested for Ubuntu versions 18.04 and 18.10 as well as Linux Mint version
19.3. Version 6.x is tested for Ubuntu versions 16.04 and 18.04 as well as Linux Mint version 19.1.

1.3.1 Step 1 - Install prerequisites

The following packages will need to be installed on the system:

• git

• build-essential

• python3.6-dev

• python3.6-venv

• openssl

• libssl-dev

• libevent-dev

On Debian-based systems, these can all be installed with the following command:

sudo apt-get update
sudo apt-get install build-essential python3-dev python3-venv openssl libssl-dev
→˓libevent-dev git

On Ubuntu-based systems, available packages allow you to specify the Python3 version, 3.6 or greater is required
(Debian itself does not provide those packages).

1.3. Installing the Platform 5

https://docs.python.org/3.6/tutorial/
http://ryanstutorials.net/linuxtutorial

VOLTTRON Documentation, Release 8.0 Release Candidate

sudo apt-get install build-essential python3.6-dev python3.6-venv openssl libssl-dev
→˓libevent-dev git

On arm-based systems (including, but not limited to, Raspbian), you must also install libffi-dev, you can do this with:

sudo apt-get install libffi-dev

Note: On arm-based systems, the available apt package repositories for Raspbian versions older than buster (10) do
not seem to be able to be fully satisfied. While it may be possible to resolve these dependencies by building from
source, the only recommended usage pattern for VOLTTRON 7 and beyond is on raspberry pi OS 10 or newer.

On Redhat or CENTOS systems, these can all be installed with the following command:

sudo yum update
sudo yum install make automake gcc gcc-c++ kernel-devel python3-devel openssl openssl-
→˓devel libevent-devel git

Warning: Python 3.6 or greater is required, please ensure you have installed a supported version with python3
--version

If you have an agent which requires the pyodbc package, install the following additional requirements:

• freetds-bin

• unixodbc-dev

On Debian-based systems these can be installed with the following command:

sudo apt-get install freetds-bin unixodbc-dev

On Redhat or CentOS systems, these can be installed from the Extra Packages for Enterprise Linux (EPEL) reposi-
tory:

sudo yum install https://dl.fedoraproject.org/pub/epel/epel-release-latest-8.noarch.
→˓rpm
sudo yum install freetds unixODBC-devel

Note: The above command to install the EPEL repository is for Centos/Redhat 8. Change the number to match your
OS version. EPEL packages are included in Fedora repositories, so installing EPEL is not required on Fedora.

It may be possible to deploy VOLTTRON on a system not listed above but may involve some troubleshooting and
dependency management on the part of the user.

1.3.2 Step 2 - Clone VOLTTRON code

Repository Structure

There are several options for using the VOLTTRON code depending on whether you require the most stable version
of the code or want the latest updates as they happen. In order of decreasing stability and increasing currency:

• Master - Most stable release branch, current major release is 7.0. This branch is default.

6 Chapter 1. Features

VOLTTRON Documentation, Release 8.0 Release Candidate

• develop - contains the latest finished features as they are developed. When all features are stable, this branch
will be merged into Master.

Note: This branch can be cloned by those wanting to work from the latest version of the platform but should
not be used in deployments.

• Features are developed on “feature” branches or developers’ forks of the main repository. It is not recommended
to clone these branches except for exploring a new feature.

Note: VOLTTRON versions 6.0 and newer support two message buses - ZMQ and RabbitMQ.

git clone https://github.com/VOLTTRON/volttron --branch <branch name>

1.3.3 Step 3 - Setup virtual environment

The bootstrap.py script in the VOLTTRON root directory will create a virtual environment and install the package’s
Python dependencies. Options exist for upgrading or rebuilding existing environments, and for adding additional
dependencies for optional drivers and agents included in the repository.

Note: The --help option for bootstrap.py can specified to display all available optional parameters.

Steps for ZeroMQ

Run the following command to install all required packages:

cd <volttron clone directory>
python3 bootstrap.py

Then activate the Python virtual environment:

source env/bin/activate

Proceed to step 4.

Note: You can deactivate the environment at any time by running deactivate.

Steps for RabbitMQ

Step 1 - Install Erlang packages

For RabbitMQ based VOLTTRON, some of the RabbitMQ specific software packages have to be installed.

1.3. Installing the Platform 7

https://docs.python-guide.org/dev/virtualenvs/

VOLTTRON Documentation, Release 8.0 Release Candidate

On Debian based systems and CentOS 6/7

If you are running a Debian or CentOS system, you can install the RabbitMQ dependencies by running the “rab-
bit_dependencies.sh” script, passing in the OS name and appropriate distribution as parameters. The following are
supported:

• debian bionic (for Ubuntu 18.04)

• debian xenial (for Ubuntu 16.04 or Linux Mint 18.04)

• debian stretch (for Debian Stretch)

• debian buster (for Debian Buster)

• raspbian buster (for Raspbian/Raspberry Pi OS Buster)

Example command:

./scripts/rabbit_dependencies.sh debian xenial

Alternatively

You can download and install Erlang from [Erlang Solutions](https://www.erlang-solutions.com/resources/download.
html). Please include OTP/components - ssl, public_key, asn1, and crypto. Also lock your version of Erlang using the
[yum-plugin-versionlock](https://access.redhat.com/solutions/98873)

Note:

Currently VOLTTRON only officially supports specific versions of Erlang for each operating system:

• 1:22.1.8.1-1 for Debian

• 1:21.2.6+dfsg-1 for Raspbian

• Specific Erlang 21.x versions correspond to CentOS versions 6, 7, and 8, these can be found here

Step 2 - Configure hostname

Make sure that your hostname is correctly configured in /etc/hosts. See (<https://stackoverflow.com/questions/
24797947/os-x-and-rabbitmq-error-epmd-error-for-host-xxx-address-cannot-connect-to-ho>). If you are testing
with VMs make please make sure to provide unique host names for each of the VMs you are using.

The hostname should be resolvable to a valid IP when running on bridged mode. RabbitMQ checks for this during
initial boot. Without this (for example, when running on a VM in NAT mode) RabbitMQ start-up would fail with the
error “unable to connect to empd (port 4369) on <hostname>.”

Note: RabbitMQ startup error would show up in the VM’s syslog (/var/log/messages) file and not in RabbitMQ logs
(/var/log/rabbitmq/rabbitmq@hostname.log)

Step 3 - Bootstrap the environment

8 Chapter 1. Features

https://www.erlang-solutions.com/resources/download.html
https://www.erlang-solutions.com/resources/download.html
https://access.redhat.com/solutions/98873
https://dl.bintray.com/rabbitmq-erlang/rpm/erlang
https://stackoverflow.com/questions/24797947/os-x-and-rabbitmq-error-epmd-error-for-host-xxx-address-cannot-connect-to-ho
https://stackoverflow.com/questions/24797947/os-x-and-rabbitmq-error-epmd-error-for-host-xxx-address-cannot-connect-to-ho
mailto:/var/log/rabbitmq/rabbitmq@hostname.log

VOLTTRON Documentation, Release 8.0 Release Candidate

cd volttron
python3 bootstrap.py --rabbitmq [optional install directory. defaults to <user_home>/
→˓rabbitmq_server]

This will build the platform and create a virtual Python environment and dependencies for RabbitMQ. It also installs
RabbitMQ server as the current user. If an install path is provided, that path should exist and the user should have write
permissions. RabbitMQ will be installed under <install dir>/rabbitmq_server-3.7.7. The rest of the documentation
refers to the directory <install dir>/rabbitmq_server-3.7.7 as $RABBITMQ_HOME.

Note: There are many additional options for bootstrap.py for including dependencies, altering the environment, etc.

You can check if the RabbitMQ server is installed by checking its status:

service rabbitmq status

Note: The RABBITMQ_HOME environment variable can be set in ~/.bashrc. If doing so, it needs to be set to the
RabbitMQ installation directory (default path is <user_home>/rabbitmq_server/rabbitmq_server-3.7.7)

echo 'export RABBITMQ_HOME=$HOME/rabbitmq_server/rabbitmq_server-3.7.7'|sudo tee --
→˓append ~/.bashrc
source ~/.bashrc
$RABBITMQ_HOME/sbin/rabbitmqctl status

Step 4 - Activate the environment

source env/bin/activate

Note: You can deactivate the environment at any time by running deactivate.

Step 5 - Configure RabbitMQ setup for VOLTTRON

vcfg --rabbitmq single [optional path to rabbitmq_config.yml]

Refer to examples/configurations/rabbitmq/rabbitmq_config.yml
for a sample configuration file. At a minimum you will need to provide the host name and a unique common-name
(under certificate-data) in the configuration file.

Note: common-name must be unique and the general convention is to use <volttron instance name>-root-ca.

Running the above command without the optional configuration file parameter will cause the user user to be prompted
for all the required data in the command prompt. “vcfg” will use that data to generate a rabbitmq_config.yml file in
the VOLTTRON_HOME directory.

1.3. Installing the Platform 9

VOLTTRON Documentation, Release 8.0 Release Candidate

Note: If the above configuration file is being used as a basis for creating your own configuration file, be sure to update
it with the hostname of the deployment (this should be the fully qualified domain name of the system).

This script creates a new virtual host and creates SSL certificates needed for this VOLTTRON instance. These cer-
tificates get created under the subdirectory “certificates” in your VOLTTRON home (typically in ~/.volttron). It then
creates the main VIP exchange named “volttron” to route message between the platform and agents and alternate
exchange to capture unrouteable messages.

Note: We configure the RabbitMQ instance for a single volttron_home and volttron_instance. This script will
confirm with the user the volttron_home to be configured. The VOLTTRON instance name will be read from volt-
tron_home/config if available, if not the user will be prompted for VOLTTRON instance name. To run the scripts
without any prompts, save the the VOLTTRON instance name in volttron_home/config file and pass the VOLTTRON
home directory as a command line argument. For example: vcfg –vhome /home/vdev/.new_vhome –rabbitmq single

The Following are the example inputs for vcfg –rabbitmq single command. Since no config file is passed the script
prompts for necessary details.

Your VOLTTRON_HOME currently set to: /home/vdev/new_vhome2

Is this the volttron you are attempting to setup? [Y]:
Creating rmq config yml
RabbitMQ server home: [/home/vdev/rabbitmq_server/rabbitmq_server-3.7.7]:
Fully qualified domain name of the system: [cs_cbox.pnl.gov]:

Enable SSL Authentication: [Y]:

Please enter the following details for root CA certificates
Country: [US]:
State: Washington
Location: Richland
Organization: PNNL
Organization Unit: Volttron-Team
Common Name: [volttron1-root-ca]:
Do you want to use default values for RabbitMQ home, ports, and virtual host: [Y]: N
Name of the virtual host under which RabbitMQ VOLTTRON will be running: [volttron]:
AMQP port for RabbitMQ: [5672]:
http port for the RabbitMQ management plugin: [15672]:
AMQPS (SSL) port RabbitMQ address: [5671]:
https port for the RabbitMQ management plugin: [15671]:
INFO:rmq_setup.pyc:Starting rabbitmq server
Warning: PID file not written; -detached was passed.
INFO:rmq_setup.pyc:**Started rmq server at /home/vdev/rabbitmq_server/rabbitmq_server-
→˓3.7.7
INFO:requests.packages.urllib3.connectionpool:Starting new HTTP connection (1):
→˓localhost
INFO:requests.packages.urllib3.connectionpool:Starting new HTTP connection (1):
→˓localhost
INFO:requests.packages.urllib3.connectionpool:Starting new HTTP connection (1):
→˓localhost
INFO:rmq_setup.pyc:
Checking for CA certificate

INFO:rmq_setup.pyc:
Root CA (/home/vdev/new_vhome2/certificates/certs/volttron1-root-ca.crt) NOT Found.
→˓Creating root ca for volttron instance (continues on next page)

10 Chapter 1. Features

VOLTTRON Documentation, Release 8.0 Release Candidate

(continued from previous page)

Created CA cert
INFO:requests.packages.urllib3.connectionpool:Starting new HTTP connection (1):
→˓localhost
INFO:requests.packages.urllib3.connectionpool:Starting new HTTP connection (1):
→˓localhost
INFO:rmq_setup.pyc:**Stopped rmq server
Warning: PID file not written; -detached was passed.
INFO:rmq_setup.pyc:**Started rmq server at /home/vdev/rabbitmq_server/rabbitmq_server-
→˓3.7.7
INFO:rmq_setup.pyc:

#######################

Setup complete for volttron home /home/vdev/new_vhome2 with instance name=volttron1
Notes:

- Please set environment variable `VOLTTRON_HOME` to `/home/vdev/new_vhome2` before
→˓starting volttron

- On production environments, restrict write access to
/home/vdev/new_vhome2/certificates/certs/volttron1-root-ca.crt to only admin user.

→˓ For example: sudo chown root /home/vdev/new_vhome2/certificates/certs/volttron1-
→˓root-ca.crt

- A new admin user was created with user name: volttron1-admin and password=default_
→˓passwd.

You could change this user's password by logging into <https://cs_cbox.pnl.
→˓gov:15671/> Please update /home/vdev/new_vhome2/rabbitmq_config.yml if you change
→˓password

#######################

1.3.4 Test the VOLTTRON Deployment

We are now ready to start VOLTTRON instance. If configured with RabbitMQ message bus a config file would have
been generated in $VOLTTRON_HOME/config with the entry message-bus=rmq. If you need to revert back to
ZeroMQ based VOLTTRON, you will have to either remove the message-bus parameter or set it to the default
“zmq” in $VOLTTRON_HOME/config.

The following command starts volttron process in the background:

volttron -vv -l volttron.log&

This enters the virtual Python environment and then starts the platform in debug (vv) mode with a log file named
volttron.log. Alternatively you can use the utility script start-volttron script that does the same.

./start-volttron

To stop the platform, use the vct command:

volttron-ctl shutdown --platform

or use the included stop-volttron script:

1.3. Installing the Platform 11

VOLTTRON Documentation, Release 8.0 Release Candidate

./stop-volttron

Warning: If you plan on running VOLTTRON in the background and detaching it from the terminal with the
disown command be sure to redirect stderr and stdout to /dev/null. Some libraries which VOLTTRON relies
on output directly to stdout and stderr. This will cause problems if those file descriptors are not redirected to
/dev/null

#To start the platform in the background and redirect stderr and stdout
#to /dev/null
volttron -vv -l volttron.log > /dev/null 2>&1&

Installing and Running Agents

VOLTTRON platform comes with several built in services and example agents out of the box. To install a agent use
the script install-agent.py

python scripts/install-agent.py -s <top most folder of the agent> [-c <config file.
→˓Might be optional for some agents>]

For example, we can use the command to install and start the Listener Agent - a simple agent that periodically publishes
heartbeat message and listens to everything on the message bus. Install and start the Listener agent using the following
command:

python scripts/install-agent.py -s examples/ListenerAgent --start

Check volttron.log to ensure that the listener agent is publishing heartbeat messages.

tail volttron.log

2016-10-17 18:17:52,245 (listeneragent-3.2 11367) listener.agent INFO: Peer: 'pubsub',
→˓ Sender: 'listeneragent-3.2_1':, Bus: u'', Topic: 'heartbeat/listeneragent-3.2_1',
→˓Headers: {'Date': '2016-10-18T01:17:52.239724+00:00', 'max_compatible_version': u'',
→˓ 'min_compatible_version': '3.0'}, Message: {'status': 'GOOD', 'last_updated':
→˓'2016-10-18T01:17:47.232972+00:00', 'context': 'hello'}

You can also use the volttron-ctl (or vctl) command to start, stop or check the status of an agent

(volttron)volttron@volttron1:~/git/rmq_volttron$ vctl status
AGENT IDENTITY TAG STATUS HEALTH

6 listeneragent-3.2 listeneragent-3.2_1 running [13125] GOOD
f master_driveragent-3.2 platform.driver master_driver

vctl stop <agent id>

Note: The default working directory is ~/.volttron. The default directory for creation of agent packages is ~/.volt-
tron/packaged

12 Chapter 1. Features

VOLTTRON Documentation, Release 8.0 Release Candidate

1.3.5 Next Steps

There are several walk-throughs and detailed explanations of platform features to explore additional aspects of the
platform:

• Agent Framework

• Driver Framework

• Demonstration of the management UI

• RabbitMQ setup with Federation and Shovel plugins

1.4 Definition of Terms

This page lays out a common terminology for discussing the components and underlying technologies used by the
platform. The first section discusses capabilities and industry standards that VOLTTRON conforms to while the latter
is specific to the VOLTTRON domain.

1.4.1 Industry Terms

Agent Software which acts on behalf of a user to perform a set of tasks.

BACNet Building Automation and Control network that leverages ASHRAE, ANSI, and IOS 16484-5 standard pro-
tocols

DNP3 (Distributed Network Protocol 3) Communications protocol used to coordinate processes in distributed au-
tomation systems

JSON (JavaScript Object Notation) JavaScript object notation is a text-based, human-readable, open data inter-
change format, similar to XML but less verbose

IEEE 2030.5 Utilities communication standard for managing energy demand and load (previously Smart Energy
Profile version 2, SEP2)

JSON-RPC (JSON-Remote Procedure Call) JSON-encoded Remote Procedure Call

Modbus Communications protocol for talking with industrial electronic devices

PLC (Programmable Logic Controller) Computer used in industrial applications to manage processes of groups of
industrial devices

Python Virtual Environment The Python-VENV library allows users to create a virtualized copy of the local envi-
ronment. A virtual environment allows the user to isolate the dependencies for a project which helps prevent
conflicts between dependencies across projects.

Publish/Subscribe A message delivery pattern where senders (publishers) and receivers (subscribers) do not com-
municate directly nor necessarily have knowledge of each other, but instead exchange messages through an
intermediary based on a mutual class or topic.

Note:

The Publish/Subscribe paradigm is often notated as pub/sub in VOLTTRON documentation.

RabbitMQ Open-Source message brokering system used by VOLTTRON for sending messages between services on
the platform.

Remote Procedure Call Protocol used to request services of another computer located elsewhere on the network or
on a different network.

1.4. Definition of Terms 13

VOLTTRON Documentation, Release 8.0 Release Candidate

SSH (Secure Shell) Secure Shell is a network protocol providing encryption and authentication of data using public-
key cryptography.

SSL (Secure Sockets Layer) Secure Sockets Layer is a technology for encryption and authentication of network
traffic based on a chain of trust.

TLS (Transport Layer Security) Transport Layer Security is the successor to SSL.

ZeroMQ (also ØMQ) A library used for inter-process and inter-computer communication.

1.4.2 VOLTTRON Terms

Activated Environment An activated environment is the environment a VOLTTRON instance is run in.
The bootstrap process creates the environment from the shell.

AIP (Agent Instantiation and Packaging) This is the module responsible for creating agent wheels,
the agent execution environment and running agents. Found in the VOLTTRON repository in the
volttron/platform directory.

Agent Framework Framework which provides connectivity to the VOLTTRON platform and subsys-
tems for software agents.

Bootstrap the Environment The process by which an operating environment (activated environment)
is produced. From the VOLTTRON_ROOT directory, executing python bootstrap.py will start the
bootstrap process.

Config Store Agent data store used by the platform for storing configuration files and automating the
management of agent configuration

Driver Module that implements communication paradigms of a device to provide an interface to devices
for the VOLTTRON platform.

Driver Framework Framework for implementing communication between the VOLTTRON platform
and devices on the network (or a remote network)

Historian Historians in VOLTTRON are special purpose agents for automatically collecting data from
the platform message bus and storing in a persistent data store.

VOLTTRON Central VOLTTRON Central (VC) is a special purpose agent for managing multiple plat-
forms in a distributed VOLTTRON deployment

VOLTTRON_HOME The location for a specific VOLTTRON_INSTANCE to store its specific infor-
mation. There can be many VOLTTRON_HOMEs on a single computing resource such as a VM,
machine, etc. Each VOLTTRON_HOME will correspond to a single instance of VOLTTRON.

VOLTTRON_INSTANCE A single volttron process executing instructions on a computing resource.
For each VOLTTRON_INSTANCE, there WILL BE only one VOLTTRON_HOME associated with
it. For a VOLTTRON_INSTANCE to participate outside its computing resource, it must be bound
to an external IP address.

VOLTTRON_ROOT The cloned directory from Github. When executing the command:

git clone https://github.com/VOLTTRON/volttron.git

the top level volttron folder is the VOLTTRON_ROOT.

VIP VOLTTRON Interconnect Protocol is a secure routing protocol that facilitates communications be-
tween agents, controllers, services, and the supervisory VOLTTRON_INSTANCE.

14 Chapter 1. Features

VOLTTRON Documentation, Release 8.0 Release Candidate

Web Framework Framework used by VOLTTRON agents to implement web services with HTTP and
HTTPS

1.5 License

Copyright 2019, Battelle Memorial Institute.

Licensed under the Apache License, Version 2.0 (the “License”); you may not use this file except in compliance with
the License. You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

The patent license grant shall only be applicable to the following patent and patent application (Battelle IPID 17008-
E), as assigned to the Battelle Memorial Institute, as used in conjunction with this Work: • US Patent No. 9,094,385,
issued 7/28/15 • USPTO Patent App. No. 14/746,577, filed 6/22/15, published as US 2016-0006569.

Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an
“AS IS” BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
License for the specific language governing permissions and limitations under the License.

1.5.1 Terms

This material was prepared as an account of work sponsored by an agency of the United States Government. Neither
the United States Government nor the United States Department of Energy, nor Battelle, nor any of their employees,
nor any jurisdiction or organization that has cooperated in the development of these materials, makes any warranty,
express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness or any
information, apparatus, product, software, or process disclosed, or represents that its use would not infringe privately
owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark,
manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by
the United States Government or any agency thereof, or Battelle Memorial Institute. The views and opinions of authors
expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

PACIFIC NORTHWEST NATIONAL LABORATORY operated by BATTELLE for the UNITED STATES DEPART-
MENT OF ENERGY under Contract DE-AC05-76RL01830

1.6 Join the Community

The VOLTTRON project is transitioning into the Eclipse Foundation as Eclipse VOLTTRON. Current resources will
still be used during this time. Please watch this space!

The Eclipse VOLTTRON team aims to work with users and contributors to continuously improve the platform with
features requested by the community as well as architectural features that improve robustness, security, and scalabil-
ity. Contributing back to the project, which is encouraged but not required, enhances its capabilities for the whole
community. To learn more, check out Contributing and Documentation.

1.6.1 Slack Channel

volttron-community.slack.com is where the VOLTTRON™ community at large can ask questions and meet with others
using VOLTTRON™. To be added to Slack please email the VOLTTRON team at volttron@pnnl.gov.

1.5. License 15

http://www.apache.org/licenses/LICENSE-2.0
mailto:volttron@pnnl.gov?subject=Subscribe%20To%20List

VOLTTRON Documentation, Release 8.0 Release Candidate

1.6.2 Mailing List

Join the mailing list by emailing volttron@pnnl.gov.

1.6.3 Stack Overflow

The VOLTTRON community supports questions being asked and answered through Stack Overflow. The questions
tagged with the volttron tag can be found at http://stackoverflow.com/questions/tagged/volttron.

1.6.4 Office Hours

PNNL hosts office hours every other week on Fridays at 11 AM (PST). These meetings are designed to be very
informal where VOLTTRON developers can answer specific questions about the inner workings of VOLTTRON.
These meetings are also available for topical discussions of different aspects of the VOLTTRON platform. Currently
the office hours are available through a Zoom meeting. To be invited to the link meeting, contact the volttron team via
email: mailto:volttron@pnnl.gov

Meetings are recorded and can be reviewed here.

1.7 Setting Up a Development Environment

An example development environment used by the VOLTTRON team would consist of a Linux VM running on the
host development machine on which an IDE would be running. The guides can be used to set up a development
environment.

1.7.1 Forking the Repository

The first step to editing the repository is to fork it into your own user space. Creating a fork makes a copy of the
repository in your GitHub for you to make any changes you may require for your use-case. This allows you to make
changes without impacting the core VOLTTRON repository.

Forking is done by pointing your favorite web browser to http://github.com/VOLTTRON/volttron and then clicking
“Fork” on the upper right of the screen. (Note: You must have a GitHub account to fork the repository. If you don’t
have one, we encourage you to sign up.)

Note: After making changes to your repository, you may wish to contribute your changes back to the Core VOLT-
TRON repository. Instructions for contributing code may be found here.

Cloning ‘YOUR’ VOLTTRON forked repository

The next step in the process is to copy your forked repository onto your computer to work on. This will create
an identical copy of the GitHub repository on your local machine. To do this you need to know the address of
your repository. The URL to your repository address will be https://github.com/<YOUR USERNAME>/
volttron.git. From a terminal execute the following commands:

16 Chapter 1. Features

mailto:volttron@pnnl.gov?subject=Subscribe%20To%20List
http://stackoverflow.com/questions/tagged/volttron
mailto:volttron@pnnl.gov
https://volttron.org/office-hours
http://github.com/VOLTTRON/volttron
https://github.com/join?source_repo=VOLTTRON%2Fvolttron

VOLTTRON Documentation, Release 8.0 Release Candidate

Here, we are assuming you are doing develop work in a folder called `git`. If you'd
→˓rather use something else, that's OK.
mkdir -p ~/git
cd ~/git
git clone -b develop https://github.com/<YOUR USERNAME>/volttron.git
cd volttron

Note: VOLTTRON uses develop as its main development branch rather than the standard main branch (the default).

Adding and Committing files

Now that you have your repository cloned, it’s time to start doing some modifications. Using a simple text editor you
can create or modify any file in the volttron directory. After making a modification or creating a file it is time to move
it to the stage for review before committing to the local repository. For this example let’s assume we have made a
change to README.md in the root of the volttron directory and added a new file called foo.py. To get those files in
the staging area (preparing for committing to the local repository) we would execute the following commands:

git add foo.py
git add README.md

Alternatively in one command
git add foo.py README.md

After adding the files to the stage you can review the staged files by executing:

git status

Finally, in order to commit to the local repository we need to think of what change we actually did and be able to
document it. We do that with a commit message (the -m parameter) such as the following.

git commit -m "Added new foo.py and updated copyright of README.md"

Pushing to the remote repository

The next step is to share our changes with the world through GitHub. We can do this by pushing the commits from
your local repository out to your GitHub repository. This is done by the following command:

git push

1.7.2 Installing a Linux Virtual Machine

VOLTTRON requires a Linux system to run. For Windows users this will require a virtual machine (VM).

This section describes the steps necessary to install VOLTTRON using Oracle VirtualBox software. Virtual Box is
free and can be downloaded from https://www.virtualbox.org/wiki/Downloads.

1.7. Setting Up a Development Environment 17

https://www.virtualbox.org/wiki/Downloads

VOLTTRON Documentation, Release 8.0 Release Candidate

After installing VirtualBox download a virtual box appliance from https://www.osboxes.org/linux-mint/ extract the
VDI from the downlaoded archive, or download a system installation disk. VOLTTRON version 7.0.x has been tested
using Ubuntu 18.04, 18.10; Linux Mint 19; VOLTTRON version 6.0.x has been tested with Ubuntu 16.04, 18.04.
However, any modern apt based Linux distribution should work out of the box. Linux Mint 19.3 with the Xfce desktop
is used as an example, however platform setup in Ubuntu should be identical.

Note: A 32-bit version of Linux should be used when running VOLTTRON on a system with limited hardware (less
than 2 GB of RAM).

Adding a VDI Image to VirtualBox Environment

18 Chapter 1. Features

https://www.osboxes.org/linux-mint/

VOLTTRON Documentation, Release 8.0 Release Candidate

The below info holds the VM’s preset username and password.

Create a new VirtualBox Image.

Select the amount of RAM for the VM. The recommended minimum is shown in the image below:

1.7. Setting Up a Development Environment 19

VOLTTRON Documentation, Release 8.0 Release Candidate

Specify the hard drive image using the extracted VDI file.

With the newly created VM selected, choose Machine from the VirtualBox menu in the top left corner of the VirtualBox
window; from the drop down menu, choose Settings.

To enable bidirectional copy and paste, select the General tab in the VirtualBox Settings. Enable Shared Clipboard
and Drag’n’Drop as Bidirectional.

20 Chapter 1. Features

VOLTTRON Documentation, Release 8.0 Release Candidate

Note: Currently, this feature only works under certain circumstances (e.g. copying / pasting text).

Go to System Settings. In the processor tab, set the number of processors to two.

Go to Storage Settings. Confirm that the Linux Mint VDI is attached to Controller: SATA.

Danger: Do NOT mount the Linux Mint iso for Controller: IDE. Will result in errors.

1.7. Setting Up a Development Environment 21

VOLTTRON Documentation, Release 8.0 Release Candidate

Start the machine by saving these changes and clicking the “Start” arrow located on the upper left hand corner of the
main VirtualBox window.

1.7.3 Pycharm Development Environment

Pycharm is an IDE dedicated to developing python projects. It provides coding assistance and easy access to debugging
tools as well as integration with py.test. It is a popular tool for working with VOLTTRON. Jetbrains provides a free
community version that can be downloaded from https://www.jetbrains.com/pycharm/

Open Pycharm and Load VOLTTRON

When launching Pycharm for the first time we have to tell it where to find the VOLTTRON source code. If you
have already cloned the repo then point Pycharm to the cloned project. Pycharm also has options to access remote
repositories.

Subsequent instances of Pycharm will automatically load the VOLTTRON project.

Note: When getting started make sure to search for gevent in the settings and ensure that support for it is enabled.

22 Chapter 1. Features

https://www.jetbrains.com/pycharm/

VOLTTRON Documentation, Release 8.0 Release Candidate

Set the Project Interpreter

This step should be completed after running the bootstrap script in the VOLTTRON source directory. Pycharm needs
to know which python environment it should use when running and debugging code. This also tells Pycharm where to
find python dependencies. Settings menu can be found under the File option in Pycharm.

1.7. Setting Up a Development Environment 23

VOLTTRON Documentation, Release 8.0 Release Candidate

Running the VOLTTRON Process

If you are not interested in running the VOLTTRON process itself in Pycharm then this step can be skipped.

In Run > Edit Configurations create a configuration that has <your source dir>/env/bin/volttron in the script field,
-vv in the script parameters field (to turn on verbose logging), and set the working directory to the top level source
directory.

VOLTTRON can then be run from the Run menu.

24 Chapter 1. Features

VOLTTRON Documentation, Release 8.0 Release Candidate

Running an Agent

Running an agent is configured similarly to running VOLTTRON proper. In Run > Edit Configurations add a
configuration and give it the same name as your agent. The script should be the path to scripts/pycharm-launch.py and
and the script parameter must be the path to your agent’s agent.py file.

In the Environment Variables field add the variable AGENT_CONFIG that has the path to the agent’s configuration file
as its value, as well as AGENT_VIP_IDENTITY, which must be unique on the platform.

A good place to keep configuration files is in a directory called config in top level source directory; git will ignore
changes to these files.

Note: There is an issue with imports in Pycharm when there is a secondary file (i.e. not agent.py but another module
within the same package). When that happens right click on the directory in the file tree and select Mark Directory
As -> Source Root

1.7. Setting Up a Development Environment 25

VOLTTRON Documentation, Release 8.0 Release Candidate

Note: There will be issues if two agents create a file with the same name in the same working directory. For instance:
SQLHistorian agent and Forwarder agent both create a backup.sqlite directory on the same working directory. When
that happens both the agents attempt to use the same backup db and eventually lock the db. To avoid this situation,
create different working directories for each agent and add the absolute path for the config file. The best way to go

26 Chapter 1. Features

VOLTTRON Documentation, Release 8.0 Release Candidate

about this is to create a new folder and assign working directory to that folder as shown below.

1.7. Setting Up a Development Environment 27

VOLTTRON Documentation, Release 8.0 Release Candidate

Testing an Agent

Agent tests written in py.test can be run simply by right-clicking the tests directory and selecting Run ‘py.test in tests,
so long as the root directory is set as the VOLTTRON source root.

28 Chapter 1. Features

VOLTTRON Documentation, Release 8.0 Release Candidate

1.8 Agent Development

The VOLTTRON platform now has utilities to speed the creation and installation of new agents. To use these utilities
the VOLTTRON environment must be activated.

From the project directory, activate the VOLTTRON environment with:

source env/bin/activate

1.8.1 Create Agent Code

Run the following command to start the Agent Creation Wizard:

vpkg init TestAgent tester

TestAgent is the directory that the agent code will be placed in. The directory must not exist when the command is
run. tester is the name of the agent module created by wizard.

The Wizard will prompt for the following information:

1.8. Agent Development 29

VOLTTRON Documentation, Release 8.0 Release Candidate

Agent version number: [0.1]: 0.5
Agent author: []: VOLTTRON Team
Author's email address: []: volttron@pnnl.gov
Agent homepage: []: https://volttron.org/
Short description of the agent: []: Agent development tutorial.

Once the last question is answered the following will print to the console:

2018-08-02 12:20:56,604 () volttron.platform.packaging INFO: Creating TestAgent
2018-08-02 12:20:56,604 () volttron.platform.packaging INFO: Creating TestAgent/tester
2018-08-02 12:20:56,604 () volttron.platform.packaging INFO: Creating TestAgent/setup.
→˓py
2018-08-02 12:20:56,604 () volttron.platform.packaging INFO: Creating TestAgent/config
2018-08-02 12:20:56,604 () volttron.platform.packaging INFO: Creating TestAgent/
→˓tester/agent.py
2018-08-02 12:20:56,604 () volttron.platform.packaging INFO: Creating TestAgent/
→˓tester/__init__.py

The TestAgent directory is created with the new Agent inside.

Agent Directory

At this point, the contents of the TestAgent directory should look like:

TestAgent/
setup.py
config
tester

agent.py
__init__.py

Agent Skeleton

The agent.py file in the tester directory of the newly created agent module will contain skeleton code (below). De-
scriptions of the features of this code as well as additional development help are found in the rest of this document.

"""
Agent documentation goes here.
"""

__docformat__ = 'reStructuredText'

import logging
import sys
from volttron.platform.agent import utils
from volttron.platform.vip.agent import Agent, Core, RPC

_log = logging.getLogger(__name__)
utils.setup_logging()
__version__ = "0.1"

def tester(config_path, **kwargs):
"""Parses the Agent configuration and returns an instance of

(continues on next page)

30 Chapter 1. Features

VOLTTRON Documentation, Release 8.0 Release Candidate

(continued from previous page)

the agent created using that configuration.

:param config_path: Path to a configuration file.

:type config_path: str
:returns: Garbage
:rtype: Garbage
"""
try:

config = utils.load_config(config_path)
except StandardError:

config = {}

if not config:
_log.info("Using Agent defaults for starting configuration.")

setting1 = int(config.get('setting1', 1))
setting2 = config.get('setting2', "some/random/topic")

return Tester(setting1,
setting2,

**kwargs)

class Tester(Agent):
"""
Document agent constructor here.
"""

def __init__(self, setting1=1, setting2="some/random/topic",

**kwargs):
super(Garbage, self).__init__(**kwargs)
_log.debug("vip_identity: " + self.core.identity)

self.setting1 = setting1
self.setting2 = setting2

self.default_config = {"setting1": setting1,
"setting2": setting2}

#Set a default configuration to ensure that self.configure is called
→˓immediately to setup

#the agent.
self.vip.config.set_default("config", self.default_config)
#Hook self.configure up to changes to the configuration file "config".
self.vip.config.subscribe(self.configure, actions=["NEW", "UPDATE"], pattern=

→˓"config")

def configure(self, config_name, action, contents):
"""
Called after the Agent has connected to the message bus. If a configuration

→˓exists at startup
this will be called before onstart.

Is called every time the configuration in the store changes.
"""

(continues on next page)

1.8. Agent Development 31

VOLTTRON Documentation, Release 8.0 Release Candidate

(continued from previous page)

config = self.default_config.copy()
config.update(contents)

_log.debug("Configuring Agent")

try:
setting1 = int(config["setting1"])
setting2 = str(config["setting2"])

except ValueError as e:
_log.error("ERROR PROCESSING CONFIGURATION: {}".format(e))
return

self.setting1 = setting1
self.setting2 = setting2

self._create_subscriptions(self.setting2)

def _create_subscriptions(self, topic):
#Unsubscribe from everything.
self.vip.pubsub.unsubscribe("pubsub", None, None)

self.vip.pubsub.subscribe(peer='pubsub',
prefix=topic,
callback=self._handle_publish)

def _handle_publish(self, peer, sender, bus, topic, headers,
message):

pass

@Core.receiver("onstart")
def onstart(self, sender, **kwargs):

"""
This is method is called once the Agent has successfully connected to the

→˓platform.
This is a good place to setup subscriptions if they are not dynamic or
do any other startup activities that require a connection to the message bus.
Called after any configurations methods that are called at startup.

Usually not needed if using the configuration store.
"""
#Example publish to pubsub
#self.vip.pubsub.publish('pubsub', "some/random/topic", message="HI!")

#Exmaple RPC call
#self.vip.rpc.call("some_agent", "some_method", arg1, arg2)

@Core.receiver("onstop")
def onstop(self, sender, **kwargs):

"""
This method is called when the Agent is about to shutdown, but before it

→˓disconnects from
the message bus.
"""
pass

@RPC.export
def rpc_method(self, arg1, arg2, kwarg1=None, kwarg2=None):

(continues on next page)

32 Chapter 1. Features

VOLTTRON Documentation, Release 8.0 Release Candidate

(continued from previous page)

"""
RPC method

May be called from another agent via self.core.rpc.call """
return self.setting1 + arg1 - arg2

def main():
"""Main method called to start the agent."""
utils.vip_main(garbage,

version=__version__)

if __name__ == '__main__':
Entry point for script
try:

sys.exit(main())
except KeyboardInterrupt:

pass

The resulting code is well documented with comments and documentation strings. It gives examples of how to do
common tasks in VOLTTRON Agents. The main agent code is found in tester/agent.py.

1.8.2 Building an Agent

The following section includes guidance on several important components for building agents in VOLTTRON.

Parse Packaged Configuration and Create Agent Instance

The code to parse a configuration file packaged and installed with the agent is found in the tester function:

def tester(config_path, **kwargs):
"""Parses the Agent configuration and returns an instance of
the agent created using that configuration.

:param config_path: Path to a configuration file.

:type config_path: str
:returns: Tester
:rtype: Tester
"""
try:

config = utils.load_config(config_path)
except StandardError:

config = {}

if not config:
_log.info("Using Agent defaults for starting configuration.")

setting1 = int(config.get('setting1', 1))
setting2 = config.get('setting2', "some/random/topic")

return Tester(setting1,
setting2,

**kwargs)

1.8. Agent Development 33

VOLTTRON Documentation, Release 8.0 Release Candidate

The configuration is parsed with the utils.load_config function and the results are stored in the config variable. An
instance of the Agent is created from the parsed values and is returned.

Initialization and Configuration Store Support

The configuration store is a powerful feature. The agent template provides a simple example of setting up default
configuration store values and setting up a configuration handler.

class Tester(Agent):
"""
Document agent constructor here.
"""

def __init__(self, setting1=1, setting2="some/random/topic",

**kwargs):
super(Tester, self).__init__(**kwargs)
_log.debug("vip_identity: " + self.core.identity)

self.setting1 = setting1
self.setting2 = setting2

self.default_config = {"setting1": setting1,
"setting2": setting2}

#Set a default configuration to ensure that self.configure is called
→˓immediately to setup

#the agent.
self.vip.config.set_default("config", self.default_config)
#Hook self.configure up to changes to the configuration file "config".
self.vip.config.subscribe(self.configure, actions=["NEW", "UPDATE"], pattern=

→˓"config")

def configure(self, config_name, action, contents):
"""
Called after the Agent has connected to the message bus. If a configuration

→˓exists at startup
this will be called before onstart.

Is called every time the configuration in the store changes.
"""
config = self.default_config.copy()
config.update(contents)

_log.debug("Configuring Agent")

try:
setting1 = int(config["setting1"])
setting2 = str(config["setting2"])

except ValueError as e:
_log.error("ERROR PROCESSING CONFIGURATION: {}".format(e))
return

self.setting1 = setting1
self.setting2 = setting2

self._create_subscriptions(self.setting2)

34 Chapter 1. Features

VOLTTRON Documentation, Release 8.0 Release Candidate

Note: Support for the configuration store is instantiated by subscribing to configuration changes with
self.vip.config.subscribe.

self.vip.config.subscribe(self.configure_main, actions=["NEW", "UPDATE"], pattern=
→˓"config")

Values in the default config can be built into the agent or come from the packaged configuration file. The subscribe
method tells our agent which function to call whenever there is a new or updated config file. For more information on
using the configuration store see Agent Configuration Store.

_create_subscriptions (covered in a later section) will use the value in self.setting2 to create a new subscription.

Agent Lifecycle Events

The agent lifecycle is controlled in the agents VIP core. The agent lifecycle manages scheduling and periodic function
calls, the main agent loop, and trigger a number of signals for callbacks in the concrete agent code. These callbacks
are listed and described in the skeleton code below:

Note: The lifecycle signals can trigger any method. To cause a method to be triggered by a lifecycle signal, use a
decorator:

@Core.receiver("<lifecycle_method>")
def my_callback(self, sender, **kwargs):

do my lifecycle method callback
pass

@Core.receiver("onsetup")
def onsetup(self, sender, **kwargs)

"""
This method is called after the agent has successfully connected to the platform,

→˓but before the scheduled
methods loop has started. This method not often used, but is most commonly used

→˓to define periodic
functions or do some pre-configuration.
"""
self.vip.core.periodic(60, send_request)

@Core.receiver("onstart")
def onstart(self, sender, **kwargs):

"""
This method is called once the Agent has successfully connected to the platform.
This is a good place to setup subscriptions if they are not dynamic or to
do any other startup activities that require a connection to the message bus.
Called after any configurations methods that are called at startup.

Usually not needed if using the configuration store.
"""
#Example publish to pubsub
self.vip.pubsub.publish('pubsub', "some/random/topic", message="HI!")

#Example RPC call
self.vip.rpc.call("some_agent", "some_method", arg1, arg2)

(continues on next page)

1.8. Agent Development 35

VOLTTRON Documentation, Release 8.0 Release Candidate

(continued from previous page)

@Core.receiver("onstop")
def onstop(self, sender, **kwargs):

"""
This method is called when the Agent is about to shutdown, but before it

→˓disconnects from
the message bus. Common use-cases for this method are to stop periodic

→˓processing, closing connections and
setting agent state prior to cleanup.
"""
self.publishing = False
self.cache.close()

@Core.receiver("onfinish")
def onfinish(self, sender, **kwargs)

"""
This method is called after all scheduled threads have concluded. This method is

→˓rarely used, but could be
used to send shut down signals to other agents, etc.
"""
self.vip.pubsub.publish('pubsub', 'some/topic', message=f'agent {self.core.

→˓identity} shutdown')

Periodics and Scheduling

Periodic and Scheduled callback functions are callbacks made to functions in agent code from the thread scheduling
in the agent core.

Scheduled Callbacks

Scheduled callback functions are often used similarly to cron jobs to perform tasks at specific times, or to schedule
tasks ad-hoc as agent state is updated. There are 2 ways to schedule callbacks: using a decorator, or calling the core’s
scheduling function. Example usage follows.

using the agent's core to schedule a task
self.core.schedule(periodic(5), self.sayhi)

def sayhi(self):
print("Hello-World!")

using the decorator to schedule a task
@Core.schedule(cron('0 1 * * *'))
def cron_function(self):

print("this is a cron-scheduled function")

Note: Scheduled Callbacks can use CRON scheduling, a datetime object, a number of seconds (from current time),
or a periodic which will make the schedule function as a periodic.

inside some agent method
self.core.schedule(t, function)
self.core.schedule(periodic(t), periodic_function)
self.core.schedule(cron('0 1 * * *'), cron_function)

36 Chapter 1. Features

VOLTTRON Documentation, Release 8.0 Release Candidate

Periodic Callbacks

Periodic call back functions are functions which are repeatedly called at a regular interval until the periodic is can-
celled in the agent code or the agent stops running. Like scheduled callbacks, periodics can be specified using either
decorators or using core function calls.

self.core.periodic(10, self.saybye)

def saybye(self):
print('Good-bye Cruel World!')

@Core.periodic(60)
def poll_api(self):

return requests.get("https://lmgtfy.com").json()

Note: Periodic intervals are specified in seconds.

Publishing Data to the Message Bus

The agent’s VIP connection can be used to publish data to the message bus. The message published and topic to
publish to are determined by the agent implementation. Classes of agents already specified by VOLTTRON may have
well-defined intended topic usage, see those agent specifications for further detail.

def publish_oscillating_update(self):
self.publish_value = 1 if self.publish_value = 0 else 0
self. vip.pubsub.publish('pubsub', 'some/topic/', message=f'{"oscillating_value":

→˓"{self.publish_value}"')

Setting up a Subscription

The Agent creates a subscription to a topic on the message bus using the value of self.setting2 in the method _cre-
ate_subscription. The messages for this subscription are handled with the _handle_publish method:

def _create_subscriptions(self, topic):
#Unsubscribe from everything.
self.vip.pubsub.unsubscribe("pubsub", None, None)

self.vip.pubsub.subscribe(peer='pubsub',
prefix=topic,
callback=self._handle_publish)

def _handle_publish(self, peer, sender, bus, topic, headers,
message):

#By default no action is taken.
pass

Alternatively, a decorator can be used to specify the function as a callback:

1.8. Agent Development 37

VOLTTRON Documentation, Release 8.0 Release Candidate

@PubSub.subscribe('pubsub', "topic_prefix")
def _handle_publish(self, peer, sender, bus, topic, headers,

message):
#By default no action is taken.
pass

To unsubscribe from a topic, the self.vip.pubsub.unsubscribe can be used:

self.vip.pubsub.unsubscribe(peer='pubsub',
prefix=topic,
callback=self._handle_publish)

Giving None as values for the prefix and callback argument will unsubscribe from everything on that bus. This is
handy for subscriptions that must be updated base on a configuration setting.

Heartbeat

The heartbeat subsystem provides access to a periodic publish so that others can observe the agent’s status. Other
agents can subscribe to the heartbeat topic to see who is actively publishing to it. It it turned off by default.

Enabling the heartbeat publish:

Subscribing to the heartbeat topic:

Health

The health subsystem adds extra status information to the an agent’s heartbeat. Setting the status will start the heartbeat
if it wasn’t already. Health is used to represent the internal state of the agent at runtime. GOOD health indicates that
all is fine with the agent and it is operating normally. BAD health indicates some kind of problem, such as if an agent
is unable to reach a remote web API.

Example of setting health:

Remote Procedure Calls

An agent may receive commands from other agents via a Remote Procedure Call (RPC). This is done with the
@RPC.export decorator:

@RPC.export
def rpc_method(self, arg1, arg2, kwarg1=None, kwarg2=None):

"""
RPC method

May be called from another agent via self.core.rpc.call """
return self.setting1 + arg1 - arg2

To send an RPC call to another agent running on the platform, the agent must invoke the rpc.call method of its VIP
connection.

in agent code
def send_remote_procedure_call(self):

peer = "<agent identity>"
peer_method = "<method in peer agent API>"

(continues on next page)

38 Chapter 1. Features

VOLTTRON Documentation, Release 8.0 Release Candidate

(continued from previous page)

args = ["list", "of", "peer", "method", "arguments", "..."]
self.vip.rpc.call(peer, peer_method, *args)

1.8.3 Packaging Configuration

The wizard will automatically create a setup.py file. This file sets up the name, version, required packages, method to
execute, etc. for the agent based on your answers to the wizard. The packaging process will also use this information
to name the resulting file.

from setuptools import setup, find_packages

MAIN_MODULE = 'agent'

Find the agent package that contains the main module
packages = find_packages('.')
agent_package = 'tester'

Find the version number from the main module
agent_module = agent_package + '.' + MAIN_MODULE
_temp = __import__(agent_module, globals(), locals(), ['__version__'], -1)
__version__ = _temp.__version__

Setup
setup(

name=agent_package + 'agent',
version=__version__,
author_email="volttron@pnnl.gov",
url="https://volttron.org/",
description="Agent development tutorial.",
author="VOLTTRON Team",
install_requires=['volttron'],
packages=packages,
entry_points={

'setuptools.installation': [
'eggsecutable = ' + agent_module + ':main',

]
}

)

1.8.4 Launch Configuration

In TestAgent, the wizard will automatically create a JSON file called “config”. It contains configuration information
for the agent. This file contains examples of every data type supported by the configuration system:

{
VOLTTRON config files are JSON with support for python style comments.
"setting1": 2, #Integers
"setting2": "some/random/topic2", #Strings
"setting3": true, #Booleans: remember that in JSON true and false are not

→˓capitalized.
"setting4": false,
"setting5": 5.1, #Floating point numbers.
"setting6": [1,2,3,4], #Lists

(continues on next page)

1.8. Agent Development 39

VOLTTRON Documentation, Release 8.0 Release Candidate

(continued from previous page)

"setting7": {"setting7a": "a", "setting7b": "b"} #Objects
}

1.8.5 Packaging and Installation

To install the agent the platform must be running. Start the platform with the command:

./start-volttron

Note: If you are not in an activated environment, this script will start the platform running in the background in the
correct environment. However the environment will not be activated for you; you must activate it yourself.

Now we must install it into the platform. Use the following command to install it and add a tag for easily referring to
the agent. From the project directory, run the following command:

python scripts/install-agent.py -s TestAgent/ -c TestAgent/config -t testagent

To verify it has been installed, use the following command:

vctl list

This will result in output similar to the following:

AGENT IDENTITY TAG Status Health PRI
df testeragent-0.5 testeragent-0.5_1 testagent

• The first string is a unique portion of the full UUID for the agent

• AGENT is the “name” of the agent based on the contents of its class name and the version in its setup.py.

• IDENTITY is the agent’s identity in the platform. This is automatically assigned based on class name and
instance number. This agent’s ID is _1 because it is the first instance.

• TAG is the name we assigned in the command above

• Status indicates the running status of an agent - running agents are running, agents which are not running will
have no listed status

• Health is an indication of the internal state of the agent. ‘Healthy’ agents will have GOOD health. If an agent
enters an error state, it will continue to run, but its health will be BAD.

• PRI is the priority for agents which have been “enabled” using the vctl enable command.

When using lifecycle commands on agents, they can be referred to by the UUID (default) or AGENT (name) or TAG.

1.8.6 Running and Testing the Agent

Now that the first pass of the agent code is complete, we can see if the agent works. It is highly-suggested to build
a set of automated tests for the agent code prior to writing the agent, and running those tests after the agent is code-
complete. Another quick way to determine if the agent is going the right direction is to run the agent on the platform
using the VOLTTRON command line interface.

40 Chapter 1. Features

VOLTTRON Documentation, Release 8.0 Release Candidate

From the Command Line

To test the agent, we will start the platform (if not already running), launch the agent, and check the log file. With the
VOLTTRON environment activated, start the platform by running (if needed):

./start-volttron

You can launch the agent in three ways, all of which you can find by using the vctl list command:

• By using the <uuid>:

vctl start <uuid>

• By name:

vctl start --name testeragent-0.1

• By tag:

vctl start --tag testagent

Check that it is running:

vctl status

• Start the ListenerAgent as in the platform installation guide.

• Check the log file for messages indicating the TestAgent is receiving the ListenerAgents messages:

TODO

Automated Test Cases and Documentation

Before contributing a new agent to the VOLTTRON source code repository, please consider adding two other essential
elements.

1. Integration and unit test cases

2. README file that includes details of pre-requisite software, agent setup details (such as setting up databases,
permissions, etc.) and sample configuration

VOLTTRON uses pytest as a framework for executing tests. All unit tests should be based on the pytest framework.
For instructions on writing unit and integration tests with pytest, refer to the Writing Agent Tests documentation.

pytest is not installed with the distribution by default. To install py.test and it’s dependencies execute the following:

python bootstrap.py --testing

Note: There are other options for different agent requirements. To see all of the options use:

python bootstrap.py --help

in the Extra Package Options section.

To run a single test module, use the command

1.8. Agent Development 41

VOLTTRON Documentation, Release 8.0 Release Candidate

pytest <testmodule.py>

To run all of the tests in the volttron repository execute the following in the root directory using an activated command
prompt:

./ci-integration/run-tests.sh

1.8.7 Scripts

In order to make repetitive tasks less repetitive the VOLTTRON team has create several scripts in order to help. These
tasks are available in the scripts directory.

Note: In addition to the scripts directory, the VOLTTRON team has added the config directory to the .gitignore file.
By convention this is where we store customized scripts and configuration that will not be made public. Please feel
free to use this convention in your own processes.

The scripts/core directory is laid out in such a way that we can build scripts on top of a base core. For example
the scripts in sub-folders such as the historian-scripts and demo-comms use the scripts that are present in the core
directory.

The most widely used script is scripts/install-agent.py. The install_agent.py script will remove an agent if the tag
is already present, create a new agent package, and install the agent to VOLTTRON_HOME. This script has three
required arguments and has the following signature:

Note: Agent to Package must have a setup.py in the root of the directory. Additionally, the user must be in an
activated Python Virtual Environment for VOLTTRON

cd $VOLTTRON_ROOT
source env/bin/activate

python scripts/install_agent.py -s <agent path> -c <agent config file> -i <agent VIP
→˓identity> --tag <Tag>

Note: The --help optional argument can be used with scripts/install-agent.py to view all available options for the
script

The install_agent.py script will respect the VOLTTRON_HOME specified on the command line or set in the global
environment. An example of setting VOLTTRON_HOME to /tmp/v1home is as follows.

VOLTTRON_HOME=/tmp/v1home python scripts/install-agent.py -s <Agent to Package> -c
→˓<Config file> --tag <Tag>

Agent Configuration Store Interface

The Agent Configuration Store Subsystem provides an interface for facilitating dynamic configuration via the platform
configuration store. It is intended to work alongside the original configuration file to create a backwards compatible
system for configuring agents with the bundled configuration file acting as default settings for the agent.

42 Chapter 1. Features

VOLTTRON Documentation, Release 8.0 Release Candidate

If an Agent Author does not want to take advantage of the platform configuration store they need to make no
changes. To completely disable the Agent Configuration Store Subsystem an Agent may pass enable_store=False
to the Agent.__init__ method.

The Agent Configuration Store Subsystem caches configurations as the platform sends updates to the agent. Updates
from the platform will usually trigger callbacks on the agent.

Agent access to the Configuration Store is managed through the self.vip.config object in the Agent class.

The “config” Configuration

The configuration name config is considered the canonical name of an Agents main configuration. As such the Agent
will always run callbacks for that configuration first at startup and when a change to another configuration triggers any
callbacks for config.

Configuration Callbacks

Agents may setup callbacks for different configuration events. The callback method must have the following signature:

my_callback(self, config_name, action, contents)

Note: The example above is for a class member method, however the method does not need to be a member of the
agent class.

• config_name - The method to call when a configuration event occurs.

• action - The specific configuration event type that triggered the callback. Possible values are “NEW”, “UP-
DATE”, “DELETE”. See Configuration Events

• contents - The actual contents of the configuration. Will be a string, list, or dictionary for the actions “NEW”
and “UPDATE”. None if the action is “DELETE”.

Note: All callbacks which are connected to the “NEW” event for a configuration will called during agent startup with
the initial state of the configuration.

Configuration Events

• NEW - This event happens for every existing configuration at Agent startup and whenever a new configuration
is added to the Configuration Store.

• UPDATE - This event happens every time a configuration is changed.

• DELETE - The event happens every time a configuration is removed from the store.

Setting Up a Callback

A callback is setup with the self.vip.config.subscribe method.

Note: Subscriptions may be setup at any point in the life cycle of an Agent. Ideally they are setup in __init__.

1.8. Agent Development 43

VOLTTRON Documentation, Release 8.0 Release Candidate

subscribe(callback, actions=["NEW", "UPDATE", "DELETE"], pattern="*")

• callback - The method to call when a configuration event occurs.

• actions - The specific configuration event that will trigger the callback. May be a string with the name of a
single action or a list of actions.

• pattern - The pattern used to match configuration names to trigger the callback.

Configuration Name Pattern Matching

Configuration name matching uses Unix file name matching semantics. Specifically the python module fnmatch is
used.

Name matching is not case sensitive regardless of the platform VOLTTRON is running on.

For example, the pattern devices/* will trigger the supplied callback for any configuration name that starts with de-
vices/.

The default pattern matches all configurations.

Getting a Configuration

Once RPC methods are available to an agent (once onstart methods have been called or from any configuration call-
back) the contents of any configuration may be acquired with the self.vip.config.get method.

get(config_name="config")

If the Configuration Subsystem has not been initialized with the starting values of the agent configuration that will
happen in order to satisfy the request.

If initialization occurs to satisfy the request callbacks will not be called before returning the results.

Typically an Agent will only obtain the contents of a configuration via a callback. This method is included for agents
that want to save state in the store and only need to retrieve the contents of a configuration at startup and ignore any
changes to the configuration going forward.

Setting a Configuration

Once RPC methods are available to an agent (once onstart methods have been called) the contents of any configuration
may be set with the self.vip.config.set method.

set(config_name, contents, trigger_callback=False, send_update=False)

The contents of the configuration may be a string, list, or dictionary.

This method is intended for agents that wish to maintain a copy of their state in the store for retrieval at startup with
the self.vip.config.get method.

Warning: This method may not be called from a configuration callback. The Configuration Subsystem will
detect this and raise a RuntimeError, even if trigger_callback or send_update is False.

44 Chapter 1. Features

https://docs.python.org/2.7/library/fnmatch.html#module-fnmatch

VOLTTRON Documentation, Release 8.0 Release Candidate

The platform has a locking mechanism to prevent concurrent configuration updates to the Agent. Calling
self.vip.config.set would cause the Agent and the Platform configuration store for that Agent to deadlock until
a timeout occurs.

Optionally an agent may trigger any callbacks by setting trigger_callback to True. If trigger_callback is set to
False the platform will still send the updated configuration back to the agent. This ensures that a subsequent call
to self.cip.config.get will still return the correct value. This way the agent’s configuration subsystem is kept in sync
with the platform’s copy of the agent’s configuration store at all times.

Optionally the agent may prevent the platform from sending the updated file to the agent by setting send_update to
False. This setting is available strictly for performance tuning.

Warning: This setting will allow the agent’s view of the configuration to fall out of sync with the platform.
Subsequent calls to self.vip.config.get will return an old version of the file if it exists in the agent’s view of the
configuration store.

This will also affect any configurations that reference the configuration changed with this setting.

Care should be taken to ensure that the configuration is only retrieved at agent startup when using this option.

Setting a Default Configuration

In order to more easily allow agents to use both the Configuration Store while still supporting configuration via the
tradition method of a bundled configuration file the self.vip.config.set_default method was created.

set_default(config_name, contents)

Warning: This method may not be called once the Agent Configuration Store Subsystem has been initialized.
This method should only be called from __init__ or an onsetup method.

The set_default method adds a temporary configuration to the Agents Configuration Subsystem. Nothing is sent to the
platform. If a configuration with the same name exists in the platform store it will be presented to a callback method
in place of the default configuration.

The normal way to use this is to set the contents of the packaged Agent configuration as the default contents for the
configuration named config. This way the same callback used to process config configuration in the Agent will be
called when the Configuration Subsystem can be used to process the configuration file packaged with the Agent.

Note: No attempt is made to merge a default configuration with a configuration from the store.

If a configuration is deleted from the store and a default configuration exists with the same name the Agent Configu-
ration Subsystem will call the UPDATE callback for that configuration with the contents of the default configuration.

Other Methods

In a well thought out configuration scheme these methods should not be needed but are included for completeness.

1.8. Agent Development 45

VOLTTRON Documentation, Release 8.0 Release Candidate

List Configurations

A current list of all configurations for the Agent may be called with the self.vip.config.list method.

Unsubscribe

All subscriptions can be removed with a call to the self.vip.config.unsubscribe_all method.

Delete

A configuration can be deleted with a call to the self.vip.config.delete method.

delete(config_name, trigger_callback=False)

Note: This method may not be called from a callback for the same reason as the self.vip.config.set method.

Delete Default

A default configuration can be deleted with a call to the self.vip.config.delete_default method.

delete_default(config_name)

Warning: This method may not be called once the Agent Configuration Store Subsystem has been initialized.
This method should only be called from __init__ or an onsetup method.

Example Agent

The following example shows how to use set_default with a basic configuration and how to setup callbacks.

def my_agent(config_path, **kwargs):

config = utils.load_config(config_path) #Now returns {} if config_path does not
→˓exist.

setting1 = config.get("setting1", 42)
setting2 = config.get("setting2", 2.5)

return MyAgent(setting1, setting2, **kwargs)

class MyAgent(Agent):
def __init__(self, setting1=0, setting2=0.0, **kwargs):

super(MyAgent, self).__init__(**kwargs)

self.default_config = {"setting1": setting1,
"setting2": setting2}

self.vip.config.set_default("config", self.default_config)

(continues on next page)

46 Chapter 1. Features

VOLTTRON Documentation, Release 8.0 Release Candidate

(continued from previous page)

#Because we have a default config we don't have to worry about "DELETE"
self.vip.config.subscribe(self.configure_main, actions=["NEW", "UPDATE"],

→˓pattern="config")
self.vip.config.subscribe(self.configure_other, actions=["NEW", "UPDATE"],

→˓pattern="other_config/*")
self.vip.config.subscribe(self.configure_delete, actions="DELETE", pattern=

→˓"other_config/*")

def configure_main(self, config_name, action, contents):
#Ensure that we use default values from anything missing in the configuration.
config = self.default_config.copy()
config.update(contents)

_log.debug("Configuring MyAgent")

#Sanity check the types.
try:

setting1 = int(config["setting1"])
setting2 = float(config["setting2"])

except ValueError as e:
_log.error("ERROR PROCESSING CONFIGURATION: {}".format(e))
#TODO: set a health status for the agent
return

_log.debug("Using setting1 {}, setting2 {}". format(setting1, setting2))
#Do something with setting1 and setting2.

def configure_other(self, config_name, action, contents):
_log.debug("Configuring From {}".format(config_name))
#Do something with contents of configuration.

def configure_delete(self, config_name, action, contents):
_log.debug("Removing {}".format(config_name))
#Do something in response to the removed configuration.

Writing Agent Tests

The VOLTTRON team strongly encourages developing agents with a set of unit and integration tests. Test-driven
development can save developers significant time and effort by clearly defining behavioral expectations for agent
code. We recommend developing agent tests using Pytest. Agent code contributed to VOLTTRON is expected to
include a set of tests using Pytest in the agent module directory. Following are instructions for setting up Pytest,
structuring your tests, how to write unit and integration tests (including some helpful tools using Pytest and Mock)
and how to run your tests.

Installation

To get started with Pytest, install it in an activated environment:

pip install pytest

Or when running VOLTTRON’s bootstrap process, specify the --testing optional argument.

python bootstrap.py --testing

1.8. Agent Development 47

VOLTTRON Documentation, Release 8.0 Release Candidate

Pytest on PyPI

Module Structure

We suggest the following structure for your agent module:

UserAgent
user_agent

data
user_agent_data.csv

__init__.py
agent.py

tests
test_user_agent.py

README.md
config.json
contest.py
requirements.txt
setup.py

The test suite should be in a tests directory in the root agent directory, and should contain one or more test code files
(with the test_<name of test> convention). conftest.py can be used to give all agent tests access to some portion of the
VOLTTRON code. In many cases, agents use conftest.py to import VOLTTRON testing fixtures for integration tests.

Naming Conventions

Pytest tests are discovered and run using some conventions:

• Tests will be found recursively in either the directory specified when running Pytest, or the current working
directory if no argument was supplied

• Pytest will search in those directories for files called test_<name of test>.py or <name of test>_test.py

• In those files, Pytest will test:

– functions and methods prefixed by “test” outside of any class

– functions and methods prefixed by “test” inside of any class prefixed by “test”

TestDir
MoreTests

test2.py
test1.py
file.py

test1.py

def helper_method():
return 1

def test_success():
assert helper_method()

test2.py

def test_success():

(continues on next page)

48 Chapter 1. Features

https://pypi.org/project/pytest/

VOLTTRON Documentation, Release 8.0 Release Candidate

(continued from previous page)

assert True

def test_fail():
assert False

file.py

def test_success():
assert True

def test_fail():
assert False

In the above example, Pytest will run the tests test_success from the file test1.py and test_success and test_fail from
test2.py. No tests will be run from file.txt, even though it contains test code, nor will it try to run helper_method from
test1.py as a test.

Writing Unit Tests

These tests should test the various methods of the code base, checking for success and fail conditions. These tests
should capture how the components of the system should function; and describe all the possible output conditions
given the possible range of inputs including how they should fail if given improper input.

Pytest guide to Unit Testing

Mocking Dependencies

VOLTTRON agents include code for many platform features; these features can be mocked to allow unit tests to test
only the features of the agent without having to account for the behaviors of the core platform. While there are many
tools that can mock dependencies of an agent, we recommend Volttron’s AgentMock or Python’s Mock testing library.

AgentMock

AgentMock was specifically created to run unit tests on agents. AgentMock takes an Agent class and mocks the
attributes and methods of that Agent’s dependencies. AgentMock also allows you to customize the behavior of depen-
dencies within each individual test. Below is an example:

Import the Pytest, Mock, base Agent, and Agent mock utility from VOLTTRON's
→˓repository
import pytest
import mock
from volttron.platform.vip.agent import Agent
from volttrontesting.utils.utils import AgentMock
Import your agent code
from UserAgent import UserAgentClass

UserAgentClass.__bases__ = (AgentMock.imitate(Agent, Agent()),)
agent = UserAgentClass()

def test_success_case():
result = agent.do_function("valid input")
assert isinstance(result, dict)

(continues on next page)

1.8. Agent Development 49

https://docs.python-guide.org/writing/tests/#unittest

VOLTTRON Documentation, Release 8.0 Release Candidate

(continued from previous page)

for key in ['test1', 'test2']:
assert key in result

assert result.get("test1") == 10
assert isinstance(result.get("test2"), str)
...

def test_success_case_custom_mocks():
agent.some_dependency.some_method.return_value = "foobar"
agent.some_attribute = "custom, dummy value"
result = agent.do_function_that_relies_on_custom_mocks("valid input")
...

def test_failure_case()
pytests.raises can be useful for testing exceptions, more information about

→˓usage below
with pytest.raises(ValueError, match=r'Invalid input string for do_function')

result = agent.do_function("invalid input")

Mock

Simliar to AgentMock, Python’s Mock testing library allows a user to replace the behavior of dependencies with a
user-specified behavior. This is useful for replacing VOLTTRON platform behavior, remote API behavior, modules,
etc. where using them in unit or integration tests is impractical or impossible. Below is an example that uses the patch
decorator to mock an Agent’s web request.

Mock documentation

class UserAgent()

def __init__():
Code here

def get_remote_data()
response = self._get_data_from_remote()
return "Remote response: {}".format(response)

it can be useful to create private functions for use with mock for things like
→˓making web requests

def _get_data_from_remote():
url = "test.com/test1"
headers = {}
return requests.get(url, headers)

~~

import pytest
import mock

def get_mock_response():
return "test response"

here we're mocking the UserAgent's _get_data_from_remote method and replacing it
→˓with our get_mock_response method
to feed our test some fake remote data
@mock.patch.object(UserAgent, '_get_data_from_remote', get_mock_response)

(continues on next page)

50 Chapter 1. Features

https://docs.python.org/3/library/unittest.mock.html#quick-guide

VOLTTRON Documentation, Release 8.0 Release Candidate

(continued from previous page)

def test_get_remote_data():
assert UserAgent.get_remote_Data() == "Remote response: test response"

Pytest Tools

Pytest includes many helpful tools for developing your tests. We’ll highlight a few that have been useful for VOLT-
TRON core tests, but checkout the Pytest documentation for additional information on each tool as well as tools not
covered in this guide.

Pytest Fixtures

Pytest fixtures can be used to create reusable code for tests that can be accessed by every test in a module based on
scope. There are several kinds of scopes, but commonly used are “module” (the fixture is run once per module for all
the tests of that module) or “function” (the fixture is run once per test). For fixtures to be used by tests, they should be
passed as parameters.

Pytest Fixture documentation

Here is an example of a fixture, along with using it in a test:

Fixtures with scope function will be run once per test if the test accepts the
→˓fixture as a parameter
@pytest.fixture(scope="function")
def cleanup_database():

This fixture cleans up a sqlite database in between each test run
sqlite_conn = sqlite.connect("test.sqlite")
cursor = sqlite_conn.cursor()
cursor.execute("DROP TABLE 'TEST'")
cursor.commit()

cursor.execute("CREATE TABLE TEST (ID INTEGER, FirstName TEXT, LastName TEXT,
→˓Occupation Text)")

cursor.commit()
sqlite.conn.close()

when we pass the cleanup function, we expect that the table will be dropped and
→˓rebuilt before the test runs
def test_store_data(cleanup_database):

sqlite_conn = sqlite.connect("test.sqlite")
cursor = sqlite_conn.cursor()
after this insert, we'd expect to only have 1 value in the table
cursor.execute("INSERT INTO TEST VALUES(1, 'Test', 'User', 'Developer')")
cursor.commit()

validate the row count
cursor.execute("SELECT COUNT(*) FROM TEST")
count = cursor.fetchone()
assert count == 1

Pytest.mark

Pytest marks are used to set metadata for test functions. Defining your own custom marks can allow you to run
subsections of your tests. Parametrize can be used to pass a series of parameters to a test, so that it can be run many

1.8. Agent Development 51

https://docs.pytest.org/
https://docs.pytest.org/en/latest/fixture.html

VOLTTRON Documentation, Release 8.0 Release Candidate

times to cover the space of potential inputs. Marks also exist to specify expected behavior for tests.

Mark documentation

Custom Marks

To add a custom mark, add the name of the mark followed by a colon then a description string to the ‘markers’ section
of Pytest.ini (an example of this exists in the core VOLTTRON repository). Then add the appropriate decorator:

@pytest.mark.UserAgent
def test_success_case():

TODO unit test here
pass

The VOLTTRON team also has a dev mark for running individual (or a few) one-off tests.

@pytest.mark.dev
@pytest.mark.UserAgent
def test_success_case():

TODO unit test here
pass

Parametrize

Parametrize will allow tests to be run with a variety of parameters. Add the parametrize decorator, and for parameters
include a list of parameter names matching the test parameter names as a comma-delimited string followed by a list of
tuples containing parameters for each test.

Parametrize docs

@pytest.mark.parametrize("test_input1, test_input2, expected", [(1, 2, 3), (-1, 0, "
→˓")])
def test_user_agent(param1, param2, param3):

TODO unit test here
pass

Skip, skipif, and xfail

The skip mark can be used to skip a test for any reason every time the test suite is run:

This test will be skipped!
@pytest.mark.skip
def test_user_agent():

TODO unit test here
pass

The skipif mark can be used to skip a test based on some condition:

This test will be skipped if RabbitMQ hasn't been set up yet!
@pytest.mark.skipif(not isRabbitMQInstalled)
def test_user_agent():

TODO unit test here
pass

52 Chapter 1. Features

https://docs.pytest.org/en/latest/mark.html
https://docs.pytest.org/en/latest/parametrize.html

VOLTTRON Documentation, Release 8.0 Release Candidate

The xfail mark can be used to run a test, but to show that the test is currently expected to fail

This test will fail, but will not cause the module tests to be considered failing!
@pytest.mark.xfail
def test_user_agent():

TODO unit test here
assert False

Skip, skipif, and xfail docs

Writing Integration Tests

Integration tests are useful for testing the faults that occur between integrated units. In the context of VOLTTRON
agents, integration tests should test the interactions between the agent, the platform, and other agents installed on
the platform that would interface with the agent. It is typical for integration tests to test configuration, behavior and
content of RPC calls and agent Pub/Sub, the agent subsystems, etc.

Pytest best practices for Integration Testing

Volttrontesting Directory

The Volttrontesting directory includes several helpful fixtures for your tests. Including the following line at the top of
your tests, or in conftest.py, will allow you to utilize the platform wrapper fixtures, and more.

from volttrontesting.fixtures.volttron_platform_fixtures import *

Here is an example success case integration test:

import pytest
import mock
from volttrontesting.fixtures.volttron_platform_fixtures import *

If the test requires user specified values, setting environment variables or having
→˓settings files is recommended
API_KEY = os.environ.get('API_KEY')

request object is a pytest object for managing the context of the test
@pytest.fixture(scope="module")
def Weather(request, volttron_instance):

config = {
"API_KEY": API_KEY

}
using the volttron_instance fixture (passed in by volttrontesting fixtures), we

→˓can install an agent
on the platform to test against
agent = volttron_instance.install_agent(

vip_identity=identity,
agent_dir=source,
start=False,
config_file=config)

volttron_instance.start_agent(agent)
gevent.sleep(3)

def stop_agent():

(continues on next page)

1.8. Agent Development 53

https://docs.pytest.org/en/documentation-restructure/how-to/skipping.html
https://docs.pytest.org/en/latest/goodpractices.html

VOLTTRON Documentation, Release 8.0 Release Candidate

(continued from previous page)

print("stopping weather service")
if volttron_instance.is_running():

volttron_instance.stop_agent(agent)
here we used the passed request object to add something to happen when the test

→˓is finished
request.addfinalizer(stop_agent)
return agent, identity

Here we create a really simple agent which has only the core functionality, which
→˓we can use for Pub/Sub
or JSON/RPC
@pytest.fixture(scope="module")
def query_agent(request, volttron_instance):

Create the simple agent
agent = volttron_instance.build_agent()

def stop_agent():
print("In teardown method of query_agent")
agent.core.stop()

request.addfinalizer(stop_agent)
return agent

pass the 2 fixtures to our test, then we can run the test
def test_weather_success(Weather, query_agent):

query_data = query_agent.vip.rpc.call(identity, 'get_current_weather', locations).
→˓get(timeout=30)

assert query_data.get("weather_results") = "Its sunny today!"

For more integration test examples, it is recommended to take a look at some of the VOLTTRON core agents, such as
historian agents and weather service agents.

Using Docker for Limited-Integration Testing

If you want to run limited-integration tests which do not require the setup of a volttron system, you can use Docker
containers to mimic dependencies of an agent. The volttrontesting/fixtures/docker_wrapper.py module provides a
convenient function to create docker containers for use in limited-integration tests. For example, suppose that you had
an agent with a dependency on a MySQL database. If you want to test the connection between the Agent and the
MySQL dependency, you can create a Docker container to act as a real MySQL database. Below is an example:

from volttrontesting.fixtures.docker_wrapper import create_container
from UserAgent import UserAgentClass

def test_docker_wrapper_example():
ports_config = {'3306/tcp': 3306}
with create_container("mysql:5.7", ports=ports_config) as container:

init_database(container)
agent = UserAgent(ports_config)

results = agent.some_method_that_talks_to_container()

Running your Tests and Debugging

Pytest can be run from the command line to run a test module.

54 Chapter 1. Features

VOLTTRON Documentation, Release 8.0 Release Candidate

pytest <path to module to be tested>

If using marks, you can add -m <mark> to specify your testing subset, and -s can be used to suppress standard
output. For more information about optional arguments you can type pytest –help into your command line interface to
see the full list of options.

Testing output should look something like this:

(volttron) <user>@<host>:~/volttron$ pytest services/core/SQLHistorian/
== test session starts
→˓===
platform linux -- Python 3.6.9, pytest-5.4.1, py-1.8.1, pluggy-0.13.1 -- /home/<user>/
→˓volttron/env/bin/python
cachedir: .pytest_cache
rootdir: /home/<user>/volttron, inifile: pytest.ini
plugins: timeout-1.3.4
timeout: 240.0s
timeout method: signal
timeout func_only: False
collected 2 items

services/core/SQLHistorian/tests/test_sqlitehistorian.py::test_sqlite_
→˓timeout[volttron_3-volttron_instance0] ERROR [50%]
services/core/SQLHistorian/tests/test_sqlitehistorian.py::test_sqlite_
→˓timeout[volttron_3-volttron_instance1] PASSED [100%]

=== ERRORS
→˓===
________________________________ ERROR at setup of test_sqlite_timeout[volttron_3-
→˓volttron_instance0] ________________________________

request = <SubRequest 'volttron_instance' for <Function test_sqlite_timeout[volttron_
→˓3-volttron_instance0]>>, kwargs = {}
address = 'tcp://127.0.0.113:5846'

@pytest.fixture(scope="module",
params=[

dict(messagebus='zmq', ssl_auth=False),
pytest.param(dict(messagebus='rmq', ssl_auth=True), marks=rmq_

→˓skipif),
])

def volttron_instance(request, **kwargs):
"""Fixture that returns a single instance of volttron platform for testing

@param request: pytest request object
@return: volttron platform instance
"""
address = kwargs.pop("vip_address", get_rand_vip())
wrapper = build_wrapper(address,

messagebus=request.param['messagebus'],
ssl_auth=request.param['ssl_auth'],

> **kwargs)

address = 'tcp://127.0.0.113:5846'
kwargs = {}
request = <SubRequest 'volttron_instance' for <Function test_sqlite_
→˓timeout[volttron_3-volttron_instance0]>>

(continues on next page)

1.8. Agent Development 55

VOLTTRON Documentation, Release 8.0 Release Candidate

(continued from previous page)

volttrontesting/fixtures/volttron_platform_fixtures.py:106:

Running Tests Via PyCharm

To run our Pytests using PyCharm, we’ll need to create a run configuration. To do so, select “edit configurations” from
the “Run” menu (or if using the toolbar UI element you can click on the run configurations dropdown to select “edit
configurations”). Use the plus symbol at the top right of the pop-up menu, scroll to “Python Tests” and expand this
menu and select “pytest”. This will create a run configuration, which will then need to be filled out. We recommend
the following in general:

• Set the “Script Path” radio and fill the form with the path to your module. Pytest will run any tests in that module
using the discovery process described above (and any marks if specified)

• In the interpreter dropdown, select the VOLTTRON virtual environment - this will likely be your project default

• Set the working directory to the VOLTTRON root directory

• Add any environment variables - For debugging, add variable “DEBUG_MODE” = True or “DEBUG” 1

• Add any optional arguments (-s will prevent standard output from being displayed in the console window, -m is
used to specify a mark)

PyCharm testing instructions

More information on testing in Python

56 Chapter 1. Features

https://www.jetbrains.com/help/pycharm/run-debug-configuration-py-test.html
https://realpython.com/python-testing/

VOLTTRON Documentation, Release 8.0 Release Candidate

Developing Historian Agents

VOLTTRON provides a convenient base class for developing new historian agents. The base class automatically
performs a number of important functions:

• subscribes to all pertinent topics

• caches published data to disk until it is successfully recorded to a historian

• creates the public facing interface for querying results

• spells out a simple interface for concrete implementation to meet to make a working Historian Agent

• breaks data to publish into reasonably sized chunks before handing it off to the concrete implementation for
publication. The size of the chunk is configurable

• sets up a separate thread for publication. If publication code needs to block for a long period of time (up to 10s
of seconds) this will no disrupt the collection of data from the bus or the functioning of the agent itself

The VOLTTRON repository provides several historians which can be deployed without modification.

BaseHistorian

All Historians must inherit from the BaseHistorian class in volttron.platform.agent.base_historian and implement the
following methods:

publish_to_historian(self, to_publish_list)

This method is called by the BaseHistorian class when it has received data from the message bus to be published.
to_publish_list is a list of records to publish in the form:

[
{

'_id': 1,
'timestamp': timestamp,
'source': 'scrape',
'topic': 'campus/building/unit/point',
'value': 90,
'meta': {'units':'F'}

}
{

...
}

]

• _id - ID of the record used for internal record tracking. All IDs in the list are unique

• timestamp - Python datetime object of the time data was published at timezone UTC

• source - Source of the data: can be scrape, analysis, log, or actuator

• topic - Topic data was published on, topic prefix’s such as “device” are dropped

• value - Value of the data, can be any type.

• meta - Metadata for the value, some sources will omit this entirely.

For each item in the list the concrete implementation should attempt to publish (or discard if non-publishable) every
item in the list. Publication should be batched if possible. For every successfully published record and every record
that is to be discarded because it is non-publishable the agent must call report_handled on those records. Records

1.8. Agent Development 57

VOLTTRON Documentation, Release 8.0 Release Candidate

that should be published but were not for whatever reason require no action. Future calls to publish_to‘_historian
will include these unpublished records. publish_to_historian is always called with the oldest unhandled records. This
allows the historian to no lose data due to lost connections or other problems.

As a convenience report_all_handled can be called if all of the items in published_list were successfully handled.

query_topic_list(self)

Must return a list of all unique topics published.

query_historian(self, topic, start=None, end=None, skip=0, count=None, order=None)

This function must return the results of a query in the form:

{"values": [(timestamp1: value1), (timestamp2: value2), ...],
"metadata": {"key1": value1, "key2": value2, ...}}

metadata is not required (The caller will normalize this to {} for you if you leave it out)

• topic - the topic the user is querying for

• start - datetime of the start of the query, None for the beginning of time

• end - datetime of the end of of the query, None for the end of time

• skip - skip this number of results (for pagination)

• count - return at maximum this number of results (for pagination)

• order - FIRST_TO_LAST for ascending time stamps, LAST_TO_FIRST for descending time stamps

historian_setup(self)

Implementing this is optional. This function is run on the same thread as the rest of the concrete implementation at
startup. It is meant for connection setup.

Example Historian

An example historian can be found in the examples/CSVHistorian directory in the VOLTTRON repository. This
example historian uses a CSV file as the persistent data store. It is recommended to use this agent as a reference for
developing new historian agents.

Developing Market Agents

VOLTTRON provides a convenient base class for developing new market agents. The base class automatically sub-
scribes to all pertinent topics, and spells out a simple interface for concrete implementation to make a working Market
Agent.

Markets are implemented by the Market Service Agent which is a core service agent. The Market Service Agent
publishes information on several topics to which the base agent automatically subscribes. The base agent also provides
all the methods you will need to interact with the Market Service Agent to implement your market transactions.

58 Chapter 1. Features

VOLTTRON Documentation, Release 8.0 Release Candidate

MarketAgent

All Market Agents must inherit from the MarketAgent class in volttron.platform.agent.base_market_agent and call
the following method:

self.join_market(market_name, buyer_seller, reservation_callback, offer_callback,
→˓aggregate_callback, price_callback, error_callback)

This method causes the market agent to join a single market. If the agent wishes to participate in several markets
it may be called once for each market. The first argument is the name of the market to join and this name must be
unique across the entire volttron instance because all markets are implemented by a single market service agent for
each volttron instance. The second argument describes the role that this agent wished to play in this market. The value
is imported as:

from volttron.platform.agent.base_market_agent.buy_sell import BUYER, SELLER

Arguments 3-7 are callback methods that the agent may implement as needed for the agent’s participation in the
market.

The Reservation Callback

reservation_callback(self, timestamp, market_name, buyer_seller)

This method is called when it is time to reserve a slot in the market for the current market cycle. If this callback is not
registered a slot is reserved for every market cycle. If this callback is registered it is called for each market cycle and
returns True if a reservation is wanted and False if a reservation is not wanted.

The name of the market and the roll being played are provided so that a single callback can handle several markets. If
the agent joins three markets with the same reservation callback routine it will be called three times with the appropriate
market name and buyer/seller role for each call. The MeterAgent example illustrates the use of this of this method and
how to determine whether to make an offer when the reservation is refused.

A market will only exist if there are reservations for at least one buyer or one seller. If the market fails to achieve the
minimum participation the error callback will be called. If only buyers or only sellers make reservations any offers
will be rejected with the reason that the market has not formed.

The Offer Callback

offer_callback(self, timestamp, market_name, buyer_seller)

If the agent has made a reservation for the market and a callback has been registered this callback is called. If the agent
wishes to make an offer at this time the market agent computes either a supply or a demand curve as appropriate and
offers the curve to the market service by calling the make_offer method.

The name of the market and the roll being played are provided so that a single callback can handle several markets.

For each market joined either an offer callback, an aggregate callback, or a cleared price callback is required.

The Aggregate Callback

aggregate_callback(self, timestamp, market_name, buyer_seller, aggregate_curve)

1.8. Agent Development 59

VOLTTRON Documentation, Release 8.0 Release Candidate

When a market has received all its buy offers it calculates an aggregate demand curve. When the market receives all
of its sell offers it calculates an aggregate supply curve. This callback delivers the aggregate curve to the market agent
whenever the appropriate curve becomes available.

If the market agent wants to use this opportunity to make an offer on this or another market it would do that using the
make_offer method.

• If the aggregate demand curve is received, only a supply offer may be submitted for this market

• If the aggregate supply curve is received, only make a demand offer will be accepted by this market.

You may use this information to make an offer on another market; The example AHUAgent does this. The name of
the market and the roll being played are provided so that a single callback can handle several markets.

For each market joined, either an offer callback, an aggregate callback, or a cleared price callback is required.

The Price Callback

price_callback(self, timestamp, market_name, buyer_seller, price, quantity)

This callback is called when the market clears. If the market agent wants to use this opportunity to make an offer on
this or another market it would do that using the make_offer method.

Once the market has cleared you can not make an offer on that market. Again, you may use this information to make an
offer on another market as in the example AHUAgent. The name of the market and the roll being played are provided
so that a single callback can handle several markets.

For each market joined either an offer callback, an aggregate callback, or a cleared price callback is required.

The Error Callback

error_callback(self, timestamp, market_name, buyer_seller, error_code, error_message,
→˓aux)

This callback is called when an error occurs isn’t in response to an RPC call. The error codes are documented in:

from volttron.platform.agent.base_market_agent.error_codes import NOT_FORMED, SHORT_
→˓OFFERS, BAD_STATE, NO_INTERSECT

• NOT_FORMED - If a market fails to form this will be called at the offer time.

• SHORT_OFFERS - If the market doesn’t receive all its offers this will be called while clearing the market.

• BAD_STATE - This indicates a bad state transition while clearing the market and should never happen, but may
be called while clearing the market.

• NO_INTERSECT - If the market fails to clear this would be called while clearing the market and an auxillary
array will be included. The auxillary array contains comparisons between the supply max, supply min, demand
max and demand min. They allow the market client to make determinations about why the curves did not
intersect that may be useful.

The error callback is optional, but highly recommended.

60 Chapter 1. Features

VOLTTRON Documentation, Release 8.0 Release Candidate

Example Agents

Some example agents are included with the platform to help explore its features. These agents represent concrete
implementations of important agent sub-types such as Historians or Weather Agents, or demonstrate a development
pattern for accomplishing common tasks.

More complex agents contributed by other researchers can also be found in the examples directory. It is recommended
that developers new to VOLTTRON understand the example agents first before diving into the other agents.

C Agent

The C Agent uses the ctypes module to load a shared object into memory so its functions can be called from Python.

There are two versions of the C Agent:

• A standard agent that can be installed with the agent installation process

• A driver which can can be controlled using the Master Driver Agent

Building the Shared Object

The shared object library must be built before installing C Agent examples. Running make in the C Agent source
directory will compile the provided C code using the position independent flag, a requirement for creating shared
objects.

Files created by make can be removed by running

make clean

Agent Installation

After building the shared object library the standard agent can be installed with the scripts/install-agent.
py script:

python scripts/install-agent.py -s examples/CAgent

The other is a driver interface for the Master Driver. To use the C driver, the driver code file must be moved into the
Master Driver’s interfaces directory:

examples/CAgent/c_agent/driver/cdriver -> services/core/MasterDriverAgent/
→˓master_driver/interfaces

The C Driver configuration tells the interface where to find the shared object. An example is available in the C Agent’s
driver directory.

Config Actuation Example

The Config Actuation example attempts to set points on a device when files are added or updated in its configuration
store.

1.8. Agent Development 61

VOLTTRON Documentation, Release 8.0 Release Candidate

Configuration

The name of a configuration file must match the name of the device to be actuated. The configuration file is a JSON
dictionary of point name and value pairs. Any number of points on the device can be listed in the config.

{
"point0": value,
"point1": value

}

CSV Historian

The CSV Historian Agent is an example historian agent that writes device data to the CSV file specified in the config-
uration file.

Explanation of CSV Historian

The Utils module of the VOLTTRON platform includes functions for setting up global logging for the platform:

utils.setup_logging()
_log = logging.getLogger(__name__)

The historian method is called by utils.vip_main when the agents is started (see below). utils.
vip_main expects a callable object that returns an instance of an Agent. This method of dealing with a configuration
file and instantiating an Agent is common practice.

def historian(config_path, **kwargs):
if isinstance(config_path, dict):

config_dict = config_path
else:

config_dict = utils.load_config(config_path)

output_path = config_dict.get("output", "~/historian_output.csv")

return CSVHistorian(output_path = output_path, **kwargs)

All historians must inherit from BaseHistorian. The BaseHistorian class handles the capturing and caching of all
device, logging, analysis, and record data published to the message bus.

class CSVHistorian(BaseHistorian):

The Base Historian creates a separate thread to handle publishing data to the data store. In this thread the Base
Historian calls two methods on the created historian, historian_setup and publish_to_historian.

The Base Historian created the new thread in it’s __init__ method. This means that any instance variables must
assigned in __init__ before calling the Base Historian’s __init__ method.

def __init__(self, output_path="", **kwargs):
self.output_path = output_path
self.csv_dict = None
super(CSVHistorian, self).__init__(**kwargs)

Historian setup is called shortly after the new thread starts. This is where a Historian sets up a connect the first time.
In our example we create the Dictwriter object that we will use to create and add lines to the CSV file.

62 Chapter 1. Features

VOLTTRON Documentation, Release 8.0 Release Candidate

We keep a reference to the file object so that we may flush its contents to disk after writing the header and after we
have written new data to the file.

The CSV file we create will have 4 columns: timestamp, source, topic, and value.

def historian_setup(self):
self.f = open(self.output_path, "wb")
self.csv_dict = csv.DictWriter(self.f, ["timestamp", "source", "topic", "value"])
self.csv_dict.writeheader()
self.f.flush()

publish_to_historian is called when data is ready to be published. It is passed a list of dictionaries. Each
dictionary contains a record of a single value that was published to the message bus.

The dictionary takes the form:

{
'_id': 1,
'timestamp': timestamp1.replace(tzinfo=pytz.UTC), #Timestamp in UTC
'source': 'scrape', #Source of the data point.
'topic': "pnnl/isb1/hvac1/thermostat", #Topic that published to without prefix.
'value': 73.0, #Value that was published
'meta': {"units": "F", "tz": "UTC", "type": "float"} #Meta data published with

→˓the topic
}

Once the data is written to the historian we call self.report_all_handled() to inform the BaseHistorian that
all data we received was successfully published and can be removed from the cache. Then we can flush the file to
ensure that the data is written to disk.

def publish_to_historian(self, to_publish_list):
for record in to_publish_list:

row = {}
row["timestamp"] = record["timestamp"]

row["source"] = record["source"]
row["topic"] = record["topic"]
row["value"] = record["value"]

self.csv_dict.writerow(row)

self.report_all_handled()
self.f.flush()

This agent does not support the Historian Query interface.

Agent Testing

The CSV Historian can be tested by running the included launch_my_historian.sh script.

Agent Installation

This Agent may be installed on the platform using the standard method.

1.8. Agent Development 63

VOLTTRON Documentation, Release 8.0 Release Candidate

Data Publisher

This is a simple agent that plays back data either from the config store or a CSV to the configured topic. It can also
provide basic emulation of the Actuator Agent for testing agents that expect to be able to set points on a device in
response to device publishes.

Installation notes

In order to simulate the actuator you must install the agent with the VIP identity of platform.actuator. If an an actuator
is already installed on the platform, this will cause VIP identity conflicts. To install the agent, the agent install script
can be used:

python scripts/install-agent.py -s examples/DataPublisher -c <config file>

Configuration

{
basetopic can be devices, analysis, or custom base topic
"basepath": "devices/PNNL/ISB1",

use_timestamp uses the included in the input_data if present.
Currently the column must be named `Timestamp`.
"use_timestamp": true,

Only publish data at most once every max_data_frequency seconds.
Extra data is skipped.
The time windows are normalized from midnight.
ie 900 will publish one value for every 15 minute window starting from
midnight of when the agent was started.
Only used if timestamp in input file is used.
"max_data_frequency": 900,

The meta data published with the device data is generated
by matching point names to the unittype_map.
"unittype_map": {

".*Temperature": "Farenheit",
".*SetPoint": "Farenheit",
"OutdoorDamperSignal": "On/Off",
"SupplyFanStatus": "On/Off",
"CoolingCall": "On/Off",
"SupplyFanSpeed": "RPM",
"Damper*.": "On/Off",
"Heating*.": "On/Off",
"DuctStatic*.": "On/Off"

},
Path to input CSV file.
May also be a list of records or reference to a CSV file in the config store.
Large CSV files should be referenced by file name and not
stored in the config store.
"input_data": "econ_test2.csv",
Publish interval in seconds
"publish_interval": 1,

(continues on next page)

64 Chapter 1. Features

VOLTTRON Documentation, Release 8.0 Release Candidate

(continued from previous page)

Tell the playback to maintain the location a the file in the config store.
Playback will be resumed from this point
at agent startup even if this setting is changed to false before restarting.
Saves the current line in line_marker in the DataPublishers's config store
as plain text.
default false
"remember_playback": true,

Start playback from 0 even if the line_marker configuration is set a non 0
→˓value.

default false
"reset_playback": false,

Repeat data from the start if this flag is true.
Useful for data that does not include a timestamp and is played back in real

→˓time.
"replay_data": false

}

CSV File Format

The CSV file must have a single header line. The column names are appended to the basepath setting in the config-
uration file and the resulting topic is normalized to remove extra‘ / characters. The values are all treated as floating
point values and converted accordingly.

The corresponding device for each point is determined and the values are combined together to create an all topic
publish for each device.

If a Timestamp column is in the input it may be used to set the timestamp in the header of the published data.

Table 1: Publisher Data
Timestamp centrifugal_chiller/OutsideAirTemperature centrifugal_chiller/DischargeAirTemperatureSetPoint fuel_cell/DischargeAirTemperature fuel_cell/CompressorStatus absorption_chiller/SupplyFanSpeed absorption_chiller/SupplyFanStatus boiler/DuctStaticPressureSetPoint boiler/DuctStaticPressure
2012/05/19 05:07:00 0 56 0 0 75 1 1.4 1.38
2012/05/19 05:08:00 0 56 0 0 75 1 1.4 1.38
2012/05/19 05:09:00 0 56 0 0 75 1 1.4 1.38
2012/05/19 05:10:00 0 56 0 0 75 1 1.4 1.38
2012/05/19 05:11:00 0 56 0 0 75 1 1.4 1.38
2012/05/19 05:12:00 0 56 0 0 75 1 1.4 1.38
2012/05/19 05:13:00 0 56 0 0 75 1 1.4 1.38
2012/05/19 05:14:00 0 56 0 0 75 1 1.4 1.38
2012/05/19 05:15:00 0 56 0 0 75 1 1.4 1.38
2012/05/19 05:16:00 0 56 0 0 75 1 1.4 1.38
2012/05/19 05:17:00 0 56 0 0 75 1 1.4 1.38
2012/05/19 05:18:00 0 56 0 0 75 1 1.4 1.38
2012/05/19 05:19:00 0 56 0 0 75 1 1.4 1.38
2012/05/19 05:20:00 0 56 0 0 75 1 1.4 1.38
2012/05/19 05:21:00 0 56 0 0 75 1 1.4 1.38
2012/05/19 05:22:00 0 56 0 0 75 1 1.4 1.38
2012/05/19 05:23:00 0 56 0 0 75 1 1.4 1.38
2012/05/19 05:24:00 0 56 58.77 0 75 1 1.4 1.38
2012/05/19 05:25:00 48.78 56 58.87 0 75 1 1.4 1.38
2012/05/19 05:26:00 48.88 56 58.95 0 75 1 1.4 1.38

Continued on next page

1.8. Agent Development 65

VOLTTRON Documentation, Release 8.0 Release Candidate

Table 1 – continued from previous page
Timestamp centrifugal_chiller/OutsideAirTemperature centrifugal_chiller/DischargeAirTemperatureSetPoint fuel_cell/DischargeAirTemperature fuel_cell/CompressorStatus absorption_chiller/SupplyFanSpeed absorption_chiller/SupplyFanStatus boiler/DuctStaticPressureSetPoint boiler/DuctStaticPressure
2012/05/19 05:27:00 48.93 56 58.91 0 75 1 1.4 1.38
2012/05/19 05:28:00 48.95 56 58.81 0 75 1 1.4 1.38
2012/05/19 05:29:00 48.92 56 58.73 0 75 1 1.4 1.38
2012/05/19 05:30:00 48.88 56 58.69 0 75 1 1.4 1.38
2012/05/19 05:31:00 48.88 56 58.81 0 75 1 1.4 1.38
2012/05/19 05:32:00 48.99 56 58.91 0 75 1 1.4 1.38
2012/05/19 05:33:00 49.09 56 58.85 0 75 1 1.4 1.38
2012/05/19 05:34:00 49.11 56 58.79 0 75 1 1.4 1.38
2012/05/19 05:35:00 49.07 56 58.71 0 75 1 1.4 1.38
2012/05/19 05:36:00 49.05 56 58.77 0 75 1 1.4 1.38
2012/05/19 05:37:00 49.09 56 58.87 0 75 1 1.4 1.38
2012/05/19 05:38:00 49.13 56 58.85 0 75 1 1.4 1.38
2012/05/19 05:39:00 49.09 56 58.81 0 75 1 1.4 1.38
2012/05/19 05:40:00 49.01 56 58.75 0 75 1 1.4 1.38
2012/05/19 05:41:00 48.92 56 58.71 0 75 1 1.4 1.38
2012/05/19 05:42:00 48.86 56 58.77 0 75 1 1.4 1.38
2012/05/19 05:43:00 48.92 56 58.87 0 75 1 1.4 1.38
2012/05/19 05:44:00 48.95 56 58.79 0 75 1 1.4 1.38
2012/05/19 05:45:00 48.92 56 58.69 0 75 1 1.4 1.38
2012/05/19 05:46:00 48.86 56 58.5 0 75 1 1.4 1.38
2012/05/19 05:47:00 48.78 56 58.34 0 75 1 1.4 1.38
2012/05/19 05:48:00 48.69 56 58.36 0 75 1 1.4 1.38
2012/05/19 05:49:00 48.65 56 58.46 0 75 1 1.4 1.38
2012/05/19 05:50:00 48.65 56 58.56 0 75 1 1.4 1.38
2012/05/19 05:51:00 48.65 56 58.48 0 75 1 1.4 1.38
2012/05/19 05:52:00 48.61 56 58.36 0 75 1 1.4 1.38
2012/05/19 05:53:00 48.59 56 58.21 0 75 1 1.4 1.38
2012/05/19 05:54:00 48.55 56 58.25 0 75 1 1.4 1.38
2012/05/19 05:55:00 48.63 56 58.42 0 75 1 1.4 1.38
2012/05/19 05:56:00 48.76 56 58.56 0 75 1 1.4 1.38
2012/05/19 05:57:00 48.95 56 58.71 0 75 1 1.4 1.38
2012/05/19 05:58:00 49.24 56 58.83 0 75 1 1.4 1.38
2012/05/19 05:59:00 49.54 56 58.93 0 75 1 1.4 1.38
2012/05/19 06:00:00 49.71 56 58.95 0 75 1 1.4 1.38
2012/05/19 06:01:00 49.79 56 59.07 0 75 1 1.4 1.38
2012/05/19 06:02:00 49.94 56 59.17 0 75 1 1.4 1.38
2012/05/19 06:03:00 50.13 56 59.25 0 75 1 1.4 1.38
2012/05/19 06:04:00 50.18 56 59.15 0 75 1 1.4 1.38
2012/05/19 06:05:00 50.15 56 59.04 0 75 1 1.4 1.38

DDS Agent

The DDS example agent demonstrates VOLTTRON’s capacity to be extended with tools and libraries not used in the
core codebase. DDS is a messaging platform that implements a publish-subscribe system for well defined data types.

This agent example is meant to be run the command line, as opposed to installing it like other agents. From the
examples/DDSAgent directory, the command to start it is:

$ AGENT_CONFIG=config python -m ddsagent.agent

66 Chapter 1. Features

VOLTTRON Documentation, Release 8.0 Release Candidate

The rticonnextdds-connector library needs to be installed for this example to function properly. We’ll retrieve it from
GitHub since it is not available through Pip. Download the source with:

$ wget https://github.com/rticommunity/rticonnextdds-connector/archive/master.zip

and unpack it in examples/DDSAgent/ddsagent with:

$ unzip master.zip

The demo_publish() output can be viewed with the rtishapesdemo available from RTI.

Configuration

Each data type that this agent will have access to needs to have an XML document defining its structure. The XML
will include a participant name, publisher name, and a subscriber name. These are recorded in the configuration with
the location on disk of the XML file.

{
"square": {

"participant_name": "MyParticipantLibrary::Zero",
"xml_config_path": "./ddsagent/rticonnextdds-connector-master/examples/python/

→˓ShapeExample.xml",
"publisher_name": "MyPublisher::MySquareWriter",
"subscriber_name": "MySubscriber::MySquareReader"

}
}

Listener Agent

The ListenerAgent subscribes to all topics and is useful for testing that agents being developed are publishing correctly.
It also provides a template for building other agents as it expresses the requirements of a platform agent.

Explanation of Listener Agent Code

Use utils to setup logging, which we’ll use later.

utils.setup_logging()
_log = logging.getLogger(__name__)

The Listener agent extends (inherits from) the Agent class for its default functionality such as responding to platform
commands:

class ListenerAgent(Agent):
'''
Listens to everything and publishes a heartbeat according to the
heartbeat period specified in the settings module.
'''

After the class definition, the Listener agent reads the configuration file, extracts the configuration parameters, and
initializes any Listener agent instance variable. This is done through the agent’s __init__ method:

1.8. Agent Development 67

VOLTTRON Documentation, Release 8.0 Release Candidate

def __init__(self, config_path, **kwargs):
super(ListenerAgent, self).__init__(**kwargs)
self.config = utils.load_config(config_path)
self._agent_id = self.config.get('agentid', DEFAULT_AGENTID)
log_level = self.config.get('log-level', 'INFO')
if log_level == 'ERROR':

self._logfn = _log.error
elif log_level == 'WARN':

self._logfn = _log.warn
elif log_level == 'DEBUG':

self._logfn = _log.debug
else:

self._logfn = _log.info

Next, the Listener agent will run its setup method. This method is tagged to run after the agent is initialized by the
decorator @Core.receiver('onsetup'). This method accesses the configuration parameters, logs a message
to the platform log, and sets the agent ID.

@Core.receiver('onsetup')
def onsetup(self, sender, **kwargs):

Demonstrate accessing a value from the config file
_log.info(self.config.get('message', DEFAULT_MESSAGE))
self._agent_id = self.config.get('agentid')

The Listener agent subscribes to all topics published on the message bus. Publish and sub-
scribe interactions with the message bus are handled by the PubSub module located at ~/volt-
tron/volttron/platform/vip/agent/subsystems/pubsub.py.

The Listener agent uses an empty string to subscribe to all messages published. This is done in a decorator for
simplifying subscriptions.

@PubSub.subscribe('pubsub', '')
def on_match(self, peer, sender, bus, topic, headers, message):

'''Use match_all to receive all messages and print them out.'''
if sender == 'pubsub.compat':

message = compat.unpack_legacy_message(headers, message)
self._logfn(
"Peer: %r, Sender: %r:, Bus: %r, Topic: %r, Headers: %r, "
"Message: %r", peer, sender, bus, topic, headers, message)

MatLab Agent

The MatLab agent and Matlab Standalone Agent together are example agents that allow for MatLab scripts to be run
in a Windows environment and interact with the VOLTTRON platform running in a Linux environment.

The MatLab agent takes advantage of the config store to dynamically send scripts and commandline arguments across
the message bus to one or more Standalone Agents in Windows. The Standalone Agent then executes the requested
script and arguments, and sends back the results to the MatLab agent.

Overview of Matlab Agents

There are multiple components that are used for the MatLab agent. This diagram is to represent the components that
are connected to the MatLab Agents. In this example, the scripts involved are based on the default settings in the
MatLab Agent.

68 Chapter 1. Features

http://en.wikipedia.org/wiki/Python_syntax_and_semantics#Decorators

VOLTTRON Documentation, Release 8.0 Release Candidate

MatLabAgentV2

MatLabAgentV2 publishes the name of a python script along with any command line arguments that are needed for
the script to the appropriate topic. The agent then listens on another topic, and whenever anything is published on
this topic, it stores the message in the log file chosen when the VOLTTRON instance is started. If there are multiple
standalone agents, the agent can send a a script to each of them, along with their own set of command line arguments.
In this case, each script name and set of command line arguments should be sent to separate subtopics. This is done
so that no matter how many standalone agents are in use, MatLabAgentV2 will record all of their responses.

class MatlabAgentV2(Agent):

def __init__(self,script_names=[], script_args=[], topics_to_matlab=[],
topics_to_volttron=None,**kwargs):

super(MatlabAgentV2, self).__init__(**kwargs)
_log.debug("vip_identity: " + self.core.identity)

self.script_names = script_names
self.script_args = script_args
self.topics_to_matlab = topics_to_matlab
self.topics_to_volttron = topics_to_volttron
self.default_config = {"script_names": script_names,

"script_args": script_args,
"topics_to_matlab": topics_to_matlab,
"topics_to_volttron": topics_to_volttron}

#Set a default configuration to ensure that self.configure is called
→˓immediately to setup

#the agent.

(continues on next page)

1.8. Agent Development 69

VOLTTRON Documentation, Release 8.0 Release Candidate

(continued from previous page)

self.vip.config.set_default("config", self.default_config)
#Hook self.configure up to changes to the configuration file "config".
self.vip.config.subscribe(self.configure, actions=["NEW", "UPDATE"], pattern=

→˓"config")

def configure(self, config_name, action, contents):
"""
Called after the Agent has connected to the message bus.
If a configuration exists at startup this will be
called before onstart.
Is called every time the configuration in the store changes.
"""
config = self.default_config.copy()
config.update(contents)

_log.debug("Configuring Agent")

try:
script_names = config["script_names"]
script_args = config["script_args"]
topics_to_matlab = config["topics_to_matlab"]
topics_to_volttron = config["topics_to_volttron"]

except ValueError as e:
_log.error("ERROR PROCESSING CONFIGURATION: {}".format(e))
return

self.script_names = script_names
self.script_args = script_args
self.topics_to_matlab = topics_to_matlab
self.topics_to_volttron = topics_to_volttron
self._create_subscriptions(self.topics_to_volttron)

for script in range(len(self.script_names)):
cmd_args = ""
for x in range(len(self.script_args[script])):

cmd_args += ",{}".format(self.script_args[script][x])
_log.debug("Publishing on: {}".format(self.topics_to_matlab[script]))
self.vip.pubsub.publish('pubsub', topic=self.topics_to_matlab[script],

message="{}{}".format(self.script_names[script],cmd_args))
_log.debug("Sending message: {}{}".format(self.script_names[script],cmd_

→˓args))

_log.debug("Agent Configured!")

For this example, the agent is publishing to the matlab/to_matlab/1 topic, and is listening to the matlab/to_volttron
topic. It is sending the script name testScript.py with the argument 20. These are the default values found in the agent,
if no configuration is loaded.

script_names = config.get('script_names', ["testScript.py"])
script_args = config.get('script_args', [["20"]])
topics_to_matlab = config.get('topics_to_matlab', ["matlab/to_matlab/1"])
topics_to_volttron = config.get('topics_to_volttron', "matlab/to_volttron/")

70 Chapter 1. Features

VOLTTRON Documentation, Release 8.0 Release Candidate

StandAloneMatLab.py

The StandAloneMatLab.py script is a standalone agent designed to be able to run in a Windows environment. Its
purpose is to listen to a topic, and when something is published to this topic, it takes the message, and sends it to the
script_runner function in scriptwrapper.py. This function processes the inputs, and then the output is published
to another topic.

class StandAloneMatLab(Agent):
'''The standalone version of the MatLab Agent'''

@PubSub.subscribe('pubsub', _topics['volttron_to_matlab'])
def print_message(self, peer, sender, bus, topic, headers, message):

print('The Message is: ' + str(message))
messageOut = script_runner(message)
self.vip.pubsub.publish('pubsub', _topics['matlab_to_volttron'],

→˓message=messageOut)

settings.py

The topic to listen to and the topic to publish to are defined in settings.py, along with the information needed to connect
the Standalone Agent to the primary VOLTTRON instance. These should be the same topics that the MatLabAgentV2
is publishing and listening to, so that the communication can be successful. To connect the Standalone Agent to the
primary VOLTTRON instance, the IP address and port of the instance are needed, along with the server key.

_topics = {
'volttron_to_matlab': 'matlab/to_matlab/1',
'matlab_to_volttron': 'matlab/to_volttron/1'
}

The parameters dictionary is used to populate the agent's
remote vip address.
_params = {

The root of the address.
Note:
1. volttron instance should be configured to use tcp. use command vcfg
to configure
'vip_address': 'tcp://192.168.56.101',
'port': 22916,

public and secret key for the standalone_matlab agent.
These can be created using the command: volttron-ctl auth keypair
public key should also be added to the volttron instance auth
configuration to enable standalone agent access to volttron instance. Use
command 'vctl auth add' Provide this agent's public key when prompted
for credential.

'agent_public': 'dpu13XKPvGB3XJNVUusCNn2U0kIWcuyDIP5J8mAgBQ0',
'agent_secret': 'Hlya-6BvfUot5USdeDHZ8eksDkWgEEHABs1SELmQhMs',

Public server key from the remote platform. This can be
obtained using the command:
volttron-ctl auth serverkey
'server_key': 'QTIzrRGQ0-b-37AbEYDuMA0l2ETrythM2V1ac0v9CTA'

}

(continues on next page)

1.8. Agent Development 71

VOLTTRON Documentation, Release 8.0 Release Candidate

(continued from previous page)

def remote_url():
return "{vip_address}:{port}?serverkey={server_key}" \

"&publickey={agent_public}&" \
"secretkey={agent_secret}".format(**_params)

The primary VOLTTRON instance will then need to add the public key from the Standalone Agent. In this exam-
ple, the topic that the Standalone Agent is listening to is matlab/to_matlab/1, and the topic it is publishing to is
matlab/to_volttron/1.

scriptwrapper.py

Scriptwrapper.py contains the script_runner function. The purpose of this function is to take in a string that contains
a Python script and command line arguments separated by commas. This string is parsed and passed to the system
arguments, which allows the script sent to the function to use the command line arguments. The function then redirects
standard output to a StringIO file object, and then attempts to execute the script. If there are any errors with the script,
the error that is generated is returned to the standalone agent. Otherwise, the file object stores the output from the
script, is converted to a string, and is sent to the standalone agent. In this example, the script that is to be run is
testScript.py.

#Script to take in a string, run the program,
#and output the results of the command as a string.

import time
import sys
from io import StringIO

def script_runner(message):
original = sys.stdout

print(message)
print(sys.argv)

sys.argv = message.split(',')
print(sys.argv)

try:
out = StringIO()
sys.stdout = out
exec(open(sys.argv[0]).read())
sys.stdout = original
return out.getvalue()

except Exception as ex:
out = str(ex)
sys.stdout = original
return out

Note: The script that is to be run needs to be in the same folder as the agent and the scriptwrapper.py script. The
script_runner function needs to be edited if it is going to call a script at a different location.

72 Chapter 1. Features

VOLTTRON Documentation, Release 8.0 Release Candidate

testScript.py

This is a very simple test script designed to demonstrate the calling of a MatLab function from within Python. First it
initializes the MatLab engine for Python. It then takes in a single command line argument, and passes it to the MatLab
function testPy.m. If no arguments are sent, it will send 0 to the testPy.m function. It then prints the result of the
testPy.m function. In this case, since standard output is being redirected to a file object, this is how the result is passed
from this function to the Standalone Agent.

import matlab.engine
import sys

eng = matlab.engine.start_matlab()

if len(sys.argv) == 2:
result = eng.testPy(float(sys.argv[1]))

else:
result = eng.testPy(0.0)

print(result)

testPy.m

This MatLab function is a very simple example, designed to show a function that takes an argument, and produces an
array as the output. The input argument is added to each element in the array, and the entire array is then returned.

function out = testPy(z)
x = 1:100
out = x + z
end

Setup on Linux

1. Setup and run VOLTTRON from develop branch using instructions here.

2. Configure volttron instance using the vcfg command. When prompted for the vip address use tcp://<ip
address of the linux machine>. This is necessary to enable volttron communication with external
processes.

Note: If you are running VOLTTRON from within VirtualBox, jit would be good to set one of your adapters as
a Host-only adapter. This can be done within the VM’s settings, under the Network section. Once this is done,
use this IP for the VIP address.

3. Update the configuration for MatLabAgent_v2 at <volttron source dir>/example/MatLabAgent_v2/config.

The configuration file for the MatLab agent has four variables.

1. script_names

2. script_args

3. topics_to_matlab

4. topics_to_volttron

1.8. Agent Development 73

VOLTTRON Documentation, Release 8.0 Release Candidate

An example config file included with the folder.

{
VOLTTRON config files are JSON with support for python style comments.
"script_names": ["testScript.py"],
"script_args": [["20"]],
"topics_to_matlab": ["matlab/to_matlab/1"],
"topics_to_volttron": "matlab/to_volttron/"

}

To edit the configuration, the format should be as follows:

{
"script_names": ["script1.py", "script2.py", "..."],
"script_args": [["arg1","arg2"], ["arg1"], ["..."]],
"topics_to_matlab": ["matlab/to_matlab/1", "matlab/to_matlab/2", "..."],
"topics_to_volttron": "matlab/to_volttron/"

}

The config requires that each script name lines up with a set of commandline arguments and a topic.
A commandline argument must be included, even if it is not used. The placement of brackets are
important, even when only communicating with one standalone agent.

For example, if only one standalone agent is used, and no command line arguments are in place, the
config file may look like this.

{
"script_names": ["testScript.py"],
"script_args": [["0"]],
"topics_to_matlab": ["matlab/to_matlab/1"],
"topics_to_volttron": "matlab/to_volttron/"

}

4. Install MatLabAgent_v2 and start agent (from volttron root directory)

python ./scripts/install-agent.py -s examples/MatLabAgent_v2 --start

Note: The MatLabAgent_v2 publishes the command to be run to the message bus only on start
or on a configuration update. Once we configure the standalone_matlab agent on the Windows
machine, we will send a configuration update to the running MatLabAgent_v2. The configuration
would contain the topics to which the Standalone Agent is listening to and will be publishing result
to.

See also:

The MatLab agent uses the configuration store to dynamically change inputs. More information on
the config store and how it used can be found here.

• VOLTTRON Configuration Store

• Agent Configuration Store

• Agent Configuration Store Interface

5. Run the below command and make a note of the server key. This is required for configuring the stand alone
agent on Windows. (This is run on the linux machine)

74 Chapter 1. Features

VOLTTRON Documentation, Release 8.0 Release Candidate

vctl auth serverkey

Setup on Windows

Install pre-requisites

1. Install Python3.6 64-bit from the Python website.

2. Install the MatLab engine from MathWorks.

Warning: The MatLab engine for Python only supports certain version of Python depending on the version
of MatLab used. Please check here to see if the current version of MatLab supports your version of Python.

Note: At this time, you may want to verify that you are able to communicate with your Linux machine
across your network. The simplest method would be to open up the command terminal and use ping <ip
of Linux machine>, and telnet <ip of Linux machine> <port of volttron instance,
default port is 22916>. Please make sure that the port is opened for outside access.

Install Standalone MatLab Agent

The standalone MatLab agent is designed to be usable in a Windows environment.

Warning: VOLTTRON is not designed to run in a Windows environment. Outside of cases where it is stated to
be usable in a Windows environment, it should be assumed that it will NOT function as expected.

1. Download VOLTTRON

Download the VOLTTRON develop repository from Github. Download the zip from GitHub.

1.8. Agent Development 75

https://www.python.org/downloads/windows/
https://www.mathworks.com/help/matlab/matlab_external/install-the-matlab-engine-for-python.html
https://www.mathworks.com/help/matlab/matlab-engine-for-python.html
https://github.com/VOLTTRON/volttron/tree/develop

VOLTTRON Documentation, Release 8.0 Release Candidate

Once the zipped file has been downloaded, go to your Downloads folder, right-click on the file, and
select Extract All. . .

Choose a location for the extracted folder, and select “Extract”

76 Chapter 1. Features

VOLTTRON Documentation, Release 8.0 Release Candidate

2. Setup the PYTHONPATH

Open the Windows explorer, and navigate to Edit environment variables for your account.

1.8. Agent Development 77

VOLTTRON Documentation, Release 8.0 Release Candidate

Select “New”

78 Chapter 1. Features

VOLTTRON Documentation, Release 8.0 Release Candidate

For “Variable name” enter: PYTHONPATH For “Variable value” either browse to your VOLTTRON
installation, or enter in the path to your VOLTTRON installation.

Select OK twice.

3. Set Python version in MatLab

Open your MatLab application. Run the command:

pyversion

This should print the path to Python2.7. If you have multiple versions of python on your machine
and pyversion points to a different version of Python, use:

pyversion /path/to/python.exe

to set the appropriate version of python for your system.

For example, to use python 3.6 with MatLab:

pyversion C:\Python36\python.exe

4. Set up the environment.

Open up the command prompt

1.8. Agent Development 79

VOLTTRON Documentation, Release 8.0 Release Candidate

Navigate to your VOLTTRON installation

cd \Your\directory\path\to\volttron-develop

Use pip to install and setup dependencies.

pip install -r examples\StandAloneMatLab\requirements.txt

pip install -e .

Note: If you get the error doing the second step because of an already installed volttron from a
different directory, manually delete the volttron-egg. link file from your <python path>\Lib\site-

80 Chapter 1. Features

VOLTTRON Documentation, Release 8.0 Release Candidate

packages directory (for example:

del C:\\Python27\\lib\\site-packages\\volttron-egg.link

and re-run the second command

5. Configure the agent

The configuration settings for the standalone agent are in setting.py (located in volttron-
develop\examples\StandAloneMatLab\)

settings.py

• volttron_to_matlab needs to be set to the topic that will send your script and command line
arguments to your stand alone agent. This was defined in the config.

• matlab_to_volttron needs to be set to the topic that will send your script’s output back to your
volttron platform. This was defined in config.

• vip_address needs to be set to the address of your volttron instance

• port needs to be set to the port of your volttron instance

• server_key needs to be set to the public server key of your primary volttron platform. This can
be obtained from the primary volttron platform using vctl auth serverkey (VOLTTRON
must be running to use this command.)

It is possible to have multiple standalone agents running. In this case, copy the StandAloneMatLab
folder, and make the necessary changes to the new settings.py file. Unless it is connecting to a
separate VOLTTRON instance, you should only need to change the volttron_to_matlab setting.

Note: It is recommended that you generate a new “agent_public” and “agent_private” key for your
standalone agent. This can be done using the vctl auth keypair command on your primary
VOLTTRON platform on Linux. If you plan to use multiple standalone agents, they will each need
their own keypair.

6. Add standalone agent key to VOLTTRON platform

• Copy the public key from settings.py in the StandAloneMatLab folder.

• While the primary VOLTTRON platform is running on the linux machine, add the agent public
key using the vctl auth command on the Linux machine. This will make VOLTTRON
platform allow connections from the standalone agent

vctl auth add --credentials <standalone agent public key>

7. Run standalone agent

At this point, the agent is ready to run. To use the agent, navigate to the example folder and use
python to start the agent. The agent will then wait for a message to be published to the selected topic
by the MatLab agent.

cd examples\StandAloneMatLab\

python standalone_matlab.py

The output should be similar to this:

1.8. Agent Development 81

VOLTTRON Documentation, Release 8.0 Release Candidate

2019-08-01 10:42:47,592 volttron.platform.vip.agent.core DEBUG: identity:
→˓standalone_matlab
2019-08-01 10:42:47,592 volttron.platform.vip.agent.core DEBUG: agent_
→˓uuid: None
2019-08-01 10:42:47,594 volttron.platform.vip.agent.core DEBUG:
→˓serverkey: None
2019-08-01 10:42:47,596 volttron.platform.vip.agent.core DEBUG: AGENT
→˓RUNNING on ZMQ Core standalone_matlab
2019-08-01 10:42:47,598 volttron.platform.vip.zmq_connection DEBUG: ZMQ
→˓connection standalone_matlab
2019-08-01 10:42:47,634 volttron.platform.vip.agent.core INFO: Connected
→˓to platform: router: ebae9efa-5e8f-49e3-95a0-2020ddff9e8a version: 1.0
→˓identity: standalone_matlab
2019-08-01 10:42:47,634 volttron.platform.vip.agent.core DEBUG: Running
→˓onstart methods.

Note: If you have Python3 as your default Python run the command python -2
standalone_matlab.py

8. On the Linux machine configure the Matlab Agent to publish commands to the topic standalone agent is listening
to. To load a new configuration or to change the current configuration enter

vctl config store <agent vip identity> config <path\to\configfile>

Whenever there is a change in the configuration in the config store, or whenever the agent starts, the
MatLab Agent sends the configured command to the topic configured. As long as the standalone agent
has been started and is listening to the appropriate topic, the output in the log should look similar to this:

2019-08-01 10:43:18,925 (matlab_agentV2agent-0.3 3539) matlab_agentV2.agent
→˓DEBUG: Configuring Agent
2019-08-01 10:43:18,926 (matlab_agentV2agent-0.3 3539) matlab_agentV2.agent
→˓DEBUG: Publishing on: matlab/to_matlab/1
2019-08-01 10:43:18,926 (matlab_agentV2agent-0.3 3539) matlab_agentV2.agent
→˓DEBUG: Sending message: testScript2.py,20
2019-08-01 10:43:18,926 (matlab_agentV2agent-0.3 3539) matlab_agentV2.agent
→˓DEBUG: Agent Configured!
2019-08-01 10:43:18,979 (matlab_agentV2agent-0.3 3539) matlab_agentV2.agent
→˓INFO: Agent: matlab/to_volttron/1
Message:
'20'

Once the matlab agent publishes the message (in the above case, “testScript2.py,20”) on the windows
command prompt running the standalone agent, you should see the message that was received by the
standalone agent.

2019-08-01 10:42:47,671 volttron.platform.vip.agent.subsystems.configstore
→˓DEBUG: Processing callbacks for affected files: {}
The Message is: testScript2.py,20

Note: If MatLabAgent_v2 has been installed and started, and you have not started the standalone_matlab
agent, you will need to either restart the matlab_agentV2, or make a change to the configuration in the
config store to send command to the topic standalone agent is actively listening to.

82 Chapter 1. Features

VOLTTRON Documentation, Release 8.0 Release Candidate

Node Red Example

Node Red is a visual programming language wherein users connect small units of functionality “nodes” to create
“flows”.

There are two example nodes that allow communication between Node-Red and VOLTTRON. One node reads sub-
scribes to messages on the VOLTTRON message bus and the other publishes to it.

Dependencies

The example nodes depend on python-shell to be installed and available to the Node Red environment.

Installation

Copy all files from volttron/examples/NodeRed to your ~/.node-red/nodes directory. ~/.node-red is the default direc-
tory for Node Red files. If you have set a different directory use that instead.

Set the variables at the beginning of the volttron.js file to be a valid VOLTTRON environment, VOLTTRON home,
and Python PATH.

Valid CURVE keys need to be added to the settings.py file. If they are generated with the vctl auth keypair command
then the public key should be added to VOLTTRON’s authorization file with the following:

$ vctl auth add

The serverkey can be found with:

$ vctl auth serverkey

Usage

Start VOLTTRON and Node Red.

$ node-red

Welcome to Node-RED
===================

11 Jan 15:26:49 - [info] Node-RED version: v0.14.4
11 Jan 15:26:49 - [info] Node.js version: v0.10.25
11 Jan 15:26:49 - [info] Linux 3.16.0-38-generic x64 LE
11 Jan 15:26:49 - [info] Loading palette nodes
11 Jan 15:26:49 - [warn] --
11 Jan 15:26:49 - [warn] [rpi-gpio] Info : Ignoring Raspberry Pi specific node
11 Jan 15:26:49 - [warn] --
11 Jan 15:26:49 - [info] Settings file : /home/volttron/.node-red/settings.js
11 Jan 15:26:49 - [info] User directory : /home/volttron/.node-red
11 Jan 15:26:49 - [info] Flows file : /home/volttron/.node-red/flows_volttron.json
11 Jan 15:26:49 - [info] Server now running at http://127.0.0.1:1880/
11 Jan 15:26:49 - [info] Starting flows
11 Jan 15:26:49 - [info] Started flows

1.8. Agent Development 83

VOLTTRON Documentation, Release 8.0 Release Candidate

The output from the Node Red command indicates the address of its web interface. Nodes available for use are in the
left sidebar.

We can now use the VOLTTRON nodes to read from and write to VOLTTRON.

Scheduler Example Agent

The Scheduler Example Agent demonstrates how to use the scheduling feature of the :ref‘Actuator Agent <Actuator-
Agent>‘ as well as how to send a command. This agent publishes a request for a reservation on a (fake) device then
takes an action when it’s scheduled time appears. The ActuatorAgent must be running to exercise this example.

84 Chapter 1. Features

VOLTTRON Documentation, Release 8.0 Release Candidate

Note: Since there is no actual device, an error is produced when the agent attempts to take its action.

def publish_schedule(self):
'''Periodically publish a schedule request'''
headers = {

'AgentID': agent_id,
'type': 'NEW_SCHEDULE',
'requesterID': agent_id, #The name of the requesting agent.
'taskID': agent_id + "-ExampleTask", #The desired task ID for this task. It

→˓must be unique among all other scheduled tasks.
'priority': 'LOW', #The desired task priority, must be 'HIGH', 'LOW', or 'LOW_

→˓PREEMPT'
}

start = str(datetime.datetime.now())
end = str(datetime.datetime.now() + datetime.timedelta(minutes=1))

msg = [
['campus/building/unit',start,end]

]
self.vip.pubsub.publish(
'pubsub', topics.ACTUATOR_SCHEDULE_REQUEST, headers, msg)

The agent listens to schedule announcements from the actuator and then issues a command:

@PubSub.subscribe('pubsub', topics.ACTUATOR_SCHEDULE_ANNOUNCE(campus='campus',
building='building',unit='unit'))

def actuate(self, peer, sender, bus, topic, headers, message):
print ("response:",topic,headers,message)
if headers[headers_mod.REQUESTER_ID] != agent_id:

return
'''Match the announce for our fake device with our ID
Then take an action. Note, this command will fail since there is no
actual device'''
headers = {

'requesterID': agent_id,
}

self.vip.pubsub.publish(
'pubsub', topics.ACTUATOR_SET(campus='campus',

building='building',unit='unit',
point='point'),
headers, 0.0)

Simple Web Agent Walk-through

A simple web enabled agent that will hook up with a VOLTTRON message bus and allow interaction between it
via HTTP. This example agent shows a simple file serving agent, a JSON-RPC based call, and a websocket based
connection mechanism.

Starting VOLTTRON Platform

1.8. Agent Development 85

VOLTTRON Documentation, Release 8.0 Release Candidate

Note: Activate the environment first active the environment

In order to start the simple web agent, we need to bind the VOLTTRON instance to the a web server. We need to
specify the address and the port for the web server. For example, if we want to bind the localhost:8080 as the web
server we start the VOLTTRON platform as follows:

./start-volttron --bind-web-address http://127.0.0.1:8080

Once the platform is started, we are ready to run the Simple Web Agent.

Running Simple Web Agent

Note: The following assumes the shell is located at the VOLTTRON_ROOT.

Copy the following into your shell (save it to a file for executing it again later):

python scripts/install-agent.py \
--agent-source examples/SimpleWebAgent \
--tag simpleWebAgent \
--vip-identity webagent \
--force \
--start

This will create a web server on http://localhost:8080. The index.html file under sim-
pleweb/webroot/simpleweb/ can be any HTML page which binds to the VOLTTRON message bus .This provides
a simple example of providing a web endpoint in VOLTTRON.

Path based registration examples

• Files will need to be in webroot/simpleweb in order for them to be browsed from http://
localhost:8080/simpleweb/index.html

• Filename is required as we don’t currently auto-redirect to any default pages as shown in self.vip.web.
register_path("/simpleweb", os.path.join(WEBROOT))

The following two examples show the way to call either a JSON-RPC (default) endpoint and one that returns a different
content-type. With the JSON-RPC example from volttron central we only allow post requests, however this is not
required.

• Endpoint will be available at http://localhost:8080/simple/text self.vip.web.register_endpoint("/
simple/text", self.text)

• Endpoint will be available at http://localhost:8080/simple/jsonrpc self.vip.web.
register_endpoint("/simpleweb/jsonrpc", self.rpcendpoint)

• text/html content type specified so the browser can act appropriately like [("Content-Type",
"text/html")]

• The default response is application/json so our endpoint returns appropriately with a JSON based
response.

86 Chapter 1. Features

VOLTTRON Documentation, Release 8.0 Release Candidate

Agent Specifications

Documents included below are intended to provide a specification to classes of agents which include a base class in
the VOLTTRON repository and have a well defined set of functions and services.

Aggregate Historian

Description

An aggregate historian computes aggregates of data stored in a given volttron historian’s data store. It runs periodically
to compute aggregate data and store it in new tables/collections in the historian’s data store. Each regular historian (
BaseHistorian) needs a corresponding aggregate historian to compute and store aggregates of the data collected by
the regular historian.

Software Interfaces

Data Collection - Data store that the aggregate historian uses as input source needs to be up. Access to it should be
provided using an account that has create, read, and write privileges. For example, a MongoAggregateHistorian needs
to be able to connect to the mongodb used by MongoHistorian using an account that has read and write access to the
db used by the MongoHistorian.

Data retrieval Aggregate Historian Agent does not provide api for retrieving the aggregate data collected. Use Histo-
rian agent’s query interface. Historian’s query api will be modified as below

1. topic_name can now be a list of topic names or a single topic

2. Two near optional parameters have been added to the query api - agg_type (aggregation type), agg_period
(aggregation time period). Both these parameters are mandatory for query aggregate data.

3. New api to get the list of aggregate topics available for querying

1.8. Agent Development 87

../apidocs/volttron/volttron.platform.agent.html#module-volttron.platform.agent.base_historian

VOLTTRON Documentation, Release 8.0 Release Candidate

User Interfaces

Aggregation agent requires user to configure the following details as part of the agent configuration file

1. Connection details for historian’s data store (same as historian agent configuration)

2. List of aggregation groups where each group contains:

1. Aggregation period - integer followed by m/h/d/w/M (minutes, hours, days, weeks or months)

2. Boolean parameter to indicate if aggregation periods should align to calendar times

3. Optional collection start time in utc. If not provided, aggregation collection will start from current
time

4. List of aggregation points with topic name, type of aggregation (sum, avg, etc.), and minimum number
of records that should be available for the aggregate to be computed

5. Topic name can be specified either as a list of specific topic names (topic_names=[topic1, topic2]) or
a regular expression pattern (topic_name_pattern=”Building1/device_*/Zone*temperature”)

6. When aggregation is done for a single topic then name of topic will be used for the computed aggre-
gation as well. You could optionally provide a unique aggregation_topic_name

7. When topic_name_pattern or multiple topics are specified a unique aggregate topic name should be
specified for the collected aggregate. Users can query for the collected aggregate data using this
aggregate topic name.

8. User should be able to configure multiple aggregations done with the same time period/time interval
and these should be time synchronized.

Functional Capabilities

1. Should run periodically to compute aggregate data.

2. Same instance of the agent should be able to collect data at more than one time interval

3. For each configured time period/interval agent should be able to collect different type of aggregation for different
topics/points

4. Support aggregation over multiple topics/points

5. Agent should be able to handle and normalize different time units such as minutes, hours, days, weeks and
months

6. Agent should be able to compute aggregate both based on wall clock based time intervals and calendar based
time interval. For example, agent should be able to calculate daily average based on 12.00AM to 11.59PM of a
calendar day or between current time and the same time the previous day.

7. Data should be stored in such a way that users can easily retrieve multiple aggregate topics data within a given
time interval

Data Structure

Collected aggregate data should be stored in the historian data store into new collection or tables and should be
accessible by historian agent’s query interface. Users should easily be able to query aggregate data of multiple points
for which data is time synchronized.

88 Chapter 1. Features

VOLTTRON Documentation, Release 8.0 Release Candidate

Use Cases

Collect monthly average of multiple topic using data from MongoDBHistorian

1. Create a configuration file with connection details from Mongo Historian configuration file and add additional
aggregation specific configuration

{
configuration from mongo historian - START
"connection": {

"type": "mongodb",
"params": {

"host": "localhost",
"port": 27017,
"database": "mongo_test",
"user": "test",
"passwd": "test"

}
},
configuration from mongo historian - START
"aggregations":[

list of aggregation groups each with unique aggregation_period and
list of points that needs to be collected
{
"aggregation_period": "1M",
"use_calendar_time_periods": true,
"utc_collection_start_time":"2016-03-01T01:15:01.000000",
"points": [

{
"topic_names": ["Building/device/point1", "Building/device/point2"],
"aggregation_topic_name":"building/device/point1_2/month_sum",
"aggregation_type": "avg",
"min_count": 2

}
]
}

]
}

In the above example configuration, here is what each field under “aggregations” represent

• aggregation_period: can be minutes(m), hours(h), weeks(w), or months(M)

• use_calendar_time_periods: true or false - Should aggregation period align to calendar time periods. Default False. Example,

– if “aggregation_period”:”1h” and “use_calendar_time_periods”: false, example periods: 10.15-11.15,
11.15-12.15, 12.15-13.15 etc.

– if “aggregation_period”:”1h” and “use_calendar_time_periods”: true, example periods: 10.00-11.00,
11.00-12.00, 12.00-13.00 etc.

– if “aggregation_period”:”1M” and “use_calendar_time_periods”: true, aggregation would be com-
puted from the first day of the month to last day of the month

– if “aggregation_period”:”1M” and “use_calendar_time_periods”: false, aggregation would be com-
puted with a 30 day interval based on aggregation collection start time

• utc_collection_start_time: The time from which aggregation computation should start. If not provided this
would default to current time.

1.8. Agent Development 89

VOLTTRON Documentation, Release 8.0 Release Candidate

• points: List of points, its aggregation type and min_count topic_names: List of topic_names across which
aggregation should be computed. aggregation_topic_name: Unique name given for this aggregate. Op-
tional if aggregation is for a single topic. aggregation_type: Type of aggregation to be done. Please see
Constraints and Limitations

min_count: Optional. Minimum number of records that should exist within the configured time period
for a aggregation to be computed.

2. install and starts the aggregate historian using the above configuration

3. Query aggregate data: Query using historian’s query api by passing two additional parameters - agg_type and
agg_period

result1 = query_agent.vip.rpc.call('platform.historian',
'query',
topic='building/device/point1_2/month_sum',
agg_type='avg',
agg_period='1M',
count=20,
order="FIRST_TO_LAST").get(10)

Collect weekly average(sunday to saturday) of single topic using data from MongoDBHistorian

1. Create a configuration file with connection details from Mongo Historian configuration file and add additional aggregation specific configuration. The configuration file should be similar to the first use case except

• aggregation_period: “1w”,

• topic_names: [“Building/device/point1”], #topic for which you want to compute aggregation

• aggregation_topic_name need not be provided

2. install and starts the aggregate historian using the above configuration

3. Query aggregate data: Query using historian’s query api by passing two additional parameters - agg_type and
agg_period. topic_name will be the same as the point name for which aggregation is collected

result1 = query_agent.vip.rpc.call('platform.historian',
'query',
topic='Building/device/point1',
agg_type='avg',
agg_period='1w',
count=20,
order="FIRST_TO_LAST").get(10)

Collect hourly average for multiple topics based on topic_name pattern

1. Create a configuration file with connection details from Mongo Historian configuration file and add additional aggregation specific configuration. The configuration file should be similar to the first use case except

• aggregation_period: “1h”,

• Insetead of topic_names provide topic_name_pattern. For example,
“topic_name_pattern”:”Building1/device_a*/point1”

• aggregation_topic_name provide a unique aggregation topic name

2. install and starts the aggregate historian using the above configuration

90 Chapter 1. Features

VOLTTRON Documentation, Release 8.0 Release Candidate

3. Query aggregate data: Query using historian’s query api by passing two additional parameters - agg_type and
agg_period. topic_name will be the same as the point name for which aggregation is collected

result1 = query_agent.vip.rpc.call('platform.historian',
'query',
topic="unique aggregation_topic_name provided in

→˓configuration",
agg_type='avg',
agg_period='1h',
count=20,
order="FIRST_TO_LAST").get(10)

Collect 7 day average of two topics and time synchronize them for easy comparison

1. Create a configuration file with connection details from Mongo Historian configuration file and add additional
aggregation specific configuration. The configuration file should be similar to the below example

{
configuration from mongo historian - START
"connection": {

"type": "mongodb",
"params": {

"host": "localhost",
"port": 27017,
"database": "mongo_test",
"user": "test",
"passwd": "test"

}
},
configuration from mongo historian - START
"aggregations":[

list of aggregation groups each with unique aggregation_period and
list of points that needs to be collected
{
"aggregation_period": "1w",
"use_calendar_time_periods": false, #compute for last 7 days, then the next

→˓and so on..
"points": [

{
"topic_names": ["Building/device/point1"],
"aggregation_type": "avg",
"min_count": 2

},
{
"topic_names": ["Building/device/point2"],
"aggregation_type": "avg",
"min_count": 2

}
]
}

]
}

2. install and starts the aggregate historian using the above configuration

3. Query aggregate data: Query using historian’s query api by passing two additional parameters - agg_type and
agg_period. provide the list of topic names for which aggregate was configured above. Since both the points were

1.8. Agent Development 91

VOLTTRON Documentation, Release 8.0 Release Candidate

configured within a single “aggregations” array element, their aggregations will be time synchronized

result1 = query_agent.vip.rpc.call('platform.historian',
'query',
topic=['Building/device/point1''Building/device/

→˓point2'],
agg_type='avg',
agg_period='1w',
count=20,
order="FIRST_TO_LAST").get(10)

Results will be of the format

{'values': [
['Building/device/point1', '2016-09-06T23:31:27.679910+00:00', 2],
['Building/device/point1', '2016-09-15T23:31:27.679910+00:00', 3],
['Building/device/point2', '2016-09-06T23:31:27.679910+00:00', 2],
['Building/device/point2', '2016-09-15T23:31:27.679910+00:00', 3]],

'metadata': {}}

Qurey list of aggregate data collected

result = query_agent.vip.rpc.call('platform.historian',
'get_aggregate_topics').get(10)

The result will be of the format:

[(aggregate topic name, aggregation type, aggregation time period, configured list of
→˓topics or topic name pattern), ...]

This shows the list of aggregation currently being computed periodically

Qurey list of supported aggregation types

result = query_agent.vip.rpc.call(
AGG_AGENT_VIP,
'get_supported_aggregations').get(timeout=10)

Constraints and Limitations

1. Initial implementation of this agent will not support any data filtering for raw data before computing data aggre-
gation

2. Initial implementation should support all aggregation types directly supported by underlying data store. End
user input is needed to figure out what additional aggregation methods are to be supported

MySQL

92 Chapter 1. Features

VOLTTRON Documentation, Release 8.0 Release Candidate

Name Description
AVG() Return the average value of the argument
BIT_AND() Return bitwise AND
BIT_OR() Return bitwise OR
BIT_XOR() Return bitwise XOR
COUNT() Return a count of the number of rows returned
GROUP_CONCAT() Return a concatenated string
MAX() Return the maximum value
MIN() Return the minimum value
STD() Return the population standard deviation
STDDEV() Return the population standard deviation
STDDEV_POP() Return the population standard deviation
STDDEV_SAMP() Return the sample standard deviation
SUM() Return the sum
VAR_POP() Return the population standard variance
VAR_SAMP() Return the sample variance
VARIANCE() Return the population standard variance

SQLite

Name Description
AVG() Return the average value of the argument
COUNT() Return a count of the number of rows returned
GROUP_CONCAT()Return a concatenated string
MAX() Return the maximum value
MIN() Return the minimum value
SUM() Return sum of all non-NULL values in the group. If there are no non-NULL

input rows then returns NULL .
TOTAL() Return sum of all non-NULL values in the group.If there are no non-NULL

input rows returns 0.0

MongoDB

Name Description
SUM Returns a sum of numerical values. Ignores non-numeric values
AVG Returns a average of numerical values. Ignores non-numeric values
MAX Returns the highest expression value for each group.
MIN Returns the lowest expression value for each group.
FIRST Returns a value from the first document for each group. Order is only defined if

the documents are in a defined order.
LAST Returns a value from the last document for each group. Order is only defined if the

documents are in a defined order.
PUSH Returns an array of expression values for each group
AD-
DTOSET

Returns an array of unique expression values for each group. Order of the array
elements is undefined.

STDDE-
VPOP

Returns the population standard deviation of the input values

STDDE-
VSAMP

Returns the sample standard deviation of the input values

1.8. Agent Development 93

VOLTTRON Documentation, Release 8.0 Release Candidate

Tagging Service

Description

Tagging service provides VOLTTRON users the ability to add semantic tags to different topics so that topic can be
queried by tags instead of specific topic name or topic name pattern.

Taxonomy

VOLLTTRON will use tags from Project Haystack. Tags defined in haystack will be imported into VOLTTRON and
grouped by categories to tag topics and topic name prefix.

Dependency

Once data in VOLTTRON has been tagged, users will be able to query topics based on tags and use the resultant topics
to query the historian

Features

1. User should be able to tag individual components of a topic such as campus, building, device, point etc.

2. Using the tagging service users should only be able to add tags already defined in the volttron tagging schema.
New tags should be explicitly added to the tagging schema before it can be used to tag topics or topic prefix

3. Users should be able batch process and tag multiple topic names or topic prefix using a template. At the end of
this, users should be notified about the list of topics that did not confirm to the template. This will help users to
individually add or edit tags for those specific topics

4. When users query for topics based on a tag, the results would correspond to the current metadata values. It is up
to the calling agent/application to periodically query for latest updates if needed.

5. Users should be able query based on tags on a specific topic or its topic prefix/parents

6. Allow for count and skip parameters in queries to restrict count and allow pagination

API

1. Get the list of tag categories available

rpc call to tagging service method ‘get_categories’ with optional parameters:

1. include_description - set to True to return available description for each category. Default = False

2. skip - number of categories to skip. this parameter along with count can be used for paginating results

3. count - limit the total number of tag categories returned to given count

4. order - ASCENDING or DESCENDING. By default, it will be sorted in ascending order

94 Chapter 1. Features

http://project-haystack.org/tag

VOLTTRON Documentation, Release 8.0 Release Candidate

2. Get the list of tags for a specific category

rpc call to tagging service method ‘get_tags_by_category’ with parameter:

1. category - <category name>

and optional parameters:

2. include_kind - indicate if result should include the kind/data type for tags returned. Defaults to
False

3. include_description - indicate if result should include available description for tags returned.
Defaults to False

4. skip - number of tags to skip. this parameter along with count can be used for paginating results

5. count - limit the total number of tags returned to given count

6. order - ASCENDING or DESCENDING. By default, it will be sorted in ascending order

3. Get the list of tags for a topic_name or topic_name_prefix

rpc call to tagging service method get_tags_by_topic

with parameter

1. topic_prefix - topic name or topic name prefix

and optional parameters:

2. include_kind - indicate if result should include the kind/data type for tags returned. Defaults to False

3. include_description - indicate if result should include available description for tags returned. Defaults to
False

4. skip - number of tags to skip. this parameter along with count can be used for paginating results

5. count - limit the total number of tags returned to given count

6. order - ASCENDING or DESCENDING. By default, it will be sorted in ascending order

4. Find topic names by tags

rpc call to tagging service method ‘get_topics_by_tags’ with the one or more of the following parameters

1. and_condition - dictionary of tag and its corresponding values that should be matched using equality
operator or a list of tags that should exists/be true. Tag conditions are combined with AND condition.
Only topics that match all the tags in the list would be returned

2. or_condition - dictionary of tag and its corresponding values that should be matched using equality
operator or a list tags that should exist/be true. Tag conditions are combined with OR condition. Top-
ics that match any of the tags in the list would be returned. If both and_condition and or_condition
are provided then they are combined using AND operator.

3. condition - conditional statement to be used for matching tags. If this parameter is provided the
above two parameters are ignored. The value for this parameter should be an expression that contains
one or more query conditions combined together with an “AND” or “OR”. Query conditions can be
grouped together using parenthesis. Each condition in the expression should conform to one of the
following format:

1. <tag name/ parent.tag_name> <binary_operator> <value>

1.8. Agent Development 95

VOLTTRON Documentation, Release 8.0 Release Candidate

2. <tag name/ parent.tag_name>

3. <tag name/ parent.tag_name> LIKE <regular expression within single quotes

4. the word NOT can be prefixed before any of the above three to negate the condition.

5. expressions can be grouped with parenthesis.

For example

condition="tag1 = 1 and not (tag2 < '' and tag2 > '') and tag3
→˓and NOT tag4 LIKE '^a.*b$'"
condition="NOT (tag5='US' OR tag5='UK') AND NOT tag3 AND NOT
→˓(tag4 LIKE 'a.*')"
condition="campusRef.geoPostalCode='20500' and equip and boiler"

6. skip - number of topics to skip. this parameter along with count can be used for paginating results

7. count - limit the total number of tag topics returned to given count

8. order - ASCENDING or DESCENDING. By default, it will be sorted in ascending order

5. Query data based on tags

Use above api to get topics by tags and then use the result to query historian’s query api.

6. Add tags to specific topic name or topic name prefix

rpc call to to tagging service method ‘add_topic_tags’ with parameters:

1. topic_prefix - topic name or topic name prefix

2. tags - {<valid tag>:value, <valid_tag>: value,. . . }

3. update_version - True/False. Default to False. If set to True and if any of the tags update an existing tag value
the older value would be preserved as part of tag version history. NOTE: This is a placeholder. Current version
does not support versioning.

7. Add tags to multiple topics

rpc call to to tagging service method ‘add_tags’ with parameters:

1. tags - dictionary object containing the topic and the tag details. format:

<topic_name or prefix or topic_name pattern>: {<valid tag>:<value>, ... }, ... }

2. update_version - True/False. Default to False. If set to True and if any of the tags update an existing tag value
the older value would be preserved as part of tag version history

Use case examples

1. Loading news tags for an existing VOLTTRON instance

Current topic names:

96 Chapter 1. Features

VOLTTRON Documentation, Release 8.0 Release Candidate

/campus1/building1/deviceA1/point1
/campus1/building1/deviceA1/point2
/campus1/building1/deviceA1/point3
/campus1/building1/deviceA2/point1
/campus1/building1/deviceA2/point2
/campus1/building1/deviceA2/point3
/campus1/building1/deviceB1/point1
/campus1/building1/deviceB1/point2
/campus1/building1/deviceB2/point1
/campus1/building1/deviceB1/point2

Step 1:

Create a python dictionary object contains topic name pattern and its corresponding tag/value pair. Use topic pattern
names to fill out tags that can be applied to more than one topic or topic prefix. Use specific topic name and topic
prefix for tags that apply only to a single entity. For example:

{
tags specific to building1
'/campus1/building1':

{
'site': true,
'dis': ": 'some building description',
'yearBuilt': 2015,
'area': '24000sqft'
},

tags that apply to all device of a specific type
'/campus1/building1/deviceA*':

{
'dis': "building1 chilled water system - CHW",
'equip': true,
'campusRef':'campus1',
'siteRef': 'campus1/building1',
'chilled': true,
'water' : true,
'secondaryLoop': true
}

tags that apply to point1 of all device of a specific type
'/campus1/building1/deviceA*/point1':

{
'dis': "building1 chilled water system - point1",
'point': true,
'kind': 'Bool',
'campusRef':'campus1',
'siteRef': 'campus1/building1'
}

tags that apply to point2 of all device of a specific type
'/campus1/building1/deviceA*/point2':

{
'dis': "building1 chilled water system - point2",
'point': true,
'kind': 'Number',
'campusRef':'campus1',
'siteRef': 'campus1/building1'

(continues on next page)

1.8. Agent Development 97

VOLTTRON Documentation, Release 8.0 Release Candidate

(continued from previous page)

}
tags that apply to point3 of all device of a specific type
'/campus1/building1/deviceA*/point3':

{
'dis': "building1 chilled water system - point3",
'point': true,
'kind': 'Number',
'campusRef':'campus1',
'siteRef': 'campus1/building1'
}

tags that apply to all device of a specific type
'/campus1/building1/deviceB*':

{
'dis': "building1 device of type B",
'equip': true,
'chilled': true,
'water' : true,
'secondaryLoop': true,
'campusRef':'campus1',
'siteRef': 'campus1/building1'
}

tags that apply to point1 of all device of a specific type
'/campus1/building1/deviceB*/point1':

{
'dis': "building1 device B - point1",
'point': true,
'kind': 'Bool',
'campusRef':'campus1',
'siteRef': 'campus1/building1',
'command':true
}

tags that apply to point1 of all device of a specific type
'/campus1/building1/deviceB*/point2':

{
'dis': "building1 device B - point2",
'point': true,
'kind': 'Number',
'campusRef':'campus1',
'siteRef': 'campus1/building1'
}

}

Step 2: Create tags using template above

Make an RPC call to the add_tags method and pass the python dictionary object

Step 3: Create tags specific to a point or device

Any tags that were not included in step one and needs to be added later can be added using the rpc call to tagging
service either the method ‘add_topic_tags’ ‘add_tags’

For example:

98 Chapter 1. Features

VOLTTRON Documentation, Release 8.0 Release Candidate

agent.vip.rpc.call(
'platform.tagging',
'add_topic_tags',
topic_prefix='/campus1/building1/deviceA1',
tags={'tag1':'value'})

agent.vip.rpc.call(
'platform.tagging',
'add_topic_tags',
tags={

'/campus1/building1/deviceA2':
{'tag1':'value'},

'/campus1/building1/deviceA2/point1':
{'equipRef':'campus1/building1/deviceA2'}

}
)

2. Querying based on a topic’s tag and it parent’s tags

Query - Find all points that has the tag ‘command’ and belong to a device/unit that has a tag ‘chilled’

agent.vip.rpc.call(
'platform.tagging',
'get_topics_by_tags',
condition='temperature and equip.chilled)

In the above code block ‘command’ and ‘chilled’ are the tag names that would be searched, but since the tag ‘chilled’
is prefixed with ‘equip.’ the tag in a parent topic

The above query would match the topic ‘/campus1/building1/deviceB1/point1’ if tags in the system are as follows

‘/campus1/building1/deviceB1/point1’ tags:

{
'dis': "building1 device B - point1",
'point': true,
'kind': 'Bool',
'campusRef':'campus1',
'siteRef': 'campus1/building1',
'equipRef': 'campus1/building1/deviceB1',
'command':true
}

‘/campus1/building1/deviceB1’ tags

{
'dis': "building1 device of type B",
'equip': true,
'chilled': true,
'water' : true,
'secondaryLoop': true,
'campusRef':'campus1',
'siteRef': 'campus1/building1'
}

1.8. Agent Development 99

VOLTTRON Documentation, Release 8.0 Release Candidate

Possible future improvements

1. Versioning - When a value of a tag is changed, users should be prompted to verify if this change denotes a new
version or a value correction. If this value denotes a new version, then older value of the tag should preserved
in a history/audit store

2. Validation of tag values based on data type

3. Support for units validation and conversions

4. Processing and saving geologic coordinates that can enable users to do geo-spatial queries in databases that
support it.

Weather Service

Description

The weather service agent provides API to access current weather data, historical data and weather forecast data. There
are several weather data providers, some paid and some free. Weather data providers differs from one and other

1. In the kind of features provided - current data, historical data, forecast data

2. The data points returned

3. The naming schema used to represent the data returned

4. Units of data returned

5. Frequency of data updates

The weather service agent has a design similar to historians. There is a single base weather service that defines the api
signatures and the ontology of the weather data points. There is one concrete weather service agents for each weather
provider. Users can install one or more provider specific agent to access weather data.

The initial implementation is for NOAA and would support current and forecast data requests. NOAA does not support
accessing historical weather data through their api. This agent implements request data caching.

The second implementation is for darksky.net.

Features

Base weather agent features:

1. Caching

The weather service provides basic caching capability so that repeated request for same data can be re-
turned from cache instead of network round trip to the weather data provider. This is also useful to limit
the number of request made to the provider as most weather data provider have restrictions on number
of requests for developer/free api keys. The size of the cache can be restricted by setting an optional
configuration parameter ‘max_size_gb’

2. Name mapping

Data points returned by concrete weather agents is mapped to standard names based on CF standard names
table Name mapping is done using a CSV file. See Configuration section for an example configuration

3. Unit conversion

If data returned from the provider is of the format {“data_point_name”:value}, base weather agent can do
unit conversions on the value. Both name mapping and unit conversions can be specified as a csv file and

100 Chapter 1. Features

http://www.noaa.gov
https://darksky.net/dev
http://cfconventions.org/Data/cf-standard-names/57/build/cf-standard-name-table.html
http://cfconventions.org/Data/cf-standard-names/57/build/cf-standard-name-table.html

VOLTTRON Documentation, Release 8.0 Release Candidate

packaged with the concrete implementing agent. This feature is not mandatory. See Configuration section
for an example configuration

Core weather data retrieval features :

1. Retrieve current weather data.

2. Retrieve hourly weather forecast data.

3. Retrieve historical weather data.

4. Periodic polling of current weather data for one or more locations. Users can configure one or more locations
in a config file and weather agent will periodically poll for current weather data for the configured locations and
publish the results to message bus.

The set of points returned from the above queries depends on the specific weather data provider, however the point
names returned are from the standard schema.

Note:

1. Since individual weather data provider can support slightly different sets of features, users are able to query for
the list of available features. For example a provider could provide daily weather forecast in addition to the
hourly forecast data.

API

1. Get available features

rpc call to weather service method ’get_api_features’

Parameters - None

Returns - dictionary of api features that can be called for this weather agent.

2. Get current weather data

rpc call to weather service method ’get_current_weather’

Parameters:

1. locations - dictionary containing location details. The format of location accepted differs between different
weather providers and even different APIs supported by the same provider For example the location input could
be either {“zipcode”:value} or {“region”:value, “country”: value}.

Returns: List of dictionary objects containing current weather data. The actual data points returned depends on the
weather service provider.

3. Get hourly forecast data

rpc call to weather service method ’get_hourly_forecast’

Parameters:

1. locations - dictionary containing location details. The format of location accepted differs between different
weather providers and even different APIs supported by the same provider For example the location input could
be either {“zipcode”:value} or {“region”:value, “country”: value}.

optional parameters:

1.8. Agent Development 101

VOLTTRON Documentation, Release 8.0 Release Candidate

2. hours - The number of hours for which forecast data are returned. By default, it is 24 hours.

Returns: List of dictionary objects containing forecast data. If weather data provider returns less than requested
number of hours result returned would contain a warning message in addition to the result returned by the
provider

4. Get historical weather data

rpc call to weather service method ’get_hourly_historical’

Parameters:

1. locations - dictionary containing location details. For example the location input could be either {“zip-
code”:value} or {“region”:value, “country”: value}.

2. start_date - start date of requested data

3. end_date - end date of requested data

Returns: List of dictionary objects containing historical data.

Note: Based on the weather data provider this api could do multiple calls to the data provider to get the requested
data. For example, darksky.net allows history data query by a single date and not a date range.

5. Periodic polling of current weather data

This can be achieved by configuring the locations for which data is requested in the agent’s configuration file along with
polling interval. Results for each location configured, is published to its corresponding result topic. is no result topic
prefix is configured, then results for all locations are posted to the topic weather/poll/current/all. poll_topic_suffixes
when provided should be a list of string with the same length as the number of poll_locations. When topic prefix is
specified, each location’s result is published to weather/poll/current/<poll_topic_suffix for that location> topic_prefix.

Configuration

Example configuration:

{
poll_locations: [

{"zip": "22212"},
{"zip": "99353"}

],
poll_topic_suffixes: ["result_22212", "result_99353"],
poll_interval: 20 #seconds,

#optional cache arguments
max_cache_size: ...

}

Example configuration for mapping point names returned by weather provider to a standard name and units:

Service_Point_Name,Standard_Point_Name,Service_Units,Standard_Units
temperature,air_temperature,fahrenheit,celsius

102 Chapter 1. Features

VOLTTRON Documentation, Release 8.0 Release Candidate

Caching

Weather agent will cache data until the configured size limit is reached (if provided).

1. Current and forecast data:

If current/forecast weather data exists in cache and if the request time is within the update time period of the api
(specified by a concrete implementation) then by default cached data would be returned otherwise a new request
is made for it. If hours is provided and the amount of cached data records is less than hours, this will also result
in a new request.

2. Historical data cache:

Weather api will query the cache for available data for the given time period and fill and missing time period
with data from the remote provider.

3. Clearing of cache:

Users can configure the maximum size limit for cache. For each api call, before data is inserted in cache, weather
agent will check for this size limit and purge records in this order. - Current data older than update time period
- Forecast data older than update time period - History data starting with the oldest cached data

Assumptions

1. User has api key for accessing weather api for a specific weather data provider, if a key is required.

2. Different weather agent might have different requirement for how input locations are specified. For example
NOAA expects a station id for querying current weather and requires either a lat/long or gridpoints to query for
forecast. weatherbit.io accepts zip code.

3. Not all features might be implemented by a specific weather agent. For example NOAA doesn’t make history
data available using their weather api.

4. Concrete agents could expose additional api features

5. Optionally, data returned will be based on standard names provided by the CF standard names table (see Ontol-
ogy). Any points with a name not mapped to a standard name would be returned as is.

1.9 Driver Development

In order for VOLTTRON agents to gather data from a device or to set device values, agents send requests to the
Master Driver Agent to read or set points. The Master Driver Agent then sends these requests on to the appropriate
driver for interfacing with that device based on the topic specified in the request and the configuration of the Master
Driver. Drivers provide an interface between the device and the master driver by implementing portions of the devices’
protocols needed to serve the functions of setting and reading points.

As a demonstration of developing a driver a driver can be made to read and set points in a CSV file. This driver will
only differ from a real device driver in terms of the specifics of the protocol.

1.9.1 Create a Driver and Register class

When a new driver configuration is added to the Master Driver, the Master Driver will look for a file or directory in
its interfaces directory (services/core/MasterDriverAgent/master_driver/interfaces) that shares the name of the value
specified by “driver_type” in the configuration file. For the CSV Driver, create a file named csvdriver.py in that
directory.

1.9. Driver Development 103

VOLTTRON Documentation, Release 8.0 Release Candidate

master_driver
agent.py
driver.py
__init__.py
interfaces

__init__.py
bacnet.py

| | csvdriver.py
modbus.py

socket_lock.py
master-driver.agent
setup.py

Following is an example using the directory type structure:

master_driver
agent.py
driver.py
__init__.py
interfaces

__init__.py
bacnet.py

| | csvdriver.py
modbus.py
modbus_tk.py

| __init__.py
| tests
| requirements.txt
| README.rst

Note: Using this format, the directory must be the name specified by “driver_type” in the configuration file and the
Interface class must be in the __init__.py file in that directory.

This format is ideal for including additional code files as well as requirements files, tests and documentation.

Interface Basics

A complete interface consists of two parts: the interface class and one or more register classes.

Interface Class Skeleton

When the Master Driver processes a driver configuration file it creates an instance of the interface class found in the
interface file (such as the one we’ve just created). The interface class is responsible for managing the communication
between the Volttron Platform, and the device. Each device has many registers which hold the values Volttron agents
are interested in so generally the interface manages reading and writing to and from a device’s registers. At a minimum,
the interface class should be configurable, be able to read and write registers, as well as read all registers with a single
request. First create the csv interface class boilerplate.

class Interface(BasicRevert, BaseInterface):
def __init__(self, **kwargs):

super(Interface, self).__init__(**kwargs)

(continues on next page)

104 Chapter 1. Features

VOLTTRON Documentation, Release 8.0 Release Candidate

(continued from previous page)

def configure(self, config_dict, registry_config_str):
pass

def get_point(self, point_name):
pass

def _set_point(self, point_name, value):
pass

def _scrape_all(self):
pass

This class should inherit from the BaseInterface and at a minimum implement the configure, get_point, set_point, and
scrape_all methods.

Note: In some sense, drivers are sub-agents running under the same process as the Master Driver. They should be
instantiated following the agent pattern, so a function to handle configuration and create the Driver object has been
included.

Register Class Skeleton

The interface needs some information specifying the communication for each register on the device. For each different
type of register a register class should be defined which will help identify individual registers and determine how to
communicate with them. Our CSV driver will be fairly basic, with one kind of “register”, which will be a column in
a CSV file. Other drivers may require many kinds of registers; for instance, the Modbus protocol driver has registers
which store data in byte sized chunks and registers which store individual bits, therefore the Modbus driver has bit and
byte registers.

For the CSV driver, create the register class boilerplate:

class CsvRegister(BaseRegister):
def __init__(self, csv_path, read_only, pointName, units, reg_type,

default_value=None, description=''):
super(CsvRegister, self).__init__("byte", read_only, pointName, units,

→˓description=description)

This class should inherit from the BaseRegister. The class should keep register metadata, and depending upon the
requirements of the protocol/device, may perform the communication.

The BACNet and Modbus drivers may be used as examples of more specific implementations. For the purpose of this
demonstration writing and reading points will be done in the register, however, this may not always be the case (as in
the case of the BACNet driver).

Filling out the Interface class

The CSV interface will be writing to and reading from a CSV file, so the device configuration should include a path
specifying a CSV file to use as the “device”. The CSV “device: path value is set at the beginning of the agent loop
which runs the configure method when the Master Driver starts. Since this Driver is for demonstration, we’ll create
the CSV with some default values if the configured path doesn’t exist. The CSV device will consist of 2 columns:
“Point Name” specifying the name of the register, and “Point Value”, the current value of the register.

1.9. Driver Development 105

VOLTTRON Documentation, Release 8.0 Release Candidate

_log = logging.getLogger(__name__)

CSV_FIELDNAMES = ["Point Name", "Point Value"]
CSV_DEFAULT = [

{
"Point Name": "test1",
"Point Value": 0

},
{

"Point Name": "test2",
"Point Value": 1

},
{

"Point Name": "test3",
"Point Value": "testpoint"

}
]
type_mapping = {"string": str,

"int": int,
"integer": int,
"float": float,
"bool": bool,
"boolean": bool}

class Interface(BasicRevert, BaseInterface):
def __init__(self, **kwargs):

super(Interface, self).__init__(**kwargs)
self.csv_path = None

def configure(self, config_dict, registry_config_str):
self.csv_path = config_dict.get("csv_path", "csv_device.csv")
if not os.path.isfile(self.csv_path):

_log.info("Creating csv 'device'")
with open(self.csv_path, "w+") as csv_device:

writer = DictWriter(csv_device, fieldnames=CSV_FIELDNAMES)
writer.writeheader()
writer.writerows(CSV_DEFAULT)

self.parse_config(registry_config_str)

At the end of the configuration method, the Driver parses the registry configuration. The registry configuration is a csv
which is used to tell the Driver which register the user wishes to communicate with and includes a few meta-data values
about each register, such as whether the register can be written to, if the register value uses a specific measurement
unit, etc. After each register entry is parsed from the registry config a register is added to the driver’s list of active
registers.

def parse_config(self, config_dict):
if config_dict is None:

return

for index, regDef in enumerate(config_dict):
Skip lines that have no point name yet
if not regDef.get('Point Name'):

continue

read_only = regDef.get('Writable', "").lower() != 'true'
point_name = regDef.get('Volttron Point Name')
if not point_name:

(continues on next page)

106 Chapter 1. Features

VOLTTRON Documentation, Release 8.0 Release Candidate

(continued from previous page)

point_name = regDef.get("Point Name")
if not point_name:

raise ValueError("Registry config entry {} did not have a point name or
→˓volttron point name".format(

index))
description = regDef.get('Notes', '')
units = regDef.get('Units', None)
default_value = regDef.get("Default Value", "").strip()
if not default_value:

default_value = None
type_name = regDef.get("Type", 'string')
reg_type = type_mapping.get(type_name, str)

register = CsvRegister(
self.csv_path,
read_only,
point_name,
units,
reg_type,
default_value=default_value,
description=description)

if default_value is not None:
self.set_default(point_name, register.value)

self.insert_register(register)

Since the driver’s registers will be doing the work of parsing the registers the interface only needs to select the correct
register to read from or write to and instruct the register to perform the corresponding unit of work.

def get_point(self, point_name):
register = self.get_register_by_name(point_name)
return register.get_state()

def _set_point(self, point_name, value):
register = self.get_register_by_name(point_name)
if register.read_only:

raise IOError("Trying to write to a point configured read only: " + point_
→˓name)

register.set_state(value)
return register.get_state()

def _scrape_all(self):
result = {}
read_registers = self.get_registers_by_type("byte", True)
write_registers = self.get_registers_by_type("byte", False)
for register in read_registers + write_registers:

result[register.point_name] = register.get_state()
return result

Writing the Register class

The CSV driver’s register class is responsible for parsing the CSV, reading the corresponding rows to return the
register’s current value and writing updated values into the CSV for the register. On a device which communicates
via a protocol such as Modbus the same units of work would be done, but using pymodbus to perform the reads and
writes. Here, Python’s CSV library will be used as our “protocol implementation”.

1.9. Driver Development 107

VOLTTRON Documentation, Release 8.0 Release Candidate

The Register class determines which file to read based on values passed from the Interface class.

class CsvRegister(BaseRegister):
def __init__(self, csv_path, read_only, pointName, units, reg_type,

default_value=None, description=''):
super(CsvRegister, self).__init__("byte", read_only, pointName, units,

description=description)
self.csv_path = csv_path

To find its value the register will read the CSV file, iterate over each row until a row with the point name the same
as the register name at which point it extracts the point value, and returns it. The register should be written to handle
problems which may occur, such as no correspondingly named row being present in the CSV file.

def get_state(self):
if os.path.isfile(self.csv_path):

with open(self.csv_path, "r") as csv_device:
reader = DictReader(csv_device)
for point in reader:

if point.get("Point Name") == self.point_name:
point_value = point.get("Point Value")
if not point_value:

raise RuntimeError("Point {} not set on CSV Device".
→˓format(self.point_name))

else:
return point_value

raise RuntimeError("Point {} not found on CSV Device".format(self.point_name))
else:

raise RuntimeError("CSV device at {} does not exist".format(self.csv_path))

Likewise to overwrite an existing value, the register will iterate over each row until the point name matches the register
name, saving the output as it goes. When it finds the correct row it instead saves the output updated with the new value
then continues on. Finally it writes the output back to the csv.

def set_state(self, value):
_log.info("Setting state for {} on CSV Device".format(self.point_name))
field_names = []
points = []
found = False
with open(self.csv_path, "r") as csv_device:

reader = DictReader(csv_device)
field_names = reader.fieldnames
for point in reader:

if point["Point Name"] == self.point_name:
found = True
point_copy = point
point_copy["Point Value"] = value
points.append(point_copy)

else:
points.append(point)

if not found:
raise RuntimeError("Point {} not found on CSV Device".format(self.point_name))

else:
with open(self.csv_path, "w") as csv_device:

writer = DictWriter(csv_device, fieldnames=field_names)
writer.writeheader()
writer.writerows([dict(row) for row in points])

return self.get_state()

108 Chapter 1. Features

VOLTTRON Documentation, Release 8.0 Release Candidate

At this point we should be able to scrape the CSV device using the Master Driver and set points using the actuator.

Creating Driver Configurations

The configuration files for the CSV driver are very simple, but in general, the device configuration should specify the
parameters which the interface requires to communicate with the device and the registry configuration contains rows
which correspond to registers and specifies their usage.

Here’s the driver configuration for the CSV driver:

{
"driver_config": {"csv_path": "csv_driver.csv"},
"driver_type": "csvdriver",
"registry_config":"config://csv_registers.csv",
"interval": 30,
"timezone": "UTC"

}

Note: The “driver_type” value must match the name of the driver’s python file as this is what the Master Driver will
look for when searching for the correct interface.

And here’s the registry configuration:

Volttron Point Name Point Name Writable
test1 test1 true
test2 test2 true
test3 test3 true

The BACNet and Modbus driver docs and example configurations can be used to compare these configurations to more
complex configurations.

1.9.2 Testing your driver

To test the driver’s scrape all functionality, one can install a ListenerAgent and Master Driver with the driver’s config-
urations, and run them. To do so for the CSV driver using the configurations above: activate the Volttron environment
start the platform, tail the platform’s log file, then try the following:

python scripts/install-agent.py -s examples/ListenerAgent
python scripts/install-agent.py -s services/core/MasterDriverAgent -c services/core/
→˓MasterDriverAgent/master-driver.agent
vctl config store platform.driver devices/<campus>/<building>/csv_driver <path to
→˓driver configuration>
vctl config store platform.driver <registry config path from driver configuration>
→˓<path to registry configuration>

Note: vctl config list platform.driver will list device and registry configurations stored for the master driver and vctl
config delete platform.driver <config in configs list> can be used to remove a configuration entry - these commands
are very useful for debugging

After the Master Driver starts the driver’s output should appear in the logs at regular intervals based on the Master
Driver’s configuration.

1.9. Driver Development 109

VOLTTRON Documentation, Release 8.0 Release Candidate

Here is some sample CSV driver output:

2019-11-15 10:32:00,010 (listeneragent-3.3 22996) listener.agent INFO: Peer: pubsub,
→˓Sender: platform.driver:, Bus:
, Topic: devices/pnnl/isb1/csv_driver/all, Headers: {'Date': '2019-11-15T18:32:00.
→˓001360+00:00', 'TimeStamp':
'2019-11-15T18:32:00.001360+00:00', 'SynchronizedTimeStamp': '2019-11-15T18:32:00.
→˓000000+00:00',
'min_compatible_version': '3.0', 'max_compatible_version': ''}, Message:
[{'test1': '0', 'test2': '1', 'test3': 'testpoint'},
{'test1': {'type': 'integer', 'tz': 'UTC', 'units': None},
'test2': {'type': 'integer', 'tz': 'UTC', 'units': None},
'test3': {'type': 'integer', 'tz': 'UTC', 'units': None}}]

This output is an indication of the basic scrape all functionality working in the Interface class - in our implementa-
tion this is also an indication of the basic functionality of the Interface class “get_point” method and Register class
“get_state” methods working (although edge cases should still be tested!).

To test the Interface’s “set_point” method and Register’s “set_state” method we’ll need to use the Actuator agent. The
following agent code can be used to alternate a point’s value on a schedule using the actuator, as well as perform an
action based on a pubsub subscription to a single point:

def CsvDriverAgent(config_path, **kwargs):
"""Parses the Agent configuration and returns an instance of
the agent created using that configuration.

:param config_path: Path to a configuration file.

:type config_path: str
:returns: Csvdriveragent
:rtype: Csvdriveragent
"""
_log.debug("Config path: {}".format(config_path))
try:

config = utils.load_config(config_path)
except Exception:

config = {}

if not config:
_log.info("Using Agent defaults for starting configuration.")

_log.debug("config_dict before init: {}".format(config))
utils.update_kwargs_with_config(kwargs, config)
return Csvdriveragent(**kwargs)

class Csvdriveragent(Agent):
"""
Document agent constructor here.
"""

def __init__(self, csv_topic="", **kwargs):
super(Csvdriveragent, self).__init__(**kwargs)
_log.debug("vip_identity: " + self.core.identity)

self.agent_id = "csv_actuation_agent"
self.csv_topic = csv_topic

self.value = 0

(continues on next page)

110 Chapter 1. Features

VOLTTRON Documentation, Release 8.0 Release Candidate

(continued from previous page)

self.default_config = {
"csv_topic": self.csv_topic

}

Set a default configuration to ensure that self.configure is called
→˓immediately to setup

the agent.
self.vip.config.set_default("config", self.default_config)

Hook self.configure up to changes to the configuration file "config".
self.vip.config.subscribe(self.configure, actions=["NEW", "UPDATE"], pattern=

→˓"config")

def configure(self, config_name, action, contents):
"""
Called after the Agent has connected to the message bus. If a configuration

→˓exists at startup
this will be called before onstart.

Is called every time the configuration in the store changes.
"""
config = self.default_config.copy()
config.update(contents)

_log.debug("Configuring Agent")
_log.debug(config)

self.csv_topic = config.get("csv_topic", "")

Unsubscribe from everything.
self.vip.pubsub.unsubscribe("pubsub", None, None)

self.vip.pubsub.subscribe(peer='pubsub',
prefix="devices/" + self.csv_topic + "/all",
callback=self._handle_publish)

def _handle_publish(self, peer, sender, bus, topic, headers, message):
_log.info("Device {} Publish: {}".format(self.csv_topic, message))

@Core.receiver("onstart")
def onstart(self, sender, **kwargs):

"""
This is method is called once the Agent has successfully connected to the

→˓platform.
This is a good place to setup subscriptions if they are not dynamic or
do any other startup activities that require a connection to the message bus.
Called after any configurations methods that are called at startup.

Usually not needed if using the configuration store.
"""
self.core.periodic(30, self.actuate_point)

def actuate_point(self):
_now = get_aware_utc_now()
str_now = format_timestamp(_now)
_end = _now + td(seconds=10)
str_end = format_timestamp(_end)

(continues on next page)

1.9. Driver Development 111

VOLTTRON Documentation, Release 8.0 Release Candidate

(continued from previous page)

schedule_request = [[self.csv_topic, str_now, str_end]]
result = self.vip.rpc.call(

'platform.actuator', 'request_new_schedule', self.agent_id, 'my_test',
→˓'HIGH', schedule_request).get(

timeout=4)
point_topic = self.csv_topic + "/" + "test1"
result = self.vip.rpc.call(

'platform.actuator', 'set_point', self.agent_id, point_topic, self.value).
→˓get(

timeout=4)
self.value = 0 if self.value is 1 else 1

@Core.receiver("onstop")
def onstop(self, sender, **kwargs):

"""
This method is called when the Agent is about to shutdown, but before it

→˓disconnects from
the message bus.
"""
pass

def main():
"""Main method called to start the agent."""
utils.vip_main(CsvDriverAgent,

version=__version__)

if __name__ == '__main__':
Entry point for script
try:

sys.exit(main())
except KeyboardInterrupt:

pass

While this code runs, since the Actuator is instructing the Interface to set points on the device, the pubsub all publish
can be used to check that the values are changing as expected.

1.10 Contributing Code

As an open source project VOLTTRON requires input from the community to keep development focused on new and
useful features. To that end we are revising our commit process to hopefully allow more contributors to be apart of
the community. The following document outlines the process for source code and documentation to be submitted.
There are GUI tools that may make this process easier, however this document will focus on what is required from the
command line.

The only requirements for contributing are Git (Linux version control software) and your favorite web browser.

Note: The following guide assumes the user has already created a fork of the core VOLTTRON repository. Please
review the docs if you have not yet created a fork.

The only technical requirements for contributing are Git (version control software) and your favorite web browser.

112 Chapter 1. Features

VOLTTRON Documentation, Release 8.0 Release Candidate

As a part of VOLTTRON joining the Eclipse community, Eclipse requires that all contributors sign the Eclipse Con-
tributor agreement before making a pull request.

1.10.1 Reviewing Changes

Okay, we’ve written a cool new foo.py script to service bar in our deployment. Let’s make sure our code is up-to-snuff.

Code

First, go through the code.

Note: We on the VOLTTRON team would recommend an internal code review - it can be really hard to catch small
mistakes, typos, etc. for code you just finished writing.

• Does the code follow best-practices for Python, object-oriented programming, unit and integration testing, etc.?

• Does the code contain any typos and does it follow Pep8 guidelines?

• Does the code follow the guidelines laid out in the VOLTTRON documentation?

Docs

Next, Check out the documentation.

• Is it complete?

– Has an introduction describing purpose

– Describes configuration including all parameters

– Includes installation instructions

– Describes behavior at runtime

– Describes all available endpoints (JSON-RPC, pub/sub messages, Web-API endpoints, etc.)

• Does it follow the VOLTTRON documentation guidelines?

Tests

You’ve included tests, right? Unit and integration tests show users that foo.py is better than their wildest dreams - all
of the features work, and include components they hadn’t even considered themselves!

• Are the unit tests thorough?

– Success and failure cases

– Tests for each independent component of the code

• Do the integration tests capture behavior with a running VOLTTRON platform?

– Success and Failure cases

– Tests for each endpoint

– Tests for interacting with other agents if necessary

– Are status, health, etc. updating as expected when things go wrong or the code recovers?

1.10. Contributing Code 113

https://www.eclipse.org/legal/ECA.php
https://www.eclipse.org/legal/ECA.php
https://www.python.org/dev/peps/pep-0008/

VOLTTRON Documentation, Release 8.0 Release Candidate

• Can the tests be read to describe the behavior of the code?

Structure

For agents and drivers, the VOLTTRON team has some really simple structure recommendations. These make your
project structure nice and tidy, and integrate nicely with the core repository.

For agents:

TestAgent/
setup.py
config
README.rst
tester

| agent.py
| __init__.py

tests
test_agent.py

For drivers, the interface should be a file named after the driver in the Master Driver’s interfaces directory:

master_driver
agent.py
driver.py
__init__.py
interfaces

__init__.py
bacnet.py

| | csvdriver.py
new_driver.py

Or in the __init__.py file in a directory named after the driver in the Master Driver’s interfaces directory:

master_driver
agent.py
driver.py
__init__.py
interfaces

__init__.py
bacnet.py
new_driver

| __init__.py

This option is ideal for adding additional code files, and including documentation and tests.

1.10.2 Creating a Pull Request to the main VOLTTRON repository

After reviewing changes to our fork of the VOLTTRON repository, we want our changes to be added
into the main VOLTTRON repository. After all, our foo.py can cure a lot of the world’s problems
and of course it is always good to have a copyright with the correct year. Open your browser to
https://github.com/VOLTTRON/volttron/compare/develop. . . YOUR_USERNAME:develop.

On that page the base fork should always be VOLTTRON/volttron with the base develop, the head fork should be
<YOUR USERNAME>/volttron and the compare should be the branch in your repository to pull from. Once you have
verified that you have got the right changes made then, click on create pull request, enter a title and description that
represent your changes and submit the pull request.

114 Chapter 1. Features

https://github.com/VOLTTRON/volttron/compare/develop...YOUR_USERNAME:develop

VOLTTRON Documentation, Release 8.0 Release Candidate

The VOLTTRON repository has a description template to use to format your PR:

Description

Please include a summary of the change and which issue is fixed. Please also include
→˓relevant motivation and context. List any dependencies that are required for this
→˓change.

Fixes # (issue)

Type of change

Please delete options that are not relevant.

- [] Bug fix (non-breaking change which fixes an issue)
- [] New feature (non-breaking change which adds functionality)
- [] Breaking change (fix or feature that would cause existing functionality to not
→˓work as expected)
- [] This change requires a documentation update

How Has This Been Tested?

Please describe the tests that you ran to verify your changes. Provide instructions
→˓so we can reproduce. Please also list any relevant details for your test
→˓configuration

- [] Test A
- [] Test B

Test Configuration:

* Firmware version:

* Hardware:

* Toolchain:

* SDK:

Checklist:

- [] My code follows the style guidelines of this project
- [] I have performed a self-review of my own code
- [] I have commented my code, particularly in hard-to-understand areas
- [] I have made corresponding changes to the documentation
- [] My changes generate no new warnings
- [] I have added tests that prove my fix is effective or that my feature works
- [] New and existing unit tests pass locally with my changes
- [] Any dependent changes have been merged and published in downstream modules

Note: The VOLTTRON repository includes a stub for completing your pull request. Please follow the stub to facilitate
the reviewing and merging processes.

1.10.3 What happens next?

Once you create a pull request, one or more VOLTTRON team members will review your changes and either accept
them as is ask for modifications in order to have your commits accepted. Typical response time is approximately two
weeks; please be patient, your pull request will be reviewed. You will be automatically emailed through the GitHub
notification system when this occurs (assuming you haven’t changed your GitHub preferences).

1.10. Contributing Code 115

VOLTTRON Documentation, Release 8.0 Release Candidate

Merging changes from the main VOLTTRON repository

As time goes on the VOLTTRON code base will continually be modified so the next time you want to work
on a change to your files the odds are your local and remote repository will be out of date. In order to
get your remote VOLTTRON repository up to date with the main VOLTTRON repository you could simply
do a pull request to your remote repository from the main repository. To do so, navigate your browser to
https://github.com/YOUR_USERNAME/volttron/compare/develop. . . VOLTTRON:develop.

Click the ‘Create Pull Request’ button. On the following page click the ‘Create Pull Request’ button. On the next page
click ‘Merge Pull Request’ button.

Once your remote is updated you can now pull from your remote repository into your local repository through the
following command:

git pull

The other way to get the changes into your remote repository is to first update your local repository with the changes
from the main VOLTTRON repository and then pushing those changes up to your remote repository. To do that you
need to first create a second remote entry to go along with the origin. A remote is simply a pointer to the url of a
different repository than the current one. Type the following command to create a new remote called ‘upstream’:

git remote add upstream https://github.com/VOLTTRON/volttron

To update your local repository from the main VOLTTRON repository then execute the following command where
upstream is the remote and develop is the branch to pull from:

git pull upstream develop

Finally to get the changes into your remote repository you can execute:

git push origin

Other commands to know

At this point in time you should have enough information to be able to update both your local and remote repository
and create pull requests in order to get your changes into the main VOLTTRON repository. The following commands
are other commands to give you more information that the preceding tutorial went through

Viewing what the remotes are in our local repository

git remote -v

Stashing changed files so that you can do a merge/pull from a remote

git stash save 'A comment to be listed'

Applying the last stashed files to the current repository

git stash pop

116 Chapter 1. Features

https://github.com/YOUR_USERNAME/volttron/compare/develop...VOLTTRON:develop

VOLTTRON Documentation, Release 8.0 Release Candidate

Finding help about any git command

git help
git help branch
git help stash
git help push
git help merge

Creating a branch from the branch and checking it out

git checkout -b newbranchname

Checking out a branch (if not local already will look to the remote to checkout)

git checkout branchname

Removing a local branch (cannot be current branch)

git branch -D branchname

Determine the current and show all local branches

git branch

Using Travis Continuous Integration Tools

The main VOLTTRON repository is hooked into an automated build tool called travis-ci. Your remote repository
can be automatically built with the same tool by hooking your account into travis-ci’s environment. To do this go to
https://travis-ci.org and create an account. You can using your GitHub login directly to this service. Then you will
need to enable the syncing of your repository through the travis-ci service. Finally you need to push a new change to
the repository. If the build fails you will receive an email notifying you of that fact and allowing you to modify the
source code and then push new changes out.

1.11 Contributing Documentation

The Community is encouraged to contribute documentation back to the project as they work through use cases the
developers may not have considered or documented. By contributing documentation back, the community can learn
from each other and build up a more extensive knowledge base.

VOLTTRON™ documentation utilizes ReadTheDocs: http://volttron.readthedocs.io/en/develop/ and is built using the
Sphinx Python library with static content in Restructured Text.

1.11. Contributing Documentation 117

https://travis-ci.org
http://volttron.readthedocs.io/en/develop/
http://www.sphinx-doc.org/en/stable/
http://docutils.sourceforge.net/docs/user/rst/quickref.html

VOLTTRON Documentation, Release 8.0 Release Candidate

1.11.1 Building the Documentation

Static documentation can be found in the docs/source directory. Edit or create new .rst files to add new content using
the Restructured Text format. To see the results of your changes the documentation can be built locally through the
command line using the following instructions:

If you’ve already bootstrapped VOLTTRON™, do the following while activated. If not, this will also pull down the
necessary VOLTTRON™ libraries.

python bootstrap.py --documentation
cd docs
make html

Then, open your browser to the created local files:

file:///home/<USER>/git/volttron/docs/build/html/overview/index.html

When complete, changes can be contributed back using the same process as code contributions by creating a pull
request. When the changes are accepted and merged, they will be reflected in the ReadTheDocs site.

1.11.2 Documentation Styleguide

Naming Conventions

• File names and directories should be all lower-case and use only dashes/minus signs (-) as word separators

index.rst
first-document.rst
more-documents

second-document.rst

• Reference Labels should be Capitalized and dash/minus separated:

.. _Reference-Label:

• Headings and Sub-headings should be written like book titles:

==============
The Page Title
==============

Headings

Each page should have a main title:

==================================
This is the Main Title of the Page
==================================

It can be useful to include reference labels throughout the document to use to refer back to that section of documenta-
tion. Include reference labels above titles and important headings:

118 Chapter 1. Features

http://docutils.sourceforge.net/docs/user/rst/quickref.html

VOLTTRON Documentation, Release 8.0 Release Candidate

.. _Main-Title:

==================================
This is the main title of the page
==================================

Heading Levels

• Page titles and documentation parts should use over-line and underline hashes:

=====
Title
=====

• Chapter headings should be over-lined and underlined with asterisks

Chapter

• For sections, subsections, sub-subsections, etc. underline the heading with the following:

– =, for sections

– -, for subsections

– ^, for sub-subsections

– “, for paragraphs

In addition to following guidelines for styling, please separate headers from previous content by two newlines.

=====
Title
=====

Content

Subheading
==========

Example Code Blocks

Use bash for commands or user actions:

ls -al

Use this for the results of a command:

total 5277200
drwxr-xr-x 22 volttron volttron 4096 Oct 20 09:44 .
drwxr-xr-x 23 volttron volttron 4096 Oct 19 18:39 ..
-rwxr-xr-x 1 volttron volttron 164 Sep 29 17:08 agent-setup.sh
drwxr-xr-x 3 volttron volttron 4096 Sep 29 17:13 applications

1.11. Contributing Documentation 119

VOLTTRON Documentation, Release 8.0 Release Candidate

Use this when Python source code is displayed

@RPC.export
def status_agents(self):

return self._aip.status_agents()

Directives

Danger: Something very bad!

Tip: This is something good to know

Some other directives

“attention”, “caution”, “danger”, “error”, “hint”, “important”, “note”, “tip”, “warning”, “admonition”

Links

Linking to external sites is simple:

Link to `Google <www.google.com>`_

References

You can reference other sections of documentation using the ref directive:

This will reference the :ref:`platform installation <Platform-Installation>`

Other resources

• http://pygments.org/docs/lexers/

• http://documentation-style-guide-sphinx.readthedocs.io/en/latest/style-guide.html

• http://www.sphinx-doc.org/en/stable/markup/code.html

1.12 Jupyter Notebooks

Jupyter is an open-source web application that lets you create and share “notebook” documents. A notebook displays
formatted text along with live code that can be executed from the browser, displaying the execution output and pre-
serving it in the document. Notebooks that execute Python code used to be called iPython Notebooks. The iPython
Notebook project has now merged into Project Jupyter.

120 Chapter 1. Features

http://pygments.org/docs/lexers/
http://documentation-style-guide-sphinx.readthedocs.io/en/latest/style-guide.html
http://www.sphinx-doc.org/en/stable/markup/code.html

VOLTTRON Documentation, Release 8.0 Release Candidate

1.12.1 Using Jupyter to Manage a Set of VOLTTRON Servers

The following Jupyter notebooks for VOLTTRON have been provided as examples:

• Collector notebooks. Each Collector notebook sets up a particular type of device driver and forwards device
data to another VOLTTRON instance, the Aggregator.

– SimulationCollector notebook. This notebook sets up a group of Simulation device drivers and forwards
device data to another VOLTTRON instance, the Aggregator.

– BacnetCollector notebook. This notebook sets up a Bacnet (or Bacnet gateway) device driver and for-
wards device data to another VOLTTRON instance, the Aggregator.

– ChargePointCollector notebook. This notebook sets up a ChargePoint device driver and forwards device
data to another VOLTTRON instance, the Aggregator.

– SEP2Collector notebook. This notebook sets up a SEP2.0 (IEEE 2030.5) device driver and forwards
device data to another VOLTTRON instance, the Aggregator. The Smart Energy Profile 2.0 (“SEP2”)
protocol implements IEEE 2030.5, and is capable of connecting a wide array of smart energy devices to
the Smart Grid. The standard is designed to run over TCP/IP and is physical layer agnostic.

• Aggregator notebook. This notebook sets up and executes aggregation of forwarded data from other VOLT-
TRON instances, using a historian to record the data.

• Observer notebook. This notebook sets up and executes a DataPuller that captures data from another VOLT-
TRON instance, using a Historian to record the data. It also uses the Message Debugger agent to monitor
messages flowing across the VOLTTRON bus.

Each notebook configures and runs a set of VOLTTRON Agents. When used as a set they implement a multiple-
VOLTTRON-instance architecture that captures remote device data, aggregates it, and reports on it, routing the data
as follows:

1.12. Jupyter Notebooks 121

VOLTTRON Documentation, Release 8.0 Release Candidate

1.12.2 Install VOLTTRON and Jupyter on a Server

The remainder of this guide describes how to set up a host for VOLTTRON and Jupyter. Use this setup process on a
server in order to prepare it to run Jupyter notebook for VOLTTRON.

Set Up the Server and Install VOLTTRON

The following is a complete, but terse, description of the steps for installing and running VOLTTRON on a server. For
more detailed, general instructions, see Installing Volttron.

The VOLTTRON server should run on the same host as the Jupyter server.

• Load third-party software:

$ sudo apt-get update
$ sudo apt-get install build-essential python-dev openssl libssl-dev libevent-dev git
$ sudo apt-get install sqlite3

• Clone the VOLTTRON repository from github:

$ cd ~
$ mkdir repos
$ cd repos
$ git clone https://github.com/VOLTTRON/volttron/

• Check out the develop (or master) branch and bootstrap the development environment:

$ cd volttron
$ git checkout develop
$ python bootstrap.py

• Activate and initialize the VOLTTRON virtual environment:

Run the following each time you open a new command-line shell on the server:

$ export VOLTTRON_ROOT=~/repos/volttron
$ export VOLTTRON_HOME=~/.volttron
$ cd $VOLTTRON_ROOT
$ source env/bin/activate

Install Extra Libraries

• Add Python libraries to the VOLTTRON virtual environment:

These notebooks use third-party software that’s not included in VOLTTRON’s standard distribution that was loaded
by bootstrap.py. The following additional packages are required:

• Jupyter

• SQLAlchemy (for the Message Debugger)

• Suds (for the ChargePoint driver, if applicable)

• Numpy and MatPlotLib (for plotted output)

Note: A Jupyter installation also installs and/or upgrades many dependent libraries. Doing so could disrupt other
work on the OS, so it’s safest to load Jupyter (and any other library code) in a virtual environment. VOLTTRON

122 Chapter 1. Features

VOLTTRON Documentation, Release 8.0 Release Candidate

runs in a virtual environment during normal operation, so if you’re using Jupyter in conjunction with VOLTTRON, it
should be installed in your VOLTTRON virtual environment (In other words, be sure to use cd $VOLTTRON_ROOT
and source env/bin/activate to activate the virtual environment before running pip install.)

• Install the third-party software:

$ pip install SQLAlchemy==1.1.4
$ pip install suds-jurko==0.6
$ pip install numpy
$ pip install matplotlib
$ pip install jupyter

Note: If pip install fails due to an untrusted cert, try using this command instead:

$ pip install --trusted-host pypi.python.org <libraryname>

An InsecurePlatformWarning may be displayed, but it typically won’t stop the installation from proceeding.

1.12.3 Configure VOLTTRON

Use the vcfg wizard to configure the VOLTTRON instance. By default, the wizard configures a VOLTTRON instance
that communicates with agents only on the local host (ip 127.0.0.1). This set of notebooks manages communications
among multiple VOLTTRON instances on different hosts. To enable this cross-host communication on VOLTTRON’s
web server, replace 127.0.0.1 with the host’s IP address, as follows:

$ vcfg

Accept all defaults, except as follows:

• If a prompt defaults to 127.0.0.1 as an IP address, substitute the host’s IP address (this may happen multiple
times).

• When asked whether this is a volttron central, answer Y.

• When prompted for a username and password, use admin and admin.

1.12.4 Start VOLTTRON

Start the main VOLTTRON process, logging to $VOLTTRON_ROOT/volttron.log:

$ volttron -vv -l volttron.log --msgdebug

This runs VOLTTRON as a foreground process. To run it in the background, use:

This also enables the Message Debugger, a non-production VOLTTRON debugging aid that’s used by some notebooks.
To run with the Message Debugger disabled (VOLTTRON’s normal state), omit the --msgdebug flag.

Now that VOLTTRON is running, it’s ready for agent configuration and execution. Each Jupyter notebook contains
detailed instructions and executable code for doing that.

1.12. Jupyter Notebooks 123

VOLTTRON Documentation, Release 8.0 Release Candidate

1.12.5 Configure Jupyter

More detailed information about installing, configuring and using Jupyter Notebooks is available on the Project Jupyter
site, http://jupyter.org/.

• Create a Jupyter configuration file:

$ jupyter notebook --generate-config

• Revise the Jupyter configuration:

Open ~/.jupyter/jupyter_notebook_config.py in your favorite text editor. Change the configuration to accept connec-
tions from any IP address (not just from localhost) and use a specific, non-default port number:

• Un-comment c.NotebookApp.ip and set it to: * instead of localhost

• Un-comment c.NotebookApp.port and set it to: 8891 instead of 8888

Save the config file.

• Open ports for TCP connections:

Make sure that your Jupyter server host’s security rules allow inbound TCP connections on port 8891.

If the VOLTTRON instance needs to receive TCP requests, for example ForwardHistorian or DataPuller messages
from other VOLTTRON instances, make sure that the host’s security rules also allow inbound TCP communications
on VOLTTRON’s port, which is usually 22916.

1.12.6 Launch Jupyter

• Start the Jupyter server:

In a separate command-line shell, set up VOLTTRON’s environment variables and virtual environment, and then
launch the Jupyter server:

$ export VOLTTRON_HOME=(your volttron home directory, e.g. ~/.volttron)
$ export VOLTTRON_ROOT=(where volttron was installed; e.g. ~/repos/volttron)
$ cd $VOLTTRON_ROOT
$ source env/bin/activate
$ cd examples/JupyterNotebooks
$ jupyter notebook --no-browser

• Open a Jupyter client in a web browser:

Look up the host’s IP address (e.g., using ifconfig). Open a web browser and navigate to the URL that was displayed
when you started jupyter, replacing localhost with that IP address. A Jupyter web page should display, listing your
notebooks.

1.13 Python for Matlab Users

Matlab is a popular proprietary programming language and tool suite with built in support for matrix operations and
graphically plotting computation results. The purpose of this document is to introduce Python to those already familiar
Matlab so it will be easier for them to develop tools and agents in VOLTTRON.

124 Chapter 1. Features

http://jupyter.org/

VOLTTRON Documentation, Release 8.0 Release Candidate

1.13.1 A Simple Function

Python and Matlab are similar in many respects, syntactically and semantically. With the addition of the NumPy
library in Python, almost all numerical operations in Matlab can be emulated or directly translated. Here are functions
in each language that perform the same operation:

% Matlab
function [result] = times_two(number)

result = number * 2;
end

Python
def times_two(number):

result = number * 2
return result

Some notes about the previous functions:

1. Values are explicitly returned with the return statement. It is possible to return multiple values, as in Matlab, but
doing this without a good reason can lead to overcomplicated functions.

2. Semicolons are not used to end statements in python, and white space is significant. After a block is started (if,
for, while, functions, classes) subsequent lines should be indented with four spaces. The block ends when the
programmer stops adding the extra level of indentation.

1.13.2 Translating

The following may be helpful if you already have a Matlab file or function that will be translated into Python. Many
of the syntax differences between Matlab and Python can be rectified with your text editor’s find and replace feature.

Start by copying all of your Matlab code into a new file with a .py extension. It is recommended to start by commenting
everything out and uncommenting the Matlab code in chunks. This way it is possible to write valid Python and verify
it as you translate, instead of waiting till the whole file is “translated”. Editors designed to work with Python should
be able to highlight syntax errors as well.

1. Comments are created with a %. Find and replace these with #.

def test_function():
single line Python comment
"""
Multi-line Python comment
"""
pass # inline Python comment

1. Change elseif blocks to elif blocks.

if thing == 0:
do_thing1()

elif thing ==1:
do_thing2()

else:
do_the_last_thing()

1. Python indexes start at zero instead of one. Array slices and range operations don’t include the upper bound, so
only the lower bound should decrease by one. The following examples are of Python code in the console:

1.13. Python for Matlab Users 125

VOLTTRON Documentation, Release 8.0 Release Candidate

>>> test_array = [0, 1, 2, 3, 4]
>>> test_array[0]
0
>>> test_array[1]
1
>>> test_array[0:2]
[0, 1]
>>>>>> test_array[:2]
[0, 1]
>>> test_array[2:]
[2, 3, 4]
>>>

1. Semicolons in Matlab are used to suppress output at the end of lines and for organizing array literals. After
arranging the arrays into nested lists, all semicolons can be removed.

2. The end keyword in Matlab is used both to access the last element in an array and to close blocks. The array use
case can be replaced with -1 and the others can be removed entirely.

>>> test_array = [0, 1, 2, 3, 4]
>>> test_array[-1]
4
>>>

A More Concrete Example

In the Building Economic Dispatch project, a sibling project to VOLTTRON, a number of components written in
Matlab would create a matrix out of some collection of columns and perform least squares regression using the matrix
division operator. This is straightforward and very similar in both languages assuming that all of the columns are
defined and are the same length.

% Matlab
XX = [U, xbp, xbp2, xbp3, xbp4, xbp5];
AA = XX \ ybp;

Python
import numpy as np

XX = np.column_stack((U, xbp, xbp2, xbp3, xbp4, xbp5))
AA, resid, rank, s = np.linalg.lstsq(XX, ybp)

This pattern also included the creation of the U column, a column of ones used as the bias term in the linear equation
. In order to make the Python version more readable and more robust, the pattern was removed from each component
and replaced with a single function call to least_squares_regression.

This function does some validation on the input parameters, automatically creates the bias column, and returns the
least squares solution to the system. Now if we want to change how the solution is calculated we only have to change
the one function, instead of each instance where the pattern was written originally.

def least_squares_regression(inputs=None, output=None):
if inputs is None:

raise ValueError("At least one input column is required")
if output is None:

raise ValueError("Output column is required")

(continues on next page)

126 Chapter 1. Features

https://github.com/VOLTTRON/econ-dispatch

VOLTTRON Documentation, Release 8.0 Release Candidate

(continued from previous page)

if type(inputs) != tuple:
inputs = (inputs,)

ones = np.ones(len(inputs[0]))
x_columns = np.column_stack((ones,) + inputs)

solution, resid, rank, s = np.linalg.lstsq(x_columns, output)
return solution

1.13.3 Lessons Learned (sometimes the hard way)

Variable Names

Use descriptive function and variable names whenever possible. The most important things to consider here are reader
comprehension and searching. Consider a variable called hdr. Is it header without any vowels, or is it short for
high-dynamic-range? Spelling out full words in variable names can save someone else a lot of guesswork.

Searching comes in when we’re looking for instances of a string or variable. Single letter variable names are impossible
to search for. Variables names describing the value being stored in a concise but descriptive manner are preferred.

Matlab load/save

Matlab has built-in functions to automatically save and load variables from your programs to disk. Using these
functions can lead to poor program design and should be avoided if possible. It would be best to refactor as you
translate if they are being used. Few operations are so expensive that that cannot be redone every time the program is
run. For part of the program that saves variables, consider making a function that simply returns them instead.

If your Matlab program is loading csv files then use the Pandas library when working in python. Pandas works well
with NumPy and is the go-to library when using csv files that contain numeric data.

1.13.4 More Resources

NumPy for Matlab Users Has a nice list of common operations in Matlab and NumPy.

NumPy Homepage

Pandas Homepage

1.14 Bootstrap Process

The bootstrap.py Python script in the root directory of the VOLTTRON repository may be used to create VOLTTRON’s
Python virtual environment and install or update service agent dependencies.

The first running of bootstrap.py will be against the systems python3 executable. During this initial step a virtual
environment is created using the venv module. Additionally, all requirements for running a base volttron instance
are installed. A user can specify additional arguments to the bootstrap.py script allowing a way to quickly install
dependencies for service agents (e.g. bootstrap.py –mysql).

boostrap with additional dependency requirements for web enabled agents.
user@machine$ python3 bootstrap.py --web

1.14. Bootstrap Process 127

https://docs.scipy.org/doc/numpy-dev/user/numpy-for-matlab-users.html
http://www.numpy.org/
http://pandas.pydata.org/

VOLTTRON Documentation, Release 8.0 Release Candidate

After activating an environment (source env/bin/activate) one can use the bootstrap.py script to install more service
agent dependencies by executing the same boostrap.py command.

Note: In the following example one can tell the environment is activated based upon the (volttron) prefix to the
command prompt

Adding additional database requirement for crate
(volttron) user@machine$ python3 bootstrap.py --crate

If a fresh install is necessary one can use the –force argument to rebuild the virtual environment from scratch.

Rebuild the environment from the system's python3
user@machine$ python3 bootstrap.py --force

Note: Multiple options can be specified on the command line python3 bootstrap.py –web –crate installs dependencies
for web enabled agents as well as the Crate database historian.

1.14.1 Bootstrap Options

The bootstrap.py script takes several options that allow customization of the environment, installing and update pack-
ages, and setting the package locations. The following sections can be reproduced by executing:

Show the help output from bootstrap.py
user@machine$ python3 bootstrap --help

The options for customizing the location of the virtual environment are as follows.

--envdir VIRTUAL_ENV alternate location for virtual environment
--force force installing in non-empty directory
-o, --only-virtenv create virtual environment and exit (skip install)
--prompt PROMPT provide alternate prompt in activated environment

(default: volttron)

Additional options are available for customizing where an environment will retrieve packages and/or upgrade existing
packages installed.

update options:
--offline install from cache without downloading
-u, --upgrade upgrade installed packages
-w, --wheel build wheels in the pip wheelhouse

To help boostrap an environment in the shortest number of steps we have grouped dependency packages under named
collections. For example, the –web argument will install six different packages from a single call to boostrap.py –web.
The following collections are available to use.

...

Extra packaging options:
--all All dependency groups.
--crate Crate database adapter
--databases All of the databases (crate, mysql, postgres, etc).
--dnp3 Dependencies for the dnp3 agent.

(continues on next page)

128 Chapter 1. Features

VOLTTRON Documentation, Release 8.0 Release Candidate

(continued from previous page)

--documentation All dependency groups to allow generation of documentation
→˓without error.
--drivers All drivers known to the platform driver.
--influxdb Influx database adapter
--market Base market agent dependencies
--mongo Mongo database adapter
--mysql Mysql database adapter
--pandas Pandas numerical analysis tool
--postgres Postgres database adapter
--testing A variety of testing tools for running unit/integration tests.
--web Packages facilitating the building of web enabled agents.
--weather Packages for the base weather agent

rabbitmq options:
--rabbitmq [RABBITMQ]

install rabbitmq server and its dependencies. optional
argument: Install directory that exists and is
writeable. RabbitMQ server will be installed in a
subdirectory.Defaults to /home/osboxes/rabbitmq_server

...

1.15 Platform Configuration

Each instance of the VOLTTRON platform includes a config file which is used to configure the platform instance
on startup. This file is kept in VOLTTRON_HOME and is created using the volttron-cfg (vcfg) command, or will be
created with default values on start up of the platform otherwise.

Following is helpful information about the config file and the vcfg command.

1.15.1 VOLTTRON_HOME

By default, the VOLTTRON project bases its files out of VOLTTRON_HOME which defaults to ~/.volttron. This
directory features directories and files used by the platform for important operation and management tasks as well as
containing packaged agents and their individual runtime environments (including data directories, identity files, etc.)

• $VOLTTRON_HOME/agents - contains the agents installed on the platform

• $VOLTTRON_HOME/auth.json - file containing authentication and authorization rules for agents connecting
to the VOLTTRON instance.

• $VOLTTRON_HOME/certificates - contains the certificates for use with the Licensed VOLTTRON code.

• $VOLTTRON_HOME/configuration_store - agent configuration store files are stored in this directory. Each
agent may have a file here in which JSON representations of their stored configuration files are stored.

• $VOLTTRON_HOME/run - contains files create by the platform during execution. The main ones are the
ZMQ files created for publish and subscribe functionality.

• $VOLTTRON_HOME/ssh - keys used by agent mobility in the Licensed VOLTTRON code

• $VOLTTRON_HOME/config - Default location to place a config file to override any platform settings.

• $VOLTTRON_HOME/packaged - agent packages created with volttron-pkg are created in this directory

1.15. Platform Configuration 129

VOLTTRON Documentation, Release 8.0 Release Candidate

• $VOLTTRON_HOME/VOLTTRON_PID - File containing the Unix process ID for the VOLTTRON platform
- used for tracking platform status.

1.15.2 VOLTTRON Config File

The config file in VOLTTRON_HOME is the config file used by the platform. This configuration file specifies the
behavior of the platform at runtime, including which message bus it uses, the name of the platform instance, the
address bound to by VIP, and so-on. It is recommended to use the VOLTTRON Config wizard (explained below) for
configuring an instance for the first time as it will create a thorough template unique to your deployment. After using
the wizard the file may be edited by the user as necessary for operations. The following is a simple example config for
a multi-platform deployment:

[volttron]
message-bus = zmq
vip-address = tcp://127.0.0.1:22916
bind-web-address = <web service bind address>
web-ssl-cert = <VOLTTRON_HOME>/certificates/certs/master_web-server.crt
web-ssl-key = <VOLTTRON_HOME>/certificates/private/master_web-server.pem
instance-name = volttron1
volttron-central-address = <VC address>

The example consists of the following entries:

• message-bus - message bus being used for this instance (rmq/zmq)

• vip-address - address bound to by VIP for message bus communication

• bind-web-address - Optional, needed if platform has to support web feature. Represents address bound to by
the platform web service for handling HTTP(s) requests. Typical address would be https://<hostname>:8443

• web-ssl-cert - Optional, needed if platform has to support web feature. Represents path to the certificate for the
instance’s web service

• web-ssl-key - Optional, needed if platform has to support web feature. Represents secret key or path to secret
key file used by web service authenticate requests

• instance-name - name of this VOLTTRON platform instance, should be unique for the deployment

• volttron-central-address - Optional, needed if instance is running Volttron Central. Represents web address of
VOLTTRON Central agent managing this platform instance. Typical address would be https://<hostname>:8443

1.15.3 VOLTTRON Config

The volttron-cfg or vcfg command allows for an easy configuration of the VOLTTRON environment. The command
includes the ability to set up the platform configuration, an instance of the platform historian, VOLTTRON Central
UI, and VOLTTRON Central Platform agent.

Running vcfg will create a config file in VOLTTRON_HOME which will be populated according to the answers to
prompts. This process should be repeated for each platform instance, and can be re-run to reconfigure a platform
instance.

Note: To create a simple instance of VOLTTRON, leave the default response, or select yes (y) if prompted for a
yes or no response [Y/N]. You must choose a username and password for the VOLTTRON Central admin account if
selected.

A set of example responses are included here (username is user, localhost is volttron-pc):

130 Chapter 1. Features

https:/
https:/

VOLTTRON Documentation, Release 8.0 Release Candidate

(volttron) user@volttron-pc:~/volttron$ vcfg

Your VOLTTRON_HOME currently set to: /home/user/.volttron

Is this the volttron you are attempting to setup? [Y]:
What type of message bus (rmq/zmq)? [zmq]:
What is the vip address? [tcp://127.0.0.1]:
What is the port for the vip address? [22916]:
Is this instance web enabled? [N]: y
What is the protocol for this instance? [https]:
Web address set to: https://volttron-pc
What is the port for this instance? [8443]:
Would you like to generate a new web certificate? [Y]:
WARNING! CA certificate does not exist.
Create new root CA? [Y]:

Please enter the following details for web server certificate:
Country: [US]:
State: WA
Location: Richland
Organization: PNNL
Organization Unit: VOLTTRON

Created CA cert
Creating new web server certificate.
Is this an instance of volttron central? [N]: y
Configuring /home/user/volttron/services/core/VolttronCentral.
Installing volttron central.
['volttron', '-vv', '-l', '/home/user/.volttron/volttron.cfg.log']
Should the agent autostart? [N]: y
VC admin and password are set up using the admin web interface.
After starting VOLTTRON, please go to https://volttron-pc:8443/admin/login.html to
→˓complete the setup.
Will this instance be controlled by volttron central? [Y]:
Configuring /home/user/volttron/services/core/VolttronCentralPlatform.
What is the name of this instance? [volttron1]:
Volttron central address set to https://volttron-pc:8443
['volttron', '-vv', '-l', '/home/user/.volttron/volttron.cfg.log']
Should the agent autostart? [N]: y
Would you like to install a platform historian? [N]: y
Configuring /home/user/volttron/services/core/SQLHistorian.
['volttron', '-vv', '-l', '/home/user/.volttron/volttron.cfg.log']
Should the agent autostart? [N]: y
Would you like to install a master driver? [N]: y
Configuring /home/user/volttron/services/core/MasterDriverAgent.
['volttron', '-vv', '-l', '/home/user/.volttron/volttron.cfg.log']
Would you like to**install a fake device on the master driver? [N]: y
Should the agent autostart? [N]: y
Would you like to install a listener agent? [N]: y
Configuring examples/ListenerAgent.
['volttron', '-vv', '-l', '/home/user/.volttron/volttron.cfg.log']
Should the agent autostart? [N]: y
Finished configuration!

You can now start the volttron instance.

If you need to change the instance configuration you can edit
the config file is at /home/user/.volttron/config

1.15. Platform Configuration 131

VOLTTRON Documentation, Release 8.0 Release Candidate

Once this is finished, run VOLTTRON and test the new configuration.

Optional Arguments

• -v, –verbose - Enables verbose output in standard-output (PIP output, etc.)

• –vhome VHOME - Provide a path to set VOLTTRON_HOME for this instance

• –instance-name INSTANCE_NAME - Provide a name for this instance. Required for running secure agents
mode

• –list-agents - Display a list of configurable agents (Listener, Master Driver, Platform Historian, VOLTTRON
Central, VOLTTRON Central Platform)

• –agent AGENT [AGENT . . .] - Configure listed agents

• –rabbitmq RABBITMQ [RABBITMQ . . .] - Configure rabbitmq for single instance, federation, or shovel
either based on configuration file in yml format or providing details when prompted.

Usage:

vcfg --rabbitmq single|federation|shovel [rabbitmq config file]``

• –secure-agent-users - Require that agents run as their own Unix users (this requires running
scripts/secure_user_permissions.sh as sudo)

1.16 Planning a Deployment

The 3 major installation types for VOLTTRON are doing development, doing research using VOLTTRON, and col-
lecting and managing physical devices.

Development and Research installation tend to be smaller footprint installations. For development, the data is usually
synthetic or copied from another source. The existing documentation covers development installs in significant detail.

Other deployments will have a better installation experience if they consider certain kinds of questions while they plan
their installation.

1.16.1 Questions

• Do you want to send commands to the machines ?

• Do you want to store the data centrally ?

• How many machines do you expect to collect data from on each “collector” ?

• How often will the machines collect data ?

• Are all the devices visible to the same network ?

• What types of VOLTTRON applications do you want to run ?

Commands

If you wish to send commands to the devices, you will want to install and configure the Volttron Central agent. If you
are only using VOLTTRON to securely collect the data, you can turn off the extra agents to reduce the footprint.

132 Chapter 1. Features

VOLTTRON Documentation, Release 8.0 Release Candidate

Storing Data

VOLTTRON supports multiple historians. MySQL and MongoDB are the most commonly used. As you plan your
installation, you should consider how quickly you need access to the data and where. If you are looking at the health
and well-being of an entire suite of devices, its likely that you want to do that from a central location. Analytics can
be performed at the edge by VOLTTRON applications or can be performed across the data usually from a central data
repository. The latency that you can tolerate in your data being available will also determine choices in different agents
(ForwardHistorian versus Data Mover)

How Many

The ratio of how many devices-to-collector machine is based on several factors. These include:

• how much memory and network bandwidth the collection machine has. More = More devices

• how fast the local storage is can affect how fast the data cache can be written. Very slow storage devices can fall
behind

The second half of the “how many” question is how many collector platforms are writing to a single VOLTTRON
platform to store data - and whether that storage is local, remote, big enough, etc.

If you are storing more than moderate amount of data, you will probably benefit from installing your database on a
different machine than your concrete historian machine.

Note: This is contra-indicated if you have a slow network connection between you concrete historian and your
database machine.

In synthetic testing up to 6 virtual machines hosting 500 devices each (18 points) were easily supported by a single
centralized platform writing to a Mongo database - using a high speed network. That central platform experienced
very little CPU or memory load when the VOLTTRON Central agent was disabled.

How Often

This question is closely related to the last. A higher sampling frequency will create more data. This will place more
work in the storage phase.

Networks

In many cases, there are constraints on how networks can interact with each other. In many cases, these include
security considerations. On some sites, the primary network will be protected from less secure networks and may
require different installation considerations. For example, if a data collector machine and the database machine are on
the same network with sufficient security, you may choose to have the data collector write directly to the database. If
the collector is on an isolated building network then you will likely need to use the ForwardHistorian to bridge the two
networks.

Other Considerations

Physical location and maintenance of collector machines must be considered in all live deployments. Although the
number of data points may imply a heavy load on a data collection box, the physical constraints may limit the practi-
cality of having more than a single box. The other side of that discussion is deploying many collector boxes may be
simpler initially, but may create a maintenance challenge if you don’t plan ahead on how you apply patches, etc.

1.16. Planning a Deployment 133

VOLTTRON Documentation, Release 8.0 Release Candidate

Naming conventions should also be considered. The ability to trace data through the system and identify the collector
machine and device can be invaluable in debugging and analysis.

1.16.2 Deployment Options

There are several ways to deploy the VOLTTRON platform in a Linux environment. It is up to the user to determine
which is right for them. The following assumes that the platform has already been bootstrapped and is ready to run.

Simple Command Line

With the VOLTTRON environment activated the platform can be started simply by running VOLTTRON on the com-
mand line.

$volttron -vv

This will start the platform in the current terminal with very verbose logging turned on. This is most appropriate for
testing Agents or testing a deployment for problems before switching to a more long term solution. This will print all
log messages to the console in real time.

This should not be used for long term deployment. As soon as an SSH session is terminated for whatever reason the
processes attached to that session will be killed. This also will not capture log message to a file.

Running VOLTTRON as a Background Process

A simple, more long term solution, is to run volttron in the background and disown it from the current terminal.

Warning: If you plan on running VOLTTRON in the background and detaching it from the terminal with the
disown command be sure to redirect stderr and stdout to /dev/null. Even if logging to a file is used some
libraries which VOLTTRON relies on output directly to stdout and stderr. This will cause problems if those file
descriptors are not redirected to /dev/null.

$volttron -vv -l volttron.log > /dev/null 2>&1&

Alternatively:

``./start-volttron``

Note: If you are not in an activated environment, this script will start the platform running in the background in the
correct environment, however the environment will not be activated for you, you must activate it yourself.

If there are other jobs running in your terminal be sure to disown the correct one.

$jobs
[1]+ Running something else
[2]+ Running ./start-volttron

#Disown VOLTTRON
$disown %2

134 Chapter 1. Features

VOLTTRON Documentation, Release 8.0 Release Candidate

This will run the VOLTTRON platform in the background and turn it into a daemon. The log output will be directed
to a file called volttron.log in the current directory.

To keep the size of the log under control for more longer term deployments us the rotating log configuration file
examples/rotatinglog.py.

$volttron -vv --log-config examples/rotatinglog.py > /dev/null 2>&1&

This will start a rotate the log file at midnight and limit the total log data to seven days worth.

The main downside to this approach is that the VOLTTRON platform will not automatically resume if the system is
restarted. It will need to be restarted manually after reboot.

Setting up VOLTTRON as a System Service

Systemd

An example service file scripts/admin/volttron.service for systemd cas be used as a starting point for
setting up VOLTTRON as a service. Note that as this will redirect all the output that would be going to stdout - to
the syslog. This can be accessed using journalctl. For systems that run all the time or have a high level of debugging
turned on, we recommend checking the system’s logrotate settings.

[Unit]
Description=VOLTTRON Platform Service
After=network.target

[Service]
Type=simple

#Change this to the user that VOLTTRON will run as.
User=volttron
Group=volttron

#Uncomment and change this to specify a different VOLTTRON_HOME
#Environment="VOLTTRON_HOME=/home/volttron/.volttron"

#Change these to settings to reflect the install location of VOLTTRON
WorkingDirectory=/var/lib/volttron
ExecStart=/var/lib/volttron/env/bin/volttron -vv
ExecStop=/var/lib/volttron/env/bin/volttron-ctl shutdown --platform

[Install]
WantedBy=multi-user.target

After the file has been modified to reflect the setup of the platform you can install it with the following commands.
These need to be run as root or with sudo as appropriate.

#Copy the service file into place
cp scripts/admin/volttron.service /etc/systemd/system/

#Set the correct permissions if needed
chmod 644 /etc/systemd/system/volttron.service

#Notify systemd that a new service file exists (this is crucial!)
systemctl daemon-reload

(continues on next page)

1.16. Planning a Deployment 135

VOLTTRON Documentation, Release 8.0 Release Candidate

(continued from previous page)

#Start the service
systemctl start volttron.service

Init.d

An example init script scripts/admin/volttron can be used as a starting point for setting up VOLTTRON as
a service on init.d based systems.

Minor changes may be needed for the file to work on the target system. Specifically the USER, VLHOME, and
VOLTTRON_HOME variables may need to be changed.

...
#Change this to the user VOLTTRON will run as.
USER=volttron
#Change this to the install location of VOLTTRON
VLHOME=/var/lib/volttron

...

#Uncomment and change this to specify a different VOLTTRON_HOME
#export VOLTTRON_HOME=/home/volttron/.volttron

The script can be installed with the following commands. These need to be run as root or with sudo as appropriate.

#Copy the script into place
cp scripts/admin/volttron /etc/init.d/

#Make the file executable
chmod 755 /etc/init.d/volttron

#Change the owner to root
chown root:root /etc/init.d/volttron

#These will set it to startup automatically at boot
update-rc.d volttron defaults

#Start the service
/etc/init.d/volttron start

1.17 Single Machine

The purpose of this demonstration is to show the process of setting up a simple VOLTTRON instance for use on a
single machine.

Note: The simple deployment example below considers only the ZeroMQ deployment scenario. For RabbitMQ
deployments, read and perform the RabbitMQ installation steps from the platform installation instructions and con-
figuration steps from VOLTTRON Config.

136 Chapter 1. Features

VOLTTRON Documentation, Release 8.0 Release Candidate

1.17.1 Install and Build VOLTTRON

First, install VOLTTRON:

For a quick reference for Ubuntu machines:

sudo apt-get update
sudo apt-get install build-essential libffi-dev python3-dev python3-venv openssl
→˓libssl-dev libevent-dev git
git clone https://github.com/VOLTTRON/volttron/
cd volttron
python3 bootstrap.py --drivers --databases

Note: For additional detail and more information on installing in other environments, please see the platform install
section. See the bootstrap process docs for more information on its operation and available options.

Activate the Environment

After the build is complete, activate the VOLTTRON environment.

source env/bin/activate

Run VOLTTRON Config

The volttron-cfg or vcfg commands can be used to configure platform communication. For an example single machine
deployment, most values can be left at their default values. The following is a simple case example of running vcfg:

(volttron) user@volttron-pc:~/volttron$ vcfg

Your VOLTTRON_HOME currently set to: /home/james/.volttron

Is this the volttron you are attempting to setup? [Y]:
What type of message bus (rmq/zmq)? [zmq]:
What is the vip address? [tcp://127.0.0.1]:
What is the port for the vip address? [22916]:
Is this instance web enabled? [N]:
Will this instance be controlled by volttron central? [Y]: N
Would you like to install a platform historian? [N]:
Would you like to install a master driver? [N]:
Would you like to install a listener agent? [N]:
Finished configuration!

You can now start the volttron instance.

If you need to change the instance configuration you can edit
the config file is at /home/james/.volttron/config

To learn more, read the volttron-config section of the Platform Features docs.

Note: Steps below highlight manually installing some example agents. To skip manual install, supply y or Y for the
platform historian, master driver and listener agent installation options.

1.17. Single Machine 137

VOLTTRON Documentation, Release 8.0 Release Candidate

Start VOLTTRON

The most convenient way to start the platform is with the .start-volttron command (from the volttron root directory).

./start-volttron

The output following the platform starting successfully will appear like this:

2020-10-27 11:34:33,593 () volttron.platform.agent.utils DEBUG: value from env None
2020-10-27 11:34:33,593 () volttron.platform.agent.utils DEBUG: value from config
→˓False
2020-10-27 11:34:35,656 () root DEBUG: Creating ZMQ Core config.store
2020-10-27 11:34:35,672 () volttron.platform.store INFO: Initializing configuration
→˓store service.
2020-10-27 11:34:35,717 () root DEBUG: Creating ZMQ Core platform.auth
2020-10-27 11:34:35,728 () volttron.platform.auth INFO: loading auth file /home/james/
→˓.volttron/auth.json
2020-10-27 11:34:35,731 () volttron.platform.auth INFO: auth file /home/james/.
→˓volttron/auth.json loaded
2020-10-27 11:34:35,732 () volttron.platform.agent.utils INFO: Adding file watch for /
→˓home/james/.volttron/auth.json dirname=/home/james/.volttron, filename=auth.json
2020-10-27 11:34:35,734 () volttron.platform.agent.utils INFO: Added file watch for /
→˓home/james/.volttron/auth.json
2020-10-27 11:34:35,734 () volttron.platform.agent.utils INFO: Adding file watch for /
→˓home/james/.volttron/protected_topics.json dirname=/home/james/.volttron,
→˓filename=protected_topics.json
2020-10-27 11:34:35,736 () volttron.platform.agent.utils INFO: Added file watch for /
→˓home/james/.volttron/protected_topics.json
2020-10-27 11:34:35,737 () volttron.platform.vip.pubsubservice INFO: protected-topics
→˓loaded
2020-10-27 11:34:35,739 () volttron.platform.vip.agent.core INFO: Connected to
→˓platform: router: fc054c9f-aa37-4842-a618-6e70d53530f0 version: 1.0 identity:
→˓config.store
2020-10-27 11:34:35,743 () volttron.platform.vip.agent.core INFO: Connected to
→˓platform: router: fc054c9f-aa37-4842-a618-6e70d53530f0 version: 1.0 identity:
→˓platform.auth
2020-10-27 11:34:35,746 () volttron.platform.vip.pubsubservice INFO: protected-topics
→˓loaded
2020-10-27 11:34:35,750 () volttron.platform.vip.agent.subsystems.configstore DEBUG:
→˓Processing callbacks for affected files: {}
2020-10-27 11:34:35,879 () root DEBUG: Creating ZMQ Core control
2020-10-27 11:34:35,908 () root DEBUG: Creating ZMQ Core keydiscovery
2020-10-27 11:34:35,913 () root DEBUG: Creating ZMQ Core pubsub
2020-10-27 11:34:35,924 () volttron.platform.auth INFO: loading auth file /home/james/
→˓.volttron/auth.json
2020-10-27 11:34:38,010 () volttron.platform.vip.agent.core INFO: Connected to
→˓platform: router: fc054c9f-aa37-4842-a618-6e70d53530f0 version: 1.0 identity:
→˓control
2020-10-27 11:34:38,066 () volttron.platform.vip.agent.core INFO: Connected to
→˓platform: router: fc054c9f-aa37-4842-a618-6e70d53530f0 version: 1.0 identity: pubsub
2020-10-27 11:34:38,069 () volttron.platform.vip.agent.core INFO: Connected to
→˓platform: router: fc054c9f-aa37-4842-a618-6e70d53530f0 version: 1.0 identity:
→˓keydiscovery
2020-10-27 11:34:38,429 () volttron.platform.auth WARNING: Attempt 1 to get peerlist
→˓failed with exception 0.5 seconds
2020-10-27 11:34:38,430 () volttron.platform.auth WARNING: Get list of peers from
→˓subsystem directly
2020-10-27 11:34:38,433 () volttron.platform.auth INFO: auth file /home/james/.
→˓volttron/auth.json loaded (continues on next page)

138 Chapter 1. Features

VOLTTRON Documentation, Release 8.0 Release Candidate

(continued from previous page)

2020-10-27 11:34:38,434 () volttron.platform.auth INFO: loading auth file /home/james/
→˓.volttron/auth.json
2020-10-27 11:34:40,961 () volttron.platform.auth WARNING: Attempt 1 to get peerlist
→˓failed with exception 0.5 seconds
2020-10-27 11:34:40,961 () volttron.platform.auth WARNING: Get list of peers from
→˓subsystem directly
2020-10-27 11:34:40,969 () volttron.platform.auth INFO: auth file /home/james/.
→˓volttron/auth.json loaded

Note: While running the platform with verbose logging enabled, the volttron.log file is useful for confirming suc-
cessful platform operations or debugging. It is commonly recommended to open a new terminal window and run the
following command to view the VOLTTRON logs as they are created:

tail -f volttron.log

1.17.2 Install Agents and Historian

Out of the box, VOLTTRON includes a number of agents which may be useful for single machine deployments:

• historians - Historians automatically record a data from a number of topics published to the bus. For
more information on the historian framework or one of the included concrete implementations, view
the docs

• Listener - This example agent can be useful for debugging drivers or other agents publishing to the
bus. docs

• Master Driver - The Master-Driver is responsible for managing device communication on a platform
instance.

• weather agents - weather agents can be used to collect weather data from sources like Weather.gov

Note: The services/core, services/ops, and examples directories in the repository contain additional
agents to use to fit individual use cases.

For a simple setup example, a Master Driver, SQLite Historian, and Listener are installed using the following steps:

1. Create a configuration file for the Master Driver and SQLite Historian (it is advised to create a configs directory
in volttron root to keep configs for a deployment). For information on how to create configurations for these
agents, view their docs:

• Master Driver

• SQLite Historian

• Listener

For a simple example, the configurations can be copied as-is to the configs directory:

cp services/core/MasterDriverAgent/master-driver.agent configs
cp services/core/SQLHistorian/config.sqlite configs
cp examples/ListenerAgent/config configs/listener.config

2. Use the install-agent.py script to install the agent on the platform:

1.17. Single Machine 139

VOLTTRON Documentation, Release 8.0 Release Candidate

python scripts/install-agent.py -s services/core/SQLHistorian -c configs/config.
→˓sqlite --tag listener
python scripts/install-agent.py -s services/core/MasterDriverAgent -c configs/master-
→˓driver.agent --tag master_driver
python scripts/install-agent.py -s examples/ListenerAgent -c configs/listener.config -
→˓-tag platform_historian

.. note::

The `volttron.log` file will contain logging indicating that the agent has
→˓installed successfully.

.. code-block:: console

2020-10-27 11:42:08,882 () volttron.platform.auth INFO: AUTH: After
→˓authenticate user id: control.connection, b'c61dff8e-f362-4906-964f-63c32b99b6d5'

2020-10-27 11:42:08,882 () volttron.platform.auth INFO: authentication success:
→˓userid=b'c61dff8e-f362-4906-964f-63c32b99b6d5' domain='vip', address=
→˓'localhost:1000:1000:3249', mechanism='CURVE', credentials=[
→˓'ZrDvPG4JNLE26GoPUrTP22rV0PV8uGCnrXThrNFk_Ec'], user='control.connection'

2020-10-27 11:42:08,898 () volttron.platform.aip DEBUG: Using name template
→˓"listeneragent-3.3_{n}" to generate VIP ID

2020-10-27 11:42:08,899 () volttron.platform.aip INFO: Agent b3e7053c-28e8-414f-
→˓b685-8522eb230c7a setup to use VIP ID listeneragent-3.3_1

2020-10-27 11:42:08,899 () volttron.platform.agent.utils DEBUG: missing file /
→˓home/james/.volttron/agents/b3e7053c-28e8-414f-b685-8522eb230c7a/listeneragent-3.3/
→˓listeneragent-3.3.dist-info/keystore.json

2020-10-27 11:42:08,899 () volttron.platform.agent.utils INFO: creating file /
→˓home/james/.volttron/agents/b3e7053c-28e8-414f-b685-8522eb230c7a/listeneragent-3.3/
→˓listeneragent-3.3.dist-info/keystore.json

2020-10-27 11:42:08,899 () volttron.platform.keystore DEBUG: calling generate
→˓from keystore

2020-10-27 11:42:08,909 () volttron.platform.auth INFO: loading auth file /home/
→˓james/.volttron/auth.json

2020-10-27 11:42:11,415 () volttron.platform.auth WARNING: Attempt 1 to get
→˓peerlist failed with exception 0.5 seconds

2020-10-27 11:42:11,415 () volttron.platform.auth WARNING: Get list of peers
→˓from subsystem directly

2020-10-27 11:42:11,419 () volttron.platform.auth INFO: auth file /home/james/.
→˓volttron/auth.json loaded

1. Use the vctl status command to ensure that the agents have been successfully installed:

vctl status

(volttron)user@volttron-pc:~/volttron$ vctl status
AGENT IDENTITY TAG STATUS

→˓HEALTH
8 listeneragent-3.2 listeneragent-3.2_1 listener
0 master_driveragent-3.2 platform.driver master_driver
3 sqlhistorianagent-3.7.0 platform.historian platform_historian

Note: After installation, the STATUS and HEALTH columns of the vctl status command will be vacant, indicating
that the agent is not running. The –start option can be added to the install-agent.py script arguments to automatically
start agents after they have been installed.

140 Chapter 1. Features

VOLTTRON Documentation, Release 8.0 Release Candidate

1.17.3 Install a Fake Driver

The following are the simplest steps for installing a fake driver for example use. For more information on installing
concrete drivers such as the BACnet or Modbus drivers, view their respective documentation in the Driver framework
section.

Note: This section will assume the user has created a configs directory in the volttron root directory, activated the
Python virtual environment, and started the platform as noted above.

cp examples/configurations/drivers/fake.config <VOLTTRON root>/configs
cp examples/configurations/drivers/fake.csv <VOLTTRON root>/configs
vctl config store platform.driver devices/campus/building/fake configs/fake.config
vctl config store platform.driver fake.csv devices/fake.csv

Note: For more information on the fake driver, or the configurations used in the above example, view the docs

1.17.4 Testing the Deployment

To test that the configuration was successful, start an instance of VOLTTRON in the background:

./start-volttron

Note: This command must be run from the root VOLTTRON directory.

Having following the examples above, the platform should be ready for demonstrating the example deployment. Start
the Listener, SQLite historian and Master Driver.

vctl start --tag listener platform_historian master_driver

The output should look similar to this:

(volttron)user@volttron-pc:~/volttron$ vctl status
AGENT IDENTITY TAG STATUS

→˓HEALTH
8 listeneragent-3.2 listeneragent-3.2_1 listener running [2810] GOOD
0 master_driveragent-3.2 platform.driver master_driver running [2813] GOOD
3 sqlhistorianagent-3.7.0 platform.historian platform_historian running [2811] GOOD

Note: The STATUS column indicates whether the agent is running. The HEALTH column indicates whether the
current state of the agent is within intended parameters (if the Master Driver is publishing, the platform historian has
not been backlogged, etc.)

You can further verify that the agents are functioning correctly with tail -f volttron.log.

ListenerAgent:

1.17. Single Machine 141

VOLTTRON Documentation, Release 8.0 Release Candidate

2020-10-27 11:43:33,997 (listeneragent-3.3 3294) __main__ INFO: Peer: pubsub, Sender:
→˓listeneragent-3.3_1:, Bus: , Topic: heartbeat/listeneragent-3.3_1, Headers: {
→˓'TimeStamp': '2020-10-27T18:43:33.988561+00:00', 'min_compatible_version': '3.0',
→˓'max_compatible_version': ''}, Message:
'GOOD'

Master Driver with Fake Driver:

2020-10-27 11:47:50,037 (listeneragent-3.3 3294) __main__ INFO: Peer: pubsub, Sender:
→˓platform.driver:, Bus: , Topic: devices/campus/building/fake/all, Headers: {'Date':
→˓'2020-10-27T18:47:50.005349+00:00', 'TimeStamp': '2020-10-27T18:47:50.005349+00:00',
→˓ 'SynchronizedTimeStamp': '2020-10-27T18:47:50.000000+00:00', 'min_compatible_
→˓version': '3.0', 'max_compatible_version': ''}, Message:
[{'EKG': -0.8660254037844386,
'EKG_Cos': -0.8660254037844386,
'EKG_Sin': -0.8660254037844386,
'Heartbeat': True,
'OutsideAirTemperature1': 50.0,
'OutsideAirTemperature2': 50.0,
'OutsideAirTemperature3': 50.0,
'PowerState': 0,
'SampleBool1': True,
'SampleBool2': True,
'SampleBool3': True,
'SampleLong1': 50,
...

SQLite Historian:

2020-10-27 11:50:25,021 (master_driveragent-4.0 3535) master_driver.driver DEBUG:
→˓finish publishing: devices/campus/building/fake/all
2020-10-27 11:50:25,052 (sqlhistorianagent-3.7.0 3551) volttron.platform.dbutils.
→˓sqlitefuncts DEBUG: Managing store - timestamp limit: None GB size limit: None

1.18 Multi-Platform Connection

There are multiple ways to establish connection between external VOLTTRON platforms. Given that VOLTTRON
now supports ZeroMq and RabbitMQ type of message bus with each using different type authentication mechanism,
the number of different ways that agents can connect to external platforms has significantly increased. Various multi-
platform deployment scenarios will be covered in this section.

1. Agents can directly connect to external platforms to send and receive messages. Forward historian, Data Mover
agents fall under this category. The deployment steps for forward historian is described in Forward Historian
Deployment and data mover historian in DataMover Historian Deployment

2. The platforms maintain the connection with other platforms and agents can send to and receive messages from
external platforms without having to establish connection directly. The deployment steps is described in Multi
Platform Router Deployment

3. RabbitMQ has ready made plugins such as shovel and federation to connect to external brokers. This feature is
leveraged to make connections to external platforms. This is described in Multi Platform RabbitMQ Deployment

4. A web based admin interface to authenticate multiple instances (ZeroMq or RabbitMQ) wanting to connect
to single central instance is now available. The deployment steps is described in Multi Platform Multi-Bus
Deployment

142 Chapter 1. Features

VOLTTRON Documentation, Release 8.0 Release Candidate

5. VOLTTRON Central is a platform management web application that allows platforms to communicate and to
be managed from a centralized server. The deployment steps is described in VOLTTRON Central Demo

1.18.1 Assumptions

• Data Collector is the deployment box that has the drivers and is collecting data from devices which will be
forwarded to a VOLTTRON Central.

• Volttron Central (VC) is the deployment box that has the historian which will save data from all Data Collectors
to the central database.

• VOLTTRON_HOME is assumed to the default on both boxes (/home/<user>/.volttron).

Note: VOLTTRON_HOME is the directory used by the platform for managing state and configuration of the platform
and agents installed locally on the platform. Auth keys, certificates, the configuration store, etc. are stored in this
directory by the platform.

Forward Historian

This guide describes a simple setup where one VOLTTRON instance collects data from a fake devices and sends to
another instance . Lets consider the following example.

We are going to create two VOLTTRON instances and send data from one VOLTTRON instance running a fake
driver(subscribing values from a fake device) and sending the values to the second VOLTTRON instance.

VOLTTRON instance 1 forwards data to VOLTTRON instance 2

VOLTTRON instance 1

• vctl shutdown -platform (if the platform is already working)

• vcfg (this helps in configuring the volttron instance http://volttron.readthedocs.io/en/releases-4.1/core_
services/control/VOLTTRON-Config.html

– Specify the IP of the machine: tcp://130.20.*.*:22916

– Specify the port you want to use

– Specify if you want to run VC(Volttron Central) here or this this instance would be controlled by a VC and
the IP and port of the VC

* Then install agents like Master Driver Agent with a fake driver for the instance.

* Install a listener agent so see the topics that are coming from the diver agent

* Then run the volttron instance by using the following command: ./start-volttron

• Volttron authentication: We need to add the IP of the instance 2 in the auth.config file of the VOLTTRON agent.
This is done as follows:

– vctl auth-add

– We specify the IP of the instance 2 and the credentials of the agent (read Agent Authentication

– For specifying authentication for all the agents , we specify /.*/

– This should enable authentication for all the volttron-instance based on the IP you specify here

1.18. Multi-Platform Connection 143

http://volttron.readthedocs.io/en/releases-4.1/core_services/control/VOLTTRON-Config.html
http://volttron.readthedocs.io/en/releases-4.1/core_services/control/VOLTTRON-Config.html

VOLTTRON Documentation, Release 8.0 Release Candidate

For this documentation, the topics from the driver agent will be send to the instance 2

• We use the existing agent called the Forward Historian for this purpose which is available in service/core in the
VOLTTRON directory.

• In the config file under the Forward Historian directory, we modify the following fields:

– Destination-vip: the IP of the volttron instance to which we have to forward the data to along with the port
number. Example : tcp://130.20.*.*:22916

– Destination-serverkey: The server key of the VOLTTRON instance to which we need to forward the data
to. This can be obtained at the VOLTTRON instance by typing vctl auth serverkey

• Service_topic_list: specify the topics you want to forward specifically instead of all the values.

• Once the above values are set, your forwarder is all set .

• You can create a script file for the same and execute the agent.

VOLTTRON instance 2

• vctl shutdown -platform (if the platform is already working)

• volttron-cfg (this helps in configuring the volttron instance) http://volttron.readthedocs.io/en/releases-4.1/
core_services/control/VOLTTRON-Config.html

– Specify the IP of the machine : tcp://130.20.*.*:22916

– Specify the port you want to use.

– Install the listener agent (this will show the connection from instance 1 if its successful and then show all
the topics from instance 1.

• Volttron authentication: We need to add the IP of the instance 1 in the auth.config file of the VOLTTRON agent
. This is done as follows:

– vctl auth-add

– We specify the IP of the instance 1 and the credentials of the agent

– For specifying authentication for all the agents , we specify /.*/

– This should enable authentication for all the volttron-instance based on the IP you specify here

Listener Agent

Run the listener agent on this instance to see the values being forwarded from instance 1. Once the above setup is
done, you should be able to see the values from instance 1 on the listener agent of instance 2.

DataMover Historian

This guide describes how a DataMover historian can be used to transfer data from one VOLTTRON instance to another.
The DataMover historian is different from Forward historian in the way it sends the data to the remote instance. It
first batches the data and makes a RPC call to a remote historian instead of publishing data on the remote message bus
instance. The remote historian then stores the data into it’s database.

The walk-through below demonstrates how to setup DataMover historian to send data from one VOLTTRON instance
to another.

144 Chapter 1. Features

http://volttron.readthedocs.io/en/releases-4.1/core_services/control/VOLTTRON-Config.html
http://volttron.readthedocs.io/en/releases-4.1/core_services/control/VOLTTRON-Config.html

VOLTTRON Documentation, Release 8.0 Release Candidate

VOLTTRON instance 1 sends data to platform historian on VOLTTRON instance 2

As an example two VOLTTRON instances will be created and to send data from one VOLTTRON instance running a
fake driver (subscribing to publishes from a fake device) and sending the values to a remote historian running on the
second VOLTTRON instance.

VOLTTRON instance 1

• vctl shutdown -platform (if the platform is already working)

• volttron-cfg (this helps in configuring the volttron instance http://volttron.readthedocs.io/en/releases-4.1/
core_services/control/VOLTTRON-Config.html

– Specify the VIP address of the instance: tcp://127.0.0.1:22916

– Install Master Driver Agent with a fake driver for the instance.

– Install a listener agent so see the topics that are coming from the diver agent

• Then run the volttron instance by using the following command: ./start-volttron

VOLTTRON instance 2

• vctl shutdown -platform (if the platform is already working)

• volttron-cfg (this helps in configuring the volttron instance) http://volttron.readthedocs.io/en/releases-4.1/
core_services/control/VOLTTRON-Config.html

– Specify the VIP address of the instance : tcp://127.0.0.2:22916

– Install a platform historian. volttron-cfg installs a default SQL historian.

• Start the VOLTTRON instance by using following command: ./start-volttron

DataMover Configuration

An example config file is available in services/core/DataMover/config. We need to update the destination-
vip, destination-serverkey, and destination-historian-identity entries as per our setup.

Note: Here the topics from the driver on VOLTTRON instance 1 will be sent to instance 2.

• destination-vip: The VIP address of the volttron instance to which we need to send data. Example : tcp://
127.0.0.2:22916

• destination-serverkey: The server key of remote VOLTTRON instance - Get the server key of VOLTTRON
instance 2 and set destination-serverkey property with the server key

vctl auth serverkey

• destination-historian-identity: Identity of remote platform historian. Default is “platform.historian”

1.18. Multi-Platform Connection 145

http://volttron.readthedocs.io/en/releases-4.1/core_services/control/VOLTTRON-Config.html
http://volttron.readthedocs.io/en/releases-4.1/core_services/control/VOLTTRON-Config.html
http://volttron.readthedocs.io/en/releases-4.1/core_services/control/VOLTTRON-Config.html
http://volttron.readthedocs.io/en/releases-4.1/core_services/control/VOLTTRON-Config.html

VOLTTRON Documentation, Release 8.0 Release Candidate

Running DataMover Historian

• Install the DataMover historian on the VOLTTRON instance 1

python scripts/install-agent.py -s services/core/DataMover -c services/core/DataMover/
→˓config -i datamover --start

• Add the public key of the DataMover historian on VOLTTRON instance 2 to enable authentication of the Data-
Mover on VOLTTRON instance 2.

– Get the public key of the DataMover. Run the below command on instance 1 terminal.

vctl auth publickey --name datamoveragent-0.1

– Add the credentials of the DataMover historian in VOLTTRON instance 2

vctl auth add --credentials <public key of data mover>

Check data in SQLite database

To check if data is transferred and stored in the database of remote platform historian, we need to check the entries
in the database. The default location of SQL database (if not explicitly specified in the config file) will be in the data
directory inside the platform historian’s installed directory within it’s $VOLTTRON_HOME.

• Get the uuid of the platform historian. This can be found by running the vctl status on the terminal of
instance 2. The first column of the data mover historian entry in the status table gives the first alphabet/number
of the uuid.

• Go the data directory of platform historian’s install directory. For example,
/home/ubuntu/.platform2/agents/6292302c-32cf-4744-bd13-27e78e96184f/sqlhistorianagent-3.7.0/data

• Run the SQL command to see the data

sqlite3 platform.historian.sqlite
select * from data;

• You will see similar entries

2020-10-27T15:07:55.006549+00:00|14|true
2020-10-27T15:07:55.006549+00:00|15|10.0
2020-10-27T15:07:55.006549+00:00|16|20
2020-10-27T15:07:55.006549+00:00|17|true
2020-10-27T15:07:55.006549+00:00|18|10.0
2020-10-27T15:07:55.006549+00:00|19|20
2020-10-27T15:07:55.006549+00:00|20|true
2020-10-27T15:07:55.006549+00:00|21|0
2020-10-27T15:07:55.006549+00:00|22|0

Multi-Platform Between Routers

Multi-Platform between routers alleviates the need for an agent in one platform to connect to another platform directly
in order for it to send/receive messages from the other platform. Instead with this new type of connection, connections
to external platforms will be maintained by the platforms itself and agents do not have the burden to manage the
connections directly. This guide will show how to connect three VOLTTRON instances with a fake driver running on

146 Chapter 1. Features

VOLTTRON Documentation, Release 8.0 Release Candidate

VOLTTRON instance 1 publishing to topic with prefix=”devices” and listener agents running on other 2 VOLTTRON
instances subscribed to topic “devices”.

• Getting Started

• Multi-Platform Configuration

• Configuration and Authentication in Setup Mode

• Setup Configuration and Authentication Manually

• Start Master driver on VOLTTRON instance 1

• Start Listener agents on VOLTTRON instance 2 and 3

• Stopping All the Platforms

Getting Started

Modify the subscribe annotate method parameters in the listener agent (examples/ListenerAgent/listener/agent.py in
the VOLTTRON root directory) to include all_platforms=True parameter to receive messages from external
platforms.

@PubSub.subscribe('pubsub', '')

to

@PubSub.subscribe('pubsub', 'devices', all_platforms=True)

or add below line in the onstart method

self.vip.pubsub.subscribe('pubsub', 'devices', self.on_match, all_platforms=True)

Note: If using the onstart method remove the @PubSub.subscribe(‘pubsub’, ‘’) from the top of the method.

After installing VOLTTRON, open three shells with the current directory the root of the VOLTTRON repository. Then
activate the VOLTTRON environment and export the VOLTTRON_HOME variable. The home variable needs to be
different for each instance.

$ source env/bin/activate
$ export VOLTTRON_HOME=~/.volttron1

Run vcfg in all the three shells. This command will ask how the instance should be set up. Many of the options have
defaults and that will be sufficient. Enter a different VIP address for each platform. Configure fake master driver in
the first shell and listener agent in second and third shell.

1.18. Multi-Platform Connection 147

VOLTTRON Documentation, Release 8.0 Release Candidate

Multi-Platform Configuration

For each instance, specify the instance name in platform config file under it’s VOLTTRON_HOME directory. If the
platform supports web server, add the bind-web-address as well.

Here is an example,

Path of the config: $VOLTTRON_HOME/config

[volttron]
vip-address = tcp://127.0.0.1:22916
instance-name = "platform1"
bind-web-address = http://127.0.0.1:8080

Instance name and bind web address entries added into each VOLTTRON platform’s config file is shown below.

Next, each instance needs to know the VIP address, platform name and server keys of the remote platforms that it is
connecting to. In addition, each platform has to authenticate or accept the connecting instances’ public keys. We can
do this step either by running VOLTTRON in setup mode or configure the information manually.

Configuration and Authentication in Setup Mode

Note: It is necessary for each platform to have a web server if running in setup mode

Add list of web addresses of remote platforms in $VOLTTRON_HOME/external_address.json

148 Chapter 1. Features

../../_images/multiplatform-terminator-setup.png
../../_images/multiplatform-config.png

VOLTTRON Documentation, Release 8.0 Release Candidate

Start VOLTTRON instances in setup mode in the three terminal windows. The “-l” option in the following command
tells VOLTTRON to log to a file. The file name should be different for each instance.

$./start-volttron --setup-mode

A new auth entry is added for each new platform connection. This can be checked with below command in each
terminal window.

$ vctl auth list

After all the connections are authenticated, we can start the instances in normal mode.

$./stop-volttron
$./start-volttron

Setup Configuration and Authentication Manually

If you do not need web servers in your setup, then you will need to build the platform discovery config file manually.
The config file should contain an entry containing VIP address, instance name and serverkey of each remote platform
connection.

Name of the file: external_platform_discovery.json

Directory path: Each platform’s VOLTTRON_HOME directory.

For example, since VOLTTRON instance 1 is connecting to VOLTTRON instance 2 and 3, contents of
external_platform_discovery.json will be

1.18. Multi-Platform Connection 149

../../_images/multiplatform-external-address.png
../../_images/multiplatform-setupmode-auth-screen.png

VOLTTRON Documentation, Release 8.0 Release Candidate

{
"platform2": {"vip-address":"tcp://127.0.0.2:22916",

"instance-name":"platform2",
"serverkey":"YFyIgXy2H7gIKC1x6uPMdDOB_i9lzfAPB1IgbxfXLGc"},

"platform3": {"vip-address":"tcp://127.0.0.3:22916",
"instance-name":"platform3",
"serverkey":"hzU2bnlacAhZSaI0rI8a6XK_bqLSpA0JRK4jq8ttZxw"}

}

We can obtain the serverkey of each platform using below command in each terminal window:

$ vctl auth serverkey

Contents of external_platform_discovery.json of VOLTTRON instance 1, 2, 3 is shown below.

After this, you will need to add the server keys of the connecting platforms using the vctl utility. Type vctl auth
add command on the command prompt and simply hit Enter to select defaults on all fields except credentials. Here,
we can either add serverkey of connecting platform or type /.*/ to allow ALL connections.

Warning: /.*/ allows ALL agent and platform connections without authentication.

$ vctl auth add
domain []:
address []:
user_id []:
capabilities (delimit multiple entries with comma) []:
roles (delimit multiple entries with comma) []:
groups (delimit multiple entries with comma) []:
mechanism [CURVE]:
credentials []: /.*/
comments []:
enabled [True]:
added entry domain=None, address=None, mechanism='CURVE', credentials=u'/.*/', user_
→˓id=None

For more information on authentication see authentication.

Once the initial configuration are setup, you can start all the VOLTTRON instances in normal mode.

$./start-volttron

150 Chapter 1. Features

../../_images/multiplatform-discovery-config.png

VOLTTRON Documentation, Release 8.0 Release Candidate

Next step is to start agents in each platform to observe the multi-platform PubSub communication behavior.

Start Master driver on VOLTTRON instance 1

If master driver is not configured to auto start when the instance starts up, we can start it explicitly with this command.

$ vctl start --tag master_driver

Start Listener agents on VOLTTRON instance 2 and 3

If the listener agent is not configured to auto start when the instance starts up, we can start it explicitly with this
command.

$ vctl start --tag listener

We should start seeing messages with prefix=”devices” in the logs of VOLTTRON instances 2 and 3.

Stopping All the Platforms

We can stop all the VOLTTRON instances by executing below command in each terminal window.

$ vctl shutdown --platform

Platform External Address Configuration

In the configuration file located in $VOLTTRON_HOME/config add vip-address=tcp://ip:port for each
address you want to listen on:

1.18. Multi-Platform Connection 151

../../_images/multiplatform-pubsub.png

VOLTTRON Documentation, Release 8.0 Release Candidate

Example
vip-address=tcp://127.0.0.102:8182
vip-address=tcp://127.0.0.103:8083
vip-address=tcp://127.0.0.103:8183

Note: The config file is generated after running the vcfg command. The VIP-address is for the local platform, NOT
the remote platform.

Multi-platform RabbitMQ Deployment

With ZeroMQ based VOLTTRON, multi-platform communication was accomplished in three different ways:

1. Direct connection to remote instance - Write an agent that would connect to a remote instance directly.

2. Special agents - Use special agents such as forward historian/data puller agents that would forward/receive
messages to/from remote instances. In RabbitMQ-VOLTTRON, we make use of the shovel plugin to achieve
this behavior. Please refer to Shovel Plugin to get an overview of shovels.

3. Multi-Platform RPC and PubSub - Configure VIP address of all remote instances that an instance has to con-
nect to in it’s $VOLTTRON_HOME/external_discovery.json and let the router module in each instance manage
the connection and take care of the message routing for us. In RabbitMQ-VOLTTRON, we make use of the
federation plugin to achieve this behavior. Please refer to Federation Plugin get an overview of federation.

Using the Federation Plugin

We can connect multiple VOLTTRON instances using the federation plugin. Before setting up federation links, we
need to first identify the upstream server and downstream server. The upstream server is the node that is publishing
some message of interest and downstream server is the node that wants to receive messages from the upstream server.
A federation link needs to be established from the downstream VOLTTRON instance to the upstream VOLTTRON
instance. To setup a federation link, we will need to add upstream server information in a RabbitMQ federation
configuration file:

Path: $VOLTTRON_HOME/rabbitmq_federation_config.yml

Mandatory parameters for federation setup
federation-upstream:

rabbit-4:
port: '5671'
virtual-host: volttron4

rabbit-5:
port: '5671'
virtual-host: volttron5

To configure the VOLTTRON instance to setup federation, run the following command:

vcfg --rabbitmq federation [optional path to rabbitmq_federation_config.yml]

This will setup federation links to upstream servers and sets policy to make the VOLTTRON exchange federated. Once
a federation link is established to remote instance, the messages published on the remote instance become available to
local instance as if it were published on the local instance.

For detailed instructions to setup federation, please refer to the platform installation docs.

152 Chapter 1. Features

VOLTTRON Documentation, Release 8.0 Release Candidate

Multi-Platform RPC With Federation

For multi-platform RPC communication, federation links need to be established on both the VOLTTRON nodes. Once
the federation links are established, RPC communication becomes fairly simple.

Consider Agent A on VOLTTRON instance “volttron1” on host “host_A” wants to make RPC call to Agent B on
VOLTTRON instance “volttron2” on host “host_B”.

1. Agent A makes RPC call.

kwargs = {"external_platform": self.destination_instance_name}
agent_a.vip.rpc.call("agent_b", set_point, "point_name", 2.5, **kwargs)

2. The message is transferred over federation link to VOLTTRON instance “volttron2” as both the exchanges are
made federated.

3. The RPC subsystem of Agent B calls the actual RPC method and gets the result. It encapsulates the message
result into a VIP message object and sends it back to Agent A on VOLTTRON instance “volttron1”.

4. The RPC subsystem on Agent A receives the message result and gives it to the Agent A application.

Multi-Platform PubSub With Federation

For multi-platform PubSub communication, it is sufficient to have federation link from the downstream server to the
upstream server. In case of bi-directional data flow, links have to established in both the directions.

1.18. Multi-Platform Connection 153

VOLTTRON Documentation, Release 8.0 Release Candidate

Consider Agent B on VOLTTRON instance “volttron2” on host “host_B” which wants to subscribe to messages from
VOLTTRON instance “volttron2” on host “host_B”. First, a federation link needs to be established from “volttron2”
to “volttron1”.

1. Agent B makes a subscribe call:

agent_b.vip.subscribe.call("pubsub", prefix="devices", all_platforms=True)

2. The PubSub subsystem converts the prefix to __pubsub__.*.devices.#. Here, “*” indicates that agent
is subscribing to the “devices” topic from all VOLTTRON platforms.

3. A new queue is created and bound to VOLTTRON exchange with the above binding key. Since the VOLTTRON
exchange is a federated exchange, any subscribed message on the upstream server becomes available on the
federated exchange and Agent B will be able to receive it.

4. Agent A publishes message to topic devices/pnnl/isb1/hvac1

5. The PubSub subsystem publishes this message on it’s VOLTTRON exchange.

6. Due to the federation link, message is received by the Pubsub subsystem of Agent A.

Using the Shovel Plugin

Shovels act as well written client applications which move messages from a source to a destination broker. The below
configuration shows how to setup a shovel to forward PubSub messages or perform multi-platform RPC communica-
tion from local to a remote instance. It expects hostname, port and virtual host configuration values for the remote
instance.

Path: $VOLTTRON_HOME/rabbitmq_shovel_config.yml

Mandatory parameters for shovel setup
shovel:

rabbit-2:
(continues on next page)

154 Chapter 1. Features

VOLTTRON Documentation, Release 8.0 Release Candidate

(continued from previous page)

port: '5671'
virtual-host: volttron
Configuration to forward pubsub topics
pubsub:

Identity of agent that is publishing the topic
platform.driver:

- devices
Configuration to make remote RPC calls
rpc:

Remote instance name
volttron2:
List of pair of agent identities (local caller, remote callee)
- [scheduler, platform.actuator]

To forward PubSub messages, the topic and agent identity of the publisher agent is needed. To perform RPC, the
instance name of the remote instance and agent identities of the local agent and remote agent are needed.

To configure the VOLTTRON instance to setup shovel, run the following command.

vcfg --rabbitmq shovel [optional path to rabbitmq_shovel_config.yml]

This setups up a shovel that forwards messages (either PubSub or RPC) from local exchange to remote exchange.

Multi-Platform PubSub With Shovel

After the shovel link is established for Pubsub, the below figure shows how the communication happens.

Note: For bi-directional pubsub communication, shovel links need to be created on both the nodes. The “blue” arrows
show the shovel binding key. The pubsub topic configuration in $VOLTTRON_HOME/rabbitmq_shovel_config.yml
gets internally converted to the shovel binding key: “__pubsub__.<local instance name>.<actual topic>”.

1.18. Multi-Platform Connection 155

VOLTTRON Documentation, Release 8.0 Release Candidate

Now consider a case where shovels are setup in both the directions for forwarding “devices” topic.

1. Agent B makes a subscribe call to receive messages with topic “devices” from all connected platforms.

agent_b.vip.subscribe.call("pubsub", prefix="devices", all_platforms=True)

2. The PubSub subsystem converts the prefix to __pubsub__.*.devices.# “*” indicates that agent is sub-
scribing to the “devices” topic from all the VOLTTRON platforms.

3. A new queue is created and bound to VOLTTRON exchange with above binding key.

4. Agent A publishes message to topic devices/pnnl/isb1/hvac1

5. PubSub subsystem publishes this message on it’s VOLTTRON exchange.

6. Due to a shovel link from VOLTTRON instance “volttron1” to “volttron2”, the message is forwarded from
VOLTTRON exchange “volttron1” to “volttron2” and is picked up by Agent A on “volttron2”.

Multi-Platform RPC With Shovel

After the shovel link is established for multi-platform RPC, the below figure shows how the RPC communication
happens.

Note: It is mandatory to have shovel links on both directions as it is request-response type of communication. We
will need to set the agent identities for caller and callee in the $VOLTTRON_HOME/rabbitmq_shovel_config.yml. The
“blue” arrows show the resulting the shovel binding key.

156 Chapter 1. Features

VOLTTRON Documentation, Release 8.0 Release Candidate

Consider Agent A on VOLTTRON instance “volttron1” on host “host_A” wants to make RPC call on Agent B on
VOLTTRON instance “volttron2” on host “host_B”.

1. Agent A makes RPC call:

kwargs = {"external_platform": self.destination_instance_name}
agent_a.vip.rpc.call("agent_b", set_point, "point_name", 2.5, **kwargs)

2. The message is transferred over shovel link to VOLTTRON instance “volttron2”.

3. The RPC subsystem of Agent B calls the actual RPC method and gets the result. It encapsulates the message
result into a VIP message object and sends it back to Agent A on VOLTTRON instance “volttron1”.

4. The RPC subsystem on Agent A receives the message result and gives it to Agent A’s application.

Multi-Platform Communication With RabbitMQ SSL

For multi-platform communication over federation and shovel, we need the connecting instances to trust each other.

1.18. Multi-Platform Connection 157

VOLTTRON Documentation, Release 8.0 Release Candidate

Suppose there are two VMs (VOLTTRON1 and VOLTTRON2) running single instances of RabbitMQ, and VOLT-
TRON1 and VOLTTRON2 want to talk to each other via either the federation or shovel plugins. In order for VOLT-
TRON1 to talk to VOLTTRON2, VOLTTRON1’s root certificate must be appended to VOLTTRON’s trusted CA
certificate, so that when VOLTTRON1 presents it’s root certificate during connection, VOLTTRON2’s RabbitMQ
server can trust the connection. VOLTTRON2’s root CA must be appended to VOLTTRON1’s root CA and it must in
turn present its root certificate during connection, so that VOLTTRON1 will know it is safe to talk to VOLTTRON2.

Agents trying to connect to remote instance directly need to have a public certificate signed by the remote instance for
authenticated SSL based connection. To facilitate this process, the VOLTTRON platform exposes a web based server
API for requesting, listing, approving and denying certificate requests. For more detailed description, refer to Agent
communication to Remote RabbitMQ instance

Multi-Platform Multi-Bus

This guide describes the setup process for a multi-platform connection that has a combination of ZeroMQ and Rab-
bitMQ instances. For this example, we want to use the Forwarder to pass device data from two VOLTTRON instance
to a single “central” instance for storage. It will also have a Volttron Central agent running on the “central” instance
and Volttron Central Platform agents on all 3 instances and connected to “central” instance to provide operational sta-
tus of it’s instance to the “central” instance. For this document “node” will be used interchangeably with VOLTTRON
instance.

Node Setup

For this example we will have two types of nodes; a data collector and a central node. Each of the data collectors will
have different message buses (VOLTTRON supports both RabbitMQ and ZeroMQ). The nodes will be configured as
in the following table.

158 Chapter 1. Features

VOLTTRON Documentation, Release 8.0 Release Candidate

Table 2: Node Configuration
Central Node-ZMQ Node-RMQ

Node Type Central Data Collector Data Collector
Master Driver yes yes
Forwarder yes yes
SQL Historian yes
Volttron Central yes
Volttron Central Platform yes yes yes
Exposes RMQ Port yes
Exposes ZMQ Port yes
Exposes HTTPS Port yes

The goal of this is to be able to see the data from Node-ZMQ and Node-RMQ in the Central SQL Historian and on the
trending charts of Volttron Central.

Virtual Machine Setup

The first step in creating a VOLTTRON instance is to make sure the machine is ready for VOLTTRON. Each machine
should have its hostname setup. For this walk-through, the hostnames “central”, “node-zmq” and “node-rmq” will be
used.

For Central and Node-RMQ follow the instructions platform installation steps for RMQ. For Node-ZMQ use Platform
Installation steps for ZeroMQ.

Instance Setup

The following conventions/assumptions are made for the rest of this document:

• Commands should be run from the VOLTTRON root

• Default values are used for VOLTTRON_HOME($HOME/.volttron), VIP port (22916), HTTPS port (8443),
rabbitmq ports (5671 for AMQPs and 15671 for RabbitMQ management interface). If using different VOLT-
TRON_HOME or ports, please replace accordingly.

• Replace central, node-zmq and node-rmq with your own hostnames.

• user will represent your current user.

The following will use vcfg (volttron-cfg) to configure the individual platforms.

Central Instance Setup

Note: This instance must have been bootstrapped using --rabbitmq see RabbitMq installation instructions.

Next step would be to configure the instance to have a web interface to accept/deny incoming certificate signing
requests from other instances. Additionally, we will need to install a Volttron Central agent, Volttron Central Platform
agent, SQL historian agent and a Listener agent. The following shows an example command output for this setup.

1.18. Multi-Platform Connection 159

VOLTTRON Documentation, Release 8.0 Release Candidate

(volttron)user@central:~/volttron$ vcfg

Your VOLTTRON_HOME currently set to: /home/user/.volttron

Is this the volttron you are attempting to setup? [Y]:
What type of message bus (rmq/zmq)? [zmq]: rmq
Name of this volttron instance: [volttron1]: central
RabbitMQ server home: [/home/user/rabbitmq_server/rabbitmq_server-3.7.7]:
Fully qualified domain name of the system: [central]:
Would you like to create a new self signed root CAcertificate for this instance: [Y]:

Please enter the following details for root CA certificate
Country: [US]:
State: WA
Location: Richland
Organization: PNNL
Organization Unit: volttron

Do you want to use default values for RabbitMQ home, ports, and virtual host: [Y]:
2020-04-13 13:29:36,347 rmq_setup.py INFO: Starting RabbitMQ server
2020-04-13 13:29:46,528 rmq_setup.py INFO: Rmq server at /home/user/rabbitmq_server/
→˓rabbitmq_server-3.7.7 is running at
2020-04-13 13:29:46,554 volttron.utils.rmq_mgmt DEBUG: Creating new VIRTUAL HOST:
→˓volttron
2020-04-13 13:29:46,582 volttron.utils.rmq_mgmt DEBUG: Create READ, WRITE and
→˓CONFIGURE permissions for the user: central-admin
Create new exchange: volttron, {'durable': True, 'type': 'topic', 'arguments': {
→˓'alternate-exchange': 'undeliverable'}}
Create new exchange: undeliverable, {'durable': True, 'type': 'fanout'}
2020-04-13 13:29:46,600 rmq_setup.py INFO:
Checking for CA certificate

2020-04-13 13:29:46,601 rmq_setup.py INFO:
Creating root ca for volttron instance: /home/user/.volttron/certificates/certs/
→˓central-root-ca.crt
2020-04-13 13:29:46,601 rmq_setup.py INFO: Creating root ca with the following info: {
→˓'C': 'US', 'ST': 'WA', 'L': 'Richland', 'O': 'PNNL', 'OU': 'VOLTTRON', 'CN':
→˓'central-root-ca'}
Created CA cert
2020-04-13 13:29:49,668 rmq_setup.py INFO: **Stopped rmq server
2020-04-13 13:30:00,556 rmq_setup.py INFO: Rmq server at /home/user/rabbitmq_server/
→˓rabbitmq_server-3.7.7 is running at
2020-04-13 13:30:00,557 rmq_setup.py INFO:

#######################

Setup complete for volttron home /home/user/.volttron with instance name=central
Notes:
- On production environments, restrict write access to /home/user/.volttron/
→˓certificates/certs/central-root-ca.crt to only admin user. For example: sudo chown
→˓root /home/user/.volttron/certificates/certs/central-root-ca.crt and /home/user/.
→˓volttron/certificates/certs/central-trusted-cas.crt
- A new admin user was created with user name: central-admin and password=default_
→˓passwd.

You could change this user's password by logging into https://central:15671/
→˓Please update /home/user/.volttron/rabbitmq_config.yml if you change password

#######################

(continues on next page)

160 Chapter 1. Features

VOLTTRON Documentation, Release 8.0 Release Candidate

(continued from previous page)

The rmq message bus has a backward compatibility
layer with current zmq instances. What is the
zmq bus's vip address? [tcp://127.0.0.1]: tcp://192.168.56.101
What is the port for the vip address? [22916]:
Is this instance web enabled? [N]: y
Web address set to: https://central
What is the port for this instance? [8443]:
Is this an instance of volttron central? [N]: y
Configuring /home/user/volttron/services/core/VolttronCentral.
Installing volttron central.
['volttron', '-vv', '-l', '/home/user/.volttron/volttron.cfg.log']
Should the agent autostart? [N]: y
VC admin and password are set up using the admin web interface.
After starting VOLTTRON, please go to https://central:8443/admin/login.html to
→˓complete the setup.
Will this instance be controlled by volttron central? [Y]:
Configuring /home/user/volttron/services/core/VolttronCentralPlatform.
What is the name of this instance? [central]:
Volttron central address set to https://central:8443
['volttron', '-vv', '-l', '/home/user/.volttron/volttron.cfg.log']
Should the agent autostart? [N]:
Would you like to install a platform historian? [N]: y
Configuring /home/user/volttron/services/core/SQLHistorian.
['volttron', '-vv', '-l', '/home/user/.volttron/volttron.cfg.log']
Should the agent autostart? [N]: y
Would you like to install a master driver? [N]:
Would you like to install a listener agent? [N]: y
Configuring examples/ListenerAgent.
['volttron', '-vv', '-l', '/home/user/.volttron/volttron.cfg.log']
Should the agent autostart? [N]: y
Finished configuration!

You can now start the volttron instance.

If you need to change the instance configuration you can edit
the config file is at /home/user/.volttron/config

Start VOLTTRON instance and check if the agents are installed.

./start-volttron
vctl status

Open browser and go to master admin authentication page https://central:8443/index.html to accept/reject incoming
certificate signing request (CSR) from other platforms.

Note: Replace “central” with the proper hostname of VC instance in the admin page URL. If opening the admin page
from a different system, then please make that the hostname is resolvable in that machine.

Click on “Login To Admistration Area”.

1.18. Multi-Platform Connection 161

VOLTTRON Documentation, Release 8.0 Release Candidate

Set the master admin username and password. This can be later used to login into master admin authentication page.
This username and password will also be used to log in to Volttron Central.

Login into the Master Admin page.

162 Chapter 1. Features

VOLTTRON Documentation, Release 8.0 Release Candidate

After logging in, you will see no CSR requests initially.

Go back to the terminal and start Volttron Central Platform agent on the “central” instance. The agent will send a CSR
request to the web interface.

vctl start --tag vcp

Now go to master admin page to check if there is a new pending CSR request. You will see a “PENDING” request
from “central.central.platform.agent”

1.18. Multi-Platform Connection 163

VOLTTRON Documentation, Release 8.0 Release Candidate

Approve the CSR request to allow authenticated SSL based connection to the “central” instance.

Go back to the terminal and check the status of Volttron Central Platform agent. It should be set to “GOOD”.

Node-ZMQ Instance Setup

On the “node-zmq” VM, setup a ZeroMQ based VOLTTRON instance. Using “vcfg” command, install Volttron
Central Platform agent, a master driver agent with a fake driver.

Note: This instance will use old ZeroMQ based authentication mechanism using CURVE keys.

(volttron)user@node-zmq:~/volttron$ vcfg

Your VOLTTRON_HOME currently set to: /home/user/.volttron

Is this the volttron you are attempting to setup? [Y]:
What type of message bus (rmq/zmq)? [zmq]:
What is the vip address? [tcp://127.0.0.1]:
What is the port for the vip address? [22916]:
Is this instance web enabled? [N]:
Will this instance be controlled by volttron central? [Y]:
Configuring /home/user/volttron/services/core/VolttronCentralPlatform.
What is the name of this instance? [volttron1]: collector1
What is the hostname for volttron central? [http://node-zmq]: https://central
What is the port for volttron central? [8080]: 8443
['volttron', '-vv', '-l', '/home/user/.volttron/volttron.cfg.log']
Should the agent autostart? [N]:
Would you like to install a platform historian? [N]:
Would you like to install a master driver? [N]: y
Configuring /home/user/volttron/services/core/MasterDriverAgent.
['volttron', '-vv', '-l', '/home/user/.volttron/volttron.cfg.log']

(continues on next page)

164 Chapter 1. Features

VOLTTRON Documentation, Release 8.0 Release Candidate

(continued from previous page)

Would you like to install a fake device on the master driver? [N]: y
Should the agent autostart? [N]: y
Would you like to install a listener agent? [N]:
Finished configuration!

You can now start the volttron instance.

If you need to change the instance configuration you can edit
the config file is at /home/user/.volttron/config

Please note the Volttron Central web-address should point to that of the “central” instance.

Start VOLTTRON instance and check if the agents are installed.

./start-volttron
vctl status

Start Volttron Central Platform on this platform manually.

vctl start --tag vcp

Check the VOLTTRON log in the “central” instance, you will see “authentication failure” entry from the incoming
connection. You will need to add the public key of VCP agent on the “central” instance.

At this point, you can either accept the connection through the admin page or the command line.

Using the admin page:

Navigate back to the master admin authentication page. You should see a pending request under the ZMQ Keys
Pending Authorization header.

Accept the credential in the same method as a CSR.

Using the command line:

1.18. Multi-Platform Connection 165

VOLTTRON Documentation, Release 8.0 Release Candidate

On the “node-zmq” box execute this command and grab the public key of the VCP agent.

vctl auth publickey

Add auth entry corresponding to VCP agent on “central” instance using the below command. Replace the user id value
and credentials value appropriately before running

vctl auth add --user_id <any unique user id. for example zmq_node_vcp> --credentials
→˓<public key of vcp on zmq node>

Complete similar steps to start a forwarder agent that connects to “central” instance. Modify the configuration in ser-
vices/core/ForwardHistorian/rmq_config.yml to have a destination VIP address pointing to VIP address of the “cen-
tral” instance and server key of the “central” instance.

destination-vip: tcp://<ip>:22916
destination-serverkey: <serverkey>

Note: Replace <ip> with public facing IP-address of “central” instance and <serverkey> with serverkey of “central”
instance. Use the command vctl auth serverkey on the “central” instance to get the server key of the instance

Install and start forwarder agent.

python scripts/install-agent.py -s services/core/ForwardHistorian -c services/core/
→˓ForwardHistorian/rmq_config.yml --start

To accept the credential using the admin page:

Navigate back to the master admin authentication page. You should see another pending request under the ZMQ Keys
Pending Authorization header.

Accept this credential in the same method as before.

To accept the credential using the command line:

Grab the public key of the forwarder agent.

166 Chapter 1. Features

VOLTTRON Documentation, Release 8.0 Release Candidate

vctl auth publickey

Add auth entry corresponding to VCP agent on central instance.

vctl auth add --user_id <any unique user id. for example zmq_node_forwarder> --
→˓credentials <public key of forwarder on zmq node>

In either case, you should start seeing messages from “collector1” instance on the “central” instance’s VOLTTRON
log now.

Node-RMQ Instance Setup

Note: This instance must have been bootstrapped using –rabbitmq see RabbitMq installation instructions.

Using “vcfg” command, install Volttron Central Platform agent, a master driver agent with fake driver. The instance
name is set to “collector2”.

(volttron)user@node-rmq:~/volttron$ vcfg

Your VOLTTRON_HOME currently set to: /home/user/.volttron

Is this the volttron you are attempting to setup? [Y]:
What type of message bus (rmq/zmq)? [zmq]: rmq
Name of this volttron instance: [volttron1]: collector2
RabbitMQ server home: [/home/user/rabbitmq_server/rabbitmq_server-3.7.7]:
Fully qualified domain name of the system: [node-rmq]:
Would you like to create a new self signed root CA certificate for this instance: [Y]:

Please enter the following details for root CA certificate
Country: [US]:
State: WA
Location: Richland
Organization: PNNL
Organization Unit: volttron

Do you want to use default values for RabbitMQ home, ports, and virtual host: [Y]:
2020-04-13 13:29:36,347 rmq_setup.py INFO: Starting RabbitMQ server
2020-04-13 13:29:46,528 rmq_setup.py INFO: Rmq server at /home/user/rabbitmq_server/
→˓rabbitmq_server-3.7.7 is running at
2020-04-13 13:29:46,554 volttron.utils.rmq_mgmt DEBUG: Creating new VIRTUAL HOST:
→˓volttron
2020-04-13 13:29:46,582 volttron.utils.rmq_mgmt DEBUG: Create READ, WRITE and
→˓CONFIGURE permissions for the user: collector2-admin
Create new exchange: volttron, {'durable': True, 'type': 'topic', 'arguments': {
→˓'alternate-exchange': 'undeliverable'}} (continues on next page)

1.18. Multi-Platform Connection 167

VOLTTRON Documentation, Release 8.0 Release Candidate

(continued from previous page)

Create new exchange: undeliverable, {'durable': True, 'type': 'fanout'}
2020-04-13 13:29:46,600 rmq_setup.py INFO:
Checking for CA certificate

2020-04-13 13:29:46,601 rmq_setup.py INFO:
Creating root ca for volttron instance: /home/user/.volttron/certificates/certs/
→˓collector2-root-ca.crt
2020-04-13 13:29:46,601 rmq_setup.py INFO: Creating root ca with the following info: {
→˓'C': 'US', 'ST': 'WA', 'L': 'Richland', 'O': 'PNNL', 'OU': 'VOLTTRON', 'CN':
→˓'collector2-root-ca'}
Created CA cert
2020-04-13 13:29:49,668 rmq_setup.py INFO: **Stopped rmq server
2020-04-13 13:30:00,556 rmq_setup.py INFO: Rmq server at /home/user/rabbitmq_server/
→˓rabbitmq_server-3.7.7 is running at
2020-04-13 13:30:00,557 rmq_setup.py INFO:

#######################

Setup complete for volttron home /home/user/.volttron with instance name=collector2
Notes:
- On production environments, restrict write access to /home/user/.volttron/
→˓certificates/certs/collector2-root-ca.crt to only admin user. For example: sudo
→˓chown root /home/user/.volttron/certificates/certs/collector2-root-ca.crt and /home/
→˓user/.volttron/certificates/certs/collector2-trusted-cas.crt
- A new admin user was created with user name: collector2-admin and password=default_
→˓passwd.

You could change this user's password by logging into https://node-rmq:15671/
→˓Please update /home/user/.volttron/rabbitmq_config.yml if you change password

#######################

The rmq message bus has a backward compatibility
layer with current zmq instances. What is the
zmq bus's vip address? [tcp://127.0.0.1]:
What is the port for the vip address? [22916]:
Is this instance web enabled? [N]:
Will this instance be controlled by volttron central? [Y]:
Configuring /home/user/volttron/services/core/VolttronCentralPlatform.
What is the name of this instance? [collector2]:
What is the hostname for volttron central? [http://node-rmq]: https://central
What is the port for volttron central? [8443]:
['volttron', '-vv', '-l', '/home/user/.volttron/volttron.cfg.log']
Should the agent autostart? [N]:
Would you like to install a platform historian? [N]:
Would you like to install a master driver? [N]: y
Configuring /home/user/volttron/services/core/MasterDriverAgent.
['volttron', '-vv', '-l', '/home/user/.volttron/volttron.cfg.log']
Would you like to install a fake device on the master driver? [N]: y
Should the agent autostart? [N]: y
Would you like to install a listener agent? [N]:
Finished configuration!

You can now start the volttron instance.

If you need to change the instance configuration you can edit
the config file is at /home/user/.volttron/config

168 Chapter 1. Features

VOLTTRON Documentation, Release 8.0 Release Candidate

Note: The Volttron Central web-address should point to that of the “central” instance.

Start VOLTTRON instance and check if the agents are installed.

./start-volttron
vctl status

Start Volttron Central Platform on this platform manually.

vctl start --tag vcp

Go the master admin authentication page and check if there is a new pending CSR request from VCP agent of “col-
lector2” instance.

Approve the CSR request to allow authenticated SSL based connection to the “central” instance.

Now go back to the terminal and check the status of Volttron Central Platform agent. It should be set to “GOOD”.

Let’s now install a forwarder agent on this instance to forward local messages matching “devices” topic to external
“central” instance. Modify the configuration in services/core/ForwardHistorian/rmq_config.yml to have a destination
address pointing to web address of the “central” instance.

destination-address: https://central:8443

Start forwarder agent.

python scripts/install-agent.py -s services/core/ForwardHistorian -c services/core/
→˓ForwardHistorian/rmq_config.yml --start

Go the master admin authentication page and check if there is a new pending CSR request from forwarder agent of
“collector2” instance.

1.18. Multi-Platform Connection 169

VOLTTRON Documentation, Release 8.0 Release Candidate

Approve the CSR request to allow authenticated SSL based connection to the “central” instance.

Now go back to the terminal and check the status of forwarder agent. It should be set to “GOOD”.

Check the VOLTTRON log of “central” instance. You should see messages with “devices” topic coming from “col-
lector2” instance.

To confirm that VolttronCentral is monitoring the status of all the 3 platforms, open a browser and type this URL
https://central:8443/vc/index.html. Login using credentials (username and password) earlier set during the VC config-
uration step (using vcfg command in “central” instance). Click on “platforms” tab in the far right corner. You should
see all three platforms listed in that page. Click on each of the platforms and check the status of the agents.

170 Chapter 1. Features

VOLTTRON Documentation, Release 8.0 Release Candidate

VOLTTRON Central Deployment

VOLTTRON Central is a platform management web application that allows platforms to communicate and to be
managed from a centralized server. This agent alleviates the need to ssh into independent nodes in order to manage
them. The demo will start up three different instances of VOLTTRON with three historians and different agents on
each host. The following entries will help to navigate around the VOLTTRON Central interface.

• Getting Started

• Remote Platform Configuration

• Starting the Demo

• Stopping the Demo

• Log In

• Log Out

• Platforms Tree

• Loading the Tree

• Health Status

• Filter the Tree

• Platforms Screen

• Register New Platform

• Deregister Platform

• Platform View

• Add Charts

• Dashboard Charts

• Remove Charts

1.18. Multi-Platform Connection 171

VOLTTRON Documentation, Release 8.0 Release Candidate

Getting Started

After installing VOLTTRON, open three shells with the current directory the root of the VOLTTRON repository. Then
activate the VOLTTRON environment and export the VOLTTRON_HOME variable. The home variable needs to be
different for each instance.

If you are using Terminator you can right click and select “Split Vertically”. This helps us keep from losing terminal
windows or duplicating work.

$ source env/bin/activate
$ export VOLTTRON_HOME=~/.volttron1

One of our instances will have a VOLTTRON Central agent. We will install a platform agent and a historian on all
three platforms. Please note, for this demo all the instances run on the ZeroMQ message bus. For multi-platform,
multi-bus deployment setup please follow the steps described in Multi Platform Multi-Bus Deployment.

Run vcfg in the first shell. This command will ask how the instance should be set up. Many of the options have defaults
that will be sufficient. When asked if this instance is a VOLTTRON Central enter y. Read through the options and
use the enter key to accept default options. There are no default credentials for VOLTTRON Central. You can have
it install the agents at this time. Below is an example configuration. In this case, username is user and localhost is
volttron-pc.

(volttron)user@volttron-pc:~/volttron$ vcfg

Your VOLTTRON_HOME currently set to: /home/user/.volttron1

Is this the volttron you are attempting to setup? [Y]:
What type of message bus (rmq/zmq)? [zmq]:
What is the vip address? [tcp://127.0.0.1]:
What is the port for the vip address? [22916]:
Is this instance web enabled? [N]: y
What is the protocol for this instance? [https]:
Web address set to: https://volttron-pc

(continues on next page)

172 Chapter 1. Features

../../_images/terminator-setup.png

VOLTTRON Documentation, Release 8.0 Release Candidate

(continued from previous page)

What is the port for this instance? [8443]:
Would you like to generate a new web certificate? [Y]:
WARNING! CA certificate does not exist.
Create new root CA? [Y]:

Please enter the following details for web server certificate:
Country: [US]:
State: WA
Location: Richland
Organization: PNNL
Organization Unit: VOLTTRON

Created CA cert
Creating new web server certificate.
Is this an instance of volttron central? [N]: y
Configuring /home/user/volttron/services/core/VolttronCentral.
Installing volttron central.
Should the agent autostart? [N]: y
VC admin and password are set up using the admin web interface.
After starting VOLTTRON, please go to https://volttron-pc:8443/admin/login.
→˓html to complete the setup.
Will this instance be controlled by volttron central? [Y]: y
Configuring /home/user/volttron/services/core/VolttronCentralPlatform.
What is the name of this instance? [volttron1]:
Volttron central address set to https://volttron-pc:8443
Should the agent autostart? [N]: y
Would you like to install a platform historian? [N]: y
Configuring /home/user/volttron/services/core/SQLHistorian.
Should the agent autostart? [N]: y
Would you like to install a master driver? [N]: y
Configuring /home/user/volttron/services/core/MasterDriverAgent.
Would you like to install a fake device on the master driver? [N]: y
Should the agent autostart? [N]: y
Would you like to install a listener agent? [N]: y
Configuring examples/ListenerAgent.
Should the agent autostart? [N]: y
Finished configuration!

You can now start the volttron instance.

If you need to change the instance configuration you can edit
the config file is at /home/user/.volttron1/config

(volttron)user@volttron-pc:~/volttron$

VOLTTRON Central needs to accept the connecting instances’ public keys. For this example we’ll allow any CURVE
credentials to be accepted. After starting, the command vctl auth add will prompt the user for information about how
the credentials should be used. We can simply hit Enter to select defaults on all fields except credentials, where we
will type /.*/

$ vctl auth add --credentials "/.*/"
added entry domain=None, address=None, mechanism='CURVE', credentials=u'/.*/', user_
→˓id='63b126a7-2941-4ebe-8588-711d1e6c70d1'

For more information on authorization see authentication.

1.18. Multi-Platform Connection 173

VOLTTRON Documentation, Release 8.0 Release Candidate

Remote Platform Configuration

The next step is to configure the instances that will connect to VOLTTRON Central. In the second and third terminal
windows run vcfg. Like the VOLTTRON_HOME variable, these instances need to have unique VIP addresses and
unique instance names.

Install a platform agent and a historian as before. Since we used the default options when configuring VOLTTRON
Central, we can use the default options when configuring these platform agents as well. The configuration will be
a little different. The example below is for the second volttron instance. Note the unique VIP address and instance
name. Please ensure the web-address of the volttron central is configured correctly.

(volttron)user@volttron-pc:~/volttron$ vcfg

Your VOLTTRON_HOME currently set to: /home/user/.volttron2

Is this the volttron you are attempting to setup? [Y]:
What type of message bus (rmq/zmq)? [zmq]:
What is the vip address? [tcp://127.0.0.1]: tcp://127.0.0.2
What is the port for the vip address? [22916]:
Is this instance web enabled? [N]:
Will this instance be controlled by volttron central? [Y]:
Configuring /home/user/volttron/services/core/VolttronCentralPlatform.
What is the name of this instance? [volttron1]: volttron2
What is the hostname for volttron central? [https://volttron-pc]:
What is the port for volttron central? [8443]:
Should the agent autostart? [N]: y
Would you like to install a platform historian? [N]: y
Configuring /home/user/volttron/services/core/SQLHistorian.
Should the agent autostart? [N]: y
Would you like to install a master driver? [N]:
Would you like to install a listener agent? [N]:
Finished configuration!

You can now start the volttron instance.

If you need to change the instance configuration you can edit
the config file is at /home/user/.volttron2/config

(volttron)user@volttron-pc:~/volttron$

Starting the Demo

Start each Volttron instance after configuration. You have two options.

Option 1: The following command starts the volttron process in the background. The “-l” option tells volttron to log
to a file. The file name should be different for each instance.

$ volttron -vv -l volttron.log&

Option 2: Use the utility script start-volttron. This will override the default log file each time the script is ran unless
the script is modified with a different filename for each instance.

$./start-volttron

174 Chapter 1. Features

VOLTTRON Documentation, Release 8.0 Release Candidate

Note: If you chose to not start your agents with their platforms they will need to be started by hand.

List the installed agents with

$ vctl status

A portion of each agent’s uuid makes up the leftmost column of the status output. This is all that is needed to start or
stop the agent. If any installed agents share a common prefix then more of the uuid will be needed to identify it.

$ vctl start uuid

or

$ vctl start --tag tag

Note: In each of the above examples one could use * suffix to match more than one agent.

VOLTTRON Admin

The admin page is used to set the master username and password for both admin page and VOLTTRON Central page.
Admin page can then be used to manage RMQ and ZMQ certificates and credentials.

Open a web browser and navigate to https://volttron-pc:8443/admin/login.html

There may be a message warning about a potential security risk. Check to see if the certificate that was created in vcfg
is being used. The process below is for firefox.

1.18. Multi-Platform Connection 175

https://volttron-pc:8443/admin/login.html

VOLTTRON Documentation, Release 8.0 Release Candidate

176 Chapter 1. Features

VOLTTRON Documentation, Release 8.0 Release Candidate

1.18. Multi-Platform Connection 177

VOLTTRON Documentation, Release 8.0 Release Candidate

When the admin page is accessed for the first time, the user will be prompted to set up a master username and password.

Open your browser to the web address that you specified for the VOLTTRON Central agent that you configured for the
first instance. In the above examples, the configuration file would be located at ~/.volttron1/config and the VOLTTRON
Central address would be defined in the “volttron-central-address” field. The VOLTTRON Central address takes the
pattern: https://<localhost>:8443/vc/index.html, where localhost is the hostname of your machine. In the above
examples, our hostname is volttron-pc; thus our VC interface would be https://volttron-pc:8443/vc/index.html.

You will need to provide the username and password set earlier through admin web page.

Stopping the Demo

Once you have completed your walk through of the different elements of the VOLTTRON Central demo you can stop
the demos by executing the following command in each terminal window.

$./stop-volttron

178 Chapter 1. Features

VOLTTRON Documentation, Release 8.0 Release Candidate

Once the demo is complete you may wish to see the VOLTTRON Central Management Agent page for more details
on how to configure the agent for your specific use case.

Log In

To log in to VOLTTRON Central, open a browser and login to the Volttron web interface, which takes the form
https://localhost:8443/vc/index.html where localhost is the hostname of your machine. In the above example, we open
the following URL in which our localhost is “volttron-pc”: https://volttron-pc:8443/vc/index.html and enter the user
name and password on the login screen.

Log Out

To log out of VOLTTRON Central, click the link at the top right of the screen.

1.18. Multi-Platform Connection 179

https://volttron-pc:8443/vc/index.html

VOLTTRON Documentation, Release 8.0 Release Candidate

Platforms Tree

The side panel on the left of the screen can be extended to reveal the tree view of registered platforms.

180 Chapter 1. Features

VOLTTRON Documentation, Release 8.0 Release Candidate

1.18. Multi-Platform Connection 181

VOLTTRON Documentation, Release 8.0 Release Candidate

Top-level nodes in the tree are platforms. Platforms can be expanded in the tree to reveal installed agents, devices on
buildings, and performance statistics about the platform instances.

Loading the Tree

The initial state of the tree is not loaded. The first time a top-level node is expanded is when the items for that platform
are loaded.

182 Chapter 1. Features

VOLTTRON Documentation, Release 8.0 Release Candidate

After a platform has been loaded in the tree, all the items under a node can be quickly expanded by double-clicking
on the node.

Health Status

The health status of an item in the tree is indicated by the color and shape next to it. A green triangle means healthy, a
red circle means there’s a problem, and a gray rectangle means the status can’t be determined.

Information about the health status also may be found by hovering the cursor over the item.

1.18. Multi-Platform Connection 183

VOLTTRON Documentation, Release 8.0 Release Candidate

Filter the Tree

The tree can be filtered by typing in the search field at the top or clicking on a status button next to the search field.

184 Chapter 1. Features

VOLTTRON Documentation, Release 8.0 Release Candidate

Meta terms such as “status” can also be used as filter keys. Type the keyword “status” followed by a colon, and then

1.18. Multi-Platform Connection 185

VOLTTRON Documentation, Release 8.0 Release Candidate

the word “good,” “bad,” or “unknown.”

Platforms Screen

This screen lists the registered VOLTTRON platforms and allows new platforms to be registered by clicking the
Register Platform button. Each platform is listed with its unique ID and the number and status of its agents. The
platform’s name is a link that can be clicked on to go to the platform management view.

186 Chapter 1. Features

VOLTTRON Documentation, Release 8.0 Release Candidate

Platform View

From the platforms screen, click on the name link of a platform to manage it. Managing a platform includes installing,
starting, stopping, and removing its agents.

To install a new agent, all you need is the agent’s wheel file. Click on the button and choose the file to upload it and
install the agent.

To start, stop, or remove an agent, click on the button next to the agent in the list. Buttons may be disabled if the user
lacks the correct permission to perform the action or if the action can’t be performed on a specific type of agent. For
instance, platform agents and VOLTTRON Central agents can’t be removed or stopped, but they can be restarted if
they’ve been interrupted.

Add Charts

Performance statistics and device points can be added to charts either from the Charts page or from the platforms tree
in the side panel.

Click the Charts link at the top-right corner of the screen to go to the Charts page.

1.18. Multi-Platform Connection 187

VOLTTRON Documentation, Release 8.0 Release Candidate

From the Charts page, click the Add Chart button to open the Add Chart window.

188 Chapter 1. Features

VOLTTRON Documentation, Release 8.0 Release Candidate

Click in the topics input field to make the list of available chart topics appear.

1.18. Multi-Platform Connection 189

VOLTTRON Documentation, Release 8.0 Release Candidate

Scroll and select from the list, or type in the field to filter the list, and then select.

190 Chapter 1. Features

VOLTTRON Documentation, Release 8.0 Release Candidate

Select a chart type and click the Load Chart button to close the window and load the chart.

1.18. Multi-Platform Connection 191

VOLTTRON Documentation, Release 8.0 Release Candidate

To add charts from the side panel, check boxes next to items in the tree.

Choose points with the same name from multiple platforms or devices to plot more than one line in a chart.

192 Chapter 1. Features

VOLTTRON Documentation, Release 8.0 Release Candidate

Move the cursor arrow over the chart to inspect the graphs.

To change the chart’s type, click on the Chart Type button and choose a different option.

1.18. Multi-Platform Connection 193

VOLTTRON Documentation, Release 8.0 Release Candidate

Dashboard Charts

To pin a chart to the Dashboard, click the Pin Chart button to toggle it. When the pin image is black and upright, the
chart is pinned; when the pin image is gray and diagonal, the chart is not pinned and won’t appear on the Dashboard.

Charts that have been pinned to the Dashboard are saved to the database and will automatically load when the user
logs in to VOLTTRON Central. Different users can save their own configurations of dashboard charts.

Remove Charts

To remove a chart, uncheck the box next to the item in the tree or click the X button next to the chart on the Charts
page. Removing a chart removes it from the Charts page and the Dashboard.

VOLTTRON Central

Navigate to https://volttron-pc:8443/vc/index.html

Log in using the username and password you set up on the admin web page.

194 Chapter 1. Features

https://volttron-pc:8443/vc/index.html

VOLTTRON Documentation, Release 8.0 Release Candidate

Once you have logged in, click on the Platforms tab in the upper right corner of the window.

1.18. Multi-Platform Connection 195

VOLTTRON Documentation, Release 8.0 Release Candidate

Once in the Platforms screen, click on the name of the platform.

You will now see a list of agents. They should all be running.

For more information on VOLTTRON Central, please see:

• VOLTTRON Central Management

• VOLTTRON Central Demo

1.19 Linux System Hardening

1.19.1 Introduction

VOLTTRON is built with modern security principles in mind [security-wp] and implements many security features
for hosted agents. However, VOLTTRON is built on top of Linux and the underlying Linux platform also needs to be
secured in order to declare the resulting control system as “secure.”

Any system is only as secure as its weakest link. This document is dedicated to making recommendations for hardening
of the underlying Linux platform that VOLTTRON is deployed to.

196 Chapter 1. Features

VOLTTRON Documentation, Release 8.0 Release Candidate

Warning: No system can be 100% secure and the cyber security strategy that is recommended in this document
is based on risk management. For the following guidance, it is intended that the user consider the risk, impact of
risks, and perform the appropriate corresponding mitigation techniques.

1.19.2 Recommendations

Here are the non-exhaustive recommendations for Linux hardening from the VOLTTRON team:

• Physical Security: Keep the system in locked cabinets or a locked room. Limit physical access to systems and
to the networks to which they are attached. The goal should be to avoid physical access by untrusted personnel.
This could be extended to blocking or locking USB ports, removable media drives, etc.

Drive encryption could be used to avoid access via alternate-media booting (off USB stick or DVD) if physical
access can’t be guaranteed. The downside of drive encryption would be needing to enter a passphrase to start
system. Alternately, the Trusted Platform Module (TPM) may be used, but the drive might still be accessible
to those with physical access. Enable chassis intrusion detection and reporting if supported. If available, use a
physical tamper seal along with or in place of an interior switch.

• Low level device Security: Keep firmware of all devices (including BIOS) up-to-date. Password-protect the
BIOS. Disable unneeded/unnecessary devices:

– serial

– parallel

– USB (Leaving a USB port enabled may be helpful if a breach occurs to allow saving forensic data to an
external drive.)

– Firewire, etc.

– ports

– optical drives

– wireless devices, such as Wi-Fi and Bluetooth

• Boot security:

– Disable auto-mounting of external devices

– Restrict the boot device:

* Disable PXE and other network boot options (unless that is the primary boot method)

* Disable booting from USB and other removable drives

– Secure the boot loader:

* Require an administrator password to do anything but start the default kernel

* Do not allow editing of kernel parameters

* Disable, remove, or password-protect emergency/recovery boot entries

• Security Updates: First and foremost, configure the system to automatically download security updates. Most
security updates can be installed without rebooting the system, but some updated (e.g. shared libraries, kernel,
etc) require the system to be rebooted. If possible, configure the system to install the security updates automati-
cally and reboot at a particular time. We also recommend reserving the reboot time (e.g. 1:30AM on a Saturday
morning) using the Actuator Agent so that no control actions can happen during that time.

• System Access only via Secured Protocols:

– Disallow all clear text access to VOLTTRON systems

1.19. Linux System Hardening 197

VOLTTRON Documentation, Release 8.0 Release Candidate

– No telnet, no rsh, no ftp and no exceptions!

– Use ssh to gain console access, and scp/sftp to get files in and out of the system

– Disconnect excessively idle SSH Sessions

• Disable remote login for “root” users. Do not allow a user to directly access the system as the “root” user from
a remote network location. Root access to privileged operations can be accomplished using sudo. This adds
an extra level of security by restricting access to privileged operations and tracking those operations through the
system log.

• Manage users and usernames, limit the number of user accounts, use complex usernames rather than first names.

• Authentication: If possible, use two factor authentication to allow access to the system. Informally, two factor
authentication uses a combination of “something you know” and “something you have” to allow access to the
system. RSA SecurID tokens are commonly used for two factor authentication but other tools are available.
When not using two-factor authentication, use strong passwords and do not share accounts.

• Scan for weak passwords. Use password cracking tools such as John the Ripper or Nmap with password cracking
modules to look for weak passwords.

• Utilize Pluggable Authentication Modules (PAM) to strengthen passwords and the login process. We recom-
mend:

– pam_abl: Automated blacklisting on repeated failed authentication attempts

– pam_captcha: A visual text-based CAPTCHA challenge module for PAM

– pam_passwdqc: A password strength checking module for PAM-aware password changing programs

– pam_cracklib: PAM module to check the password against dictionary words

– pam_pwhistory: PAM module to remember last passwords

• Disable unwanted services. Most desktop and server Linux distributions come with many unnecessary services
enabled. Disable all unnecessary services. Refer to your distribution’s documentation to discover how to check
and disable these services.

• Just as scanning for weak passwords is a step to more secure systems; regular network scans using Nmap to find
what network services are being offered is another step towards a more secure system.

Warning: use Nmap or similar tools very carefully on BACnet and modbus environments. These scanning
tools are known to crash/reset BACnet and modbus devices.

• Control incoming and outgoing network traffic. Use the built-in host-based firewall to control who/what can
connect to this system. Many iptables frontends offer a set of predefined rules that provide a default deny policy
for incoming connections and provide rules to prevent or limit other well known attacks (i.e. rules that limit
certain responses that might amplify a DDoS attack). ufw (uncomplicated firewall) is a good example.

Examples:

– If the system administrators for the VOLTTRON device are all located in 10.10.10.0/24 subnetwork,
then allow SSH and SCP logins from only that IP address range.

– If the VOLTTRON system exports data to a historian at 10.20.20.1 using TCP over port 443, allow
outgoing traffic to that port on that server.

The idea here is to limit the attack surface of the system. The smaller the surface, the better we can analyze the
communication patterns of the system and detect anomalies.

198 Chapter 1. Features

http://www.openwall.com/john/
http://nmap.org
http://nmap.org

VOLTTRON Documentation, Release 8.0 Release Candidate

Note: While some system administrators disable network-based diagnostic tools such as ICMP ECHO re-
sponses, the VOLTTRON team believes that this hampers usability. As an example, monitoring which incoming
and outgoing firewall rules are triggering can be accomplished with this command:

watch --interval=5 'iptables -nvL | grep -v "0 0"'

• Rate limit incoming connections to discourage brute force hacking attempts. Use a tool such as fail2ban to dy-
namically manage firewall rules to rate limit incoming connections and discourage brute force hacking attempts.
sshguard is similar to fail2ban but only used for ssh connections. Further rate limiting can be accomplished at
the firewall level. As an example, you can restrict the number of connections used by a single IP address to your
server using iptables. Only allow 4 ssh connections per client system:

iptables -A INPUT -p tcp --syn --dport 22 -m connlimit --connlimit-above 4 -j DROP

You can limit the number of connections per minute. The following example will drop incoming connections if
an IP address makes more than 10 connection attempts to port 22 within 60 seconds:

iptables -A INPUT -p tcp -dport 22 -i eth0 -m state --state NEW -m recent --set
iptables -A INPUT -p tcp -dport 22 -i eth0 -m state --state NEW -m recent --
→˓update --seconds 60 --hitcount 10 -j DROP

• Use a file system integrity tool to monitor for unexpected file changes. Tools such as tripwire monitor filesys-
tems for changed files. Another file integrity checking tool to consider is AIDE (Advanced Intrusion Detect
Environment).

• Use filesystem scanning tools periodically to check for exploits. Available tools such as checkrootkit, rkhunter
and others should be used to check for known exploits on a periodic basis and report their results.

• VOLTTRON does not use Apache or require it. If Apache is being used, we recommend using the mod_security
and mod_evasive modules.

Raspberry Pi

System hardening recommendations for Raspberry Pi closely match those for other Linux operating systems such as
Ubuntu. VOLTTRON has only been officially tested with Raspbian, and there is one important consideration, which
is noted in the Raspbian documentation as well:

Warning: The Raspbian operating system includes only the default pi user on install, which uses a well-known
default password. For any operational deployment, it is recommended to create a new user with a complex pass-
word (this user must have sudoers permissions.

Summarizing the process of creating a new user alice from the Raspberry Pi documentation:

sudo adduser alice
sudo usermod -a -G adm,dialout,cdrom,sudo,audio,video,plugdev,games,users,input,
→˓netdev,gpio,i2c,spi alice
sudo su - alice
sudo visudo /etc/sudoers.d/010_pi-nopasswd

When the editor opens for the sudoer’s file, add an entry for alice:

alice ALL=(ALL) PASSWD: ALL

Also, update the default pi user’s default password:

1.19. Linux System Hardening 199

http://www.fail2ban.org/wiki/index.php/Main_Page
http://www.sshguard.net/
http://sourceforge.net/projects/tripwire/
http://aide.sourceforge.net/
http://aide.sourceforge.net/
http://www.chkrootkit.org
http://rkhunter.sourceforge.net

VOLTTRON Documentation, Release 8.0 Release Candidate

pi@raspberrypi:~/volttron$ passwd
Changing password for pi.
(current) UNIX password:
Enter new UNIX password:
Retype new UNIX password:
passwd: password updated successfully

Note: The Raspberry Pi documentation states that ideally one would remove the pi user from the system, however
this is not currently recommended as some aspects of the Raspberry Pi OS are tied to the pi user. This will be
changed in the future.

For more information, please visit the Raspberry Pi security site.

System Monitoring

• Monitor system state and resources. Use a monitoring tool such as Xymon or Big Brother to remotely monitor
the system resources and state. Set the monitoring tools to alert the system administrators if anomalous use of
resources (e.g. connections, memory, etc) are detected. An administrator can also use Unix commands such as
netstat to look for open connections periodically.

• Watch system logs and get logs off the system. Use a utility such as logwatch or logcheck to get a daily summary
of system activity via email. For Linux distributions that use systemd (such as Ubuntu), use journalwatch to
accomplish the same task.

Additionally, use a remote syslog server to collect logs from all VOLTTRON systems in the field at a centralized
location for analysis. A tool such as Splunk is ideal for this task and comes with many built-in analysis applica-
tions. Another benefit of sending logs remotely off the platform is the ability to inspect the logs even when the
platform may be compromised.

• An active intrusion sensor such as PSAD can be used to look for intrusions as well.

Security Testing

Every security control discussed in the previous sections must be tested to determine correct operation and impact.
For example, if we inserted a firewall rule to ban connections from an IP address such as 10.10.10.2, then we need to
test that the connections actually fail.

In addition to functional correctness testing, common security testing tools such as Nessus and Nmap should be used
to perform cyber security testing.

1.19.3 Conclusion

No system is 100% secure unless it is disconnected from the network and is in a physically secure location. The
VOLTTRON team recommends a risk-based cyber security approach that considers each risk, and the impact of an
exploit. Mitigating technologies can then be used to mitigate the most impactful risks first. VOLTTRON is built with
security in mind from the ground up, but it is only as secure as the operating system that it runs on top of. This
document is intended to help VOLTTRON users to secure the underlying Linux operating system to further improve
the robustness of the VOLTTRON platform. Any security questions should be directed to volttron@pnnl.gov.

200 Chapter 1. Features

https://www.raspberrypi.org/documentation/configuration/security.md
http://xymon.sourceforge.net
http://www.bb4.org/features.html
http://sourceforge.net/projects/logwatch/files/
http://logcheck.org
http://git.the-compiler.org/journalwatch/
http://cipherdyne.org/psad/
http://www.tenable.com/products/nessus
http://nmap.org
mailto:volttron@pnnl.gov

VOLTTRON Documentation, Release 8.0 Release Candidate

1.20 Deployment Recipes (Multi-Machine)

For more details about ansible recipes for scalable deployment strategies see VOLTTRON Deployment Recipes

.

1.20. Deployment Recipes (Multi-Machine) 201

https://volttron.readthedocs.io/projects/volttron-ansible/en/main/index.html

VOLTTRON Documentation, Release 8.0 Release Candidate

202 Chapter 1. Features

CHAPTER 2

Indices and tables

• genindex

• modindex

203

VOLTTRON Documentation, Release 8.0 Release Candidate

204 Chapter 2. Indices and tables

Index

A
Agent, 13

B
BACNet, 13

D
DNP3 (Distributed Network Protocol 3), 13

I
IEEE 2030.5, 13

J
JSON (JavaScript Object Notation), 13
JSON-RPC (JSON-Remote Procedure Call), 13

M
Modbus, 13

P
PLC (Programmable Logic Controller), 13
Publish/Subscribe, 13
Python Virtual Environment, 13

205

	Features
	Indices and tables
	Index

