

VOLTTRON™ documentation!

[image: VOLTTRON Tagline]

branch- mysql_fix

VOLTTRON™ is an open-source platform for distributed sensing and control. The platform is an open source tool for
performing simulations, improving building system performance, and creating a more flexible and reliable power grid.

Features

	a secure message bus allowing connectivity between modules on individual platforms and
between platform instances in large scale deployments

	a flexible agent framework allowing users to adapt the platform to their unique use-cases

	a configurable driver framework for collecting data from and sending control
signals to buildings and devices

	automatic data capture and retrieval through our historian framework

	an extensible web framework allowing users and services to securely connect to the platform
from anywhere

VOLTTRON™ is open source and publicly available from GitHub [https://github.com/volttron/volttron.git]. The project
is supported by the U.S. Department of Energy and receives ongoing updates from a team of core developers at PNNL. The
VOLTTRON team encourages and appreciates community involvement including issues and pull requests on Github, meetings
at our bi-weekly office-hours and on Slack. To be invited to office-hours or slack, please send the team an email.

Indices and tables

	Index

	Module Index

What is VOLTTRON?

VOLTTRON™ is a software platform on which software modules called “agents” and device driver modules to connect to a
message bus to interact. Users may configure included drivers for industry standard device communication protocols such
as BACnet or Modbus, or develop and configure their own. Additionally, agents can be installed or developed to perform
a vast variety of tasks.

Design Philosophy

VOLTTRON was designed by Pacific Northwest National Laboratory to service building efficiency, building-grid integration
and transactive controls systems. These systems are working to improve energy efficiency and resiliency in critical
infrastructure. To this end, VOLTTRON was built with the following pillars in mind:

	Cost-Effectiveness - Open source software (free to users) and can be hosted on inexpensive computing resources

	Scalability - Can be used in one building or a fleet of buildings

	Interoperability - Enables interaction/connection with various systems and subsystems, in and out of the energy
sector

	Security - Underpinned with a robust security foundation to combat today’s cyber vulnerabilities and attacks

Basic Components

	Message bus - The VOLTTRON message bus uses
message queueing software [https://en.wikipedia.org/wiki/Message-oriented_middleware] to exchange messages
between agents and drivers installed on the platform. VOLTTRON messages are exchanged using a
publish/suscriber paradigm, or messages can be routed to specific agents through the bus using
remote procedure calls.

	Agents - Agents are software modules which autonomously perform a set of desired functions on
behalf of a user. VOLTTRON agents are often use to collect data, send control signals to devices, implement control
algorithms or perform simulations.

	Drivers - Drivers can be installed on the platform and configured to communicate with
industrial or Internet of Things devices. Drivers provide a set of pre-defined functions which can be mapped to
device communication methods to read or set values on the device.

	Historians - Historians are special purpose agents which are used to subscribe to sources broadcasting on
the message bus and store their messages for later use.

	Web Framework - The VOLTTRON web framework

How Does it Work?

The VOLTTRON platform is built around the concept of software agents. Software agents perform autonomous functions on
behalf of a user. The VOLTTRON platform was created to allow a suite of agents installed by a user to work together to
achieve the user’s goals.

Major Components

The platform comprises several components that allow agents to operate and connect to the platform.

	The Message Bus is central to the platform. All other VOLTTRON components communicate through it
using VOLTTRON Interconnect Protocol (VIP). VIP implements the publish/subscribe paradigm over a
variety of topics or directed communication using Remote Procedure Calls.

	Agents on the platform extend the base agent which provides a VIP connection to the message
bus and an agent lifecycle. Agents subscribe to topics which allow it to read. The agent lifecycle is controlled
by the Agent Instantiation and Packaging (AIP) component which launches
agents in an agent execution environment.

	The Master Driver Agent can be configured with a number of driver configurations and will spawn
corresponding driver instances. Each driver instance provides functions for collecting device data and setting values
on the device. These functions implement device protocol or remote communication endpoint interfaces. Driver data
is published to the message bus or if requested by an agent will be delivered in an RPC response.

	Agents can control devices by interacting with the Actuator Agent to schedule and send
commands.

	The Historian framework subscribes to data published on the messages bus and stores it to
a database or file, or sends it to another location.

Usability Components

Usability components exist to enhance the base capabilities of the platform for deployments.

	VOLTTRON Control is the command line interface to controlling a platform instance. VOLTTRON
Control can be used to operate agents, configure drivers, get status and health details, etc.

	Data collection, command and control can be achieved in large deployments by
connecting multiple platform instances.

	VOLTTRON Central is an agent which can be installed on a platform to provide a single
management interface to multiple VOLTTRON platform instances.

	JSON, static and websocket endpoints can be registered to agents via the Web Framework
and platform web server. This allows remote agent communication as well as for agents to serve web pages.

Installing the Platform

VOLTTRON is written in Python 3.6+ and runs on Linux Operating Systems. For users unfamiliar with those technologies,
the following resources are recommended:

	Python 3.6 Tutorial [https://docs.python.org/3.6/tutorial/]

	Linux Tutorial [http://ryanstutorials.net/linuxtutorial]

This guide will specify commands to use to successfully install the platform on supported Linux distributions, but a
working knowledge of Linux will be helpful for troubleshooting and may improve your ability to get more out of your
deployment.

Note

Volttron version 7.0rc1 is currently tested for Ubuntu versions 18.04 and 18.10 as well as Linux Mint version 19.3.
Version 6.x is tested for Ubuntu versions 16.04 and 18.04 as well as Linux Mint version 19.1.

Step 1 - Install prerequisites

The following packages will need to be installed on the system:

	git

	build-essential

	python3.6-dev

	python3.6-venv

	openssl

	libssl-dev

	libevent-dev

On Debian-based systems, these can all be installed with the following command:

sudo apt-get update
sudo apt-get install build-essential python3-dev python3-venv openssl libssl-dev libevent-dev git

On Ubuntu-based systems, available packages allow you to specify the Python3 version, 3.6 or greater is required
(Debian itself does not provide those packages).

sudo apt-get install build-essential python3.6-dev python3.6-venv openssl libssl-dev libevent-dev git

On arm-based systems (including, but not limited to, Raspbian), you must also install libffi-dev, you can do this with:

sudo apt-get install libffi-dev

Note

On arm-based systems, the available apt package repositories for Raspbian versions older than buster (10) do not
seem to be able to be fully satisfied. While it may be possible to resolve these dependencies by building from
source, the only recommended usage pattern for VOLTTRON 7 and beyond is on raspberry pi OS 10 or newer.

On Redhat or CENTOS systems, these can all be installed with the following
command:

sudo yum update
sudo yum install make automake gcc gcc-c++ kernel-devel python3-devel openssl openssl-devel libevent-devel git

Warning

Python 3.6 or greater is required, please ensure you have installed a supported version with python3 --version

If you have an agent which requires the pyodbc package, install the following additional requirements:

	freetds-bin

	unixodbc-dev

On Debian-based systems these can be installed with the following command:

sudo apt-get install freetds-bin unixodbc-dev

On Redhat or CentOS systems, these can be installed from the Extra Packages for Enterprise Linux (EPEL) repository:

sudo yum install https://dl.fedoraproject.org/pub/epel/epel-release-latest-8.noarch.rpm
sudo yum install freetds unixODBC-devel

Note

The above command to install the EPEL repository is for Centos/Redhat 8. Change the number to match your OS version.
EPEL packages are included in Fedora repositories, so installing EPEL is not required on Fedora.

It may be possible to deploy VOLTTRON on a system not listed above but may involve some troubleshooting and dependency
management on the part of the user.

Step 2 - Clone VOLTTRON code

Repository Structure

There are several options for using the VOLTTRON code depending on whether you require the most stable version of the
code or want the latest updates as they happen. In order of decreasing stability and increasing currency:

	Master - Most stable release branch, current major release is 7.0. This branch is default.

	develop - contains the latest finished features as they are developed. When all features are stable, this branch
will be merged into Master.

Note

This branch can be cloned by those wanting to work from the latest version of the platform but should not be
used in deployments.

	Features are developed on “feature” branches or developers’ forks of the main repository. It is not recommended to
clone these branches except for exploring a new feature.

Note

VOLTTRON versions 6.0 and newer support two message buses - ZMQ and RabbitMQ.

git clone https://github.com/VOLTTRON/volttron --branch <branch name>

Step 3 - Setup virtual environment

The bootstrap.py script in the VOLTTRON root directory will create a
virtual environment [https://docs.python-guide.org/dev/virtualenvs/] and install the package’s Python dependencies.
Options exist for upgrading or rebuilding existing environments, and for adding additional dependencies for optional
drivers and agents included in the repository.

Note

The --help option for bootstrap.py can specified to display all available optional parameters.

Steps for ZeroMQ

Run the following command to install all required packages:

cd <volttron clone directory>
python3 bootstrap.py

Then activate the Python virtual environment:

source env/bin/activate

Proceed to step 4.

Note

You can deactivate the environment at any time by running deactivate.

Steps for RabbitMQ

Step 1 - Install Erlang packages

For RabbitMQ based VOLTTRON, some of the RabbitMQ specific software packages have to be installed.

On Debian based systems and CentOS 6/7

If you are running a Debian or CentOS system, you can install the RabbitMQ dependencies by running the
“rabbit_dependencies.sh” script, passing in the OS name and appropriate distribution as parameters. The
following are supported:

	debian bionic (for Ubuntu 18.04)

	debian xenial (for Ubuntu 16.04 or Linux Mint 18.04)

	debian stretch (for Debian Stretch)

	debian buster (for Debian Buster)

	raspbian buster (for Raspbian/Raspberry Pi OS Buster)

Example command:

./scripts/rabbit_dependencies.sh debian xenial

Alternatively

You can download and install Erlang from [Erlang Solutions](https://www.erlang-solutions.com/resources/download.html).
Please include OTP/components - ssl, public_key, asn1, and crypto.
Also lock your version of Erlang using the [yum-plugin-versionlock](https://access.redhat.com/solutions/98873)

Note

	Currently VOLTTRON only officially supports specific versions of Erlang for each operating system:

	
	1:22.1.8.1-1 for Debian

	1:21.2.6+dfsg-1 for Raspbian

	Specific Erlang 21.x versions correspond to CentOS versions 6, 7, and 8, these can be found
here [https://dl.bintray.com/rabbitmq-erlang/rpm/erlang]

Step 2 - Configure hostname

Make sure that your hostname is correctly configured in /etc/hosts.
See (<https://stackoverflow.com/questions/24797947/os-x-and-rabbitmq-error-epmd-error-for-host-xxx-address-cannot-connect-to-ho>).
If you are testing with VMs make please make sure to provide unique host names for each of the VMs you are using.

The hostname should be resolvable to a valid IP when running on bridged mode. RabbitMQ checks for this during initial
boot. Without this (for example, when running on a VM in NAT mode) RabbitMQ start-up would fail with the error “unable
to connect to empd (port 4369) on <hostname>.”

Note

RabbitMQ startup error would show up in the VM’s syslog (/var/log/messages) file and not in RabbitMQ logs
(/var/log/rabbitmq/rabbitmq@hostname.log)

Step 3 - Bootstrap the environment

cd volttron
python3 bootstrap.py --rabbitmq [optional install directory. defaults to <user_home>/rabbitmq_server]

This will build the platform and create a virtual Python environment and dependencies for RabbitMQ. It also installs
RabbitMQ server as the current user. If an install path is provided, that path should exist and the user should have
write permissions. RabbitMQ will be installed under <install dir>/rabbitmq_server-3.7.7. The rest of the
documentation refers to the directory <install dir>/rabbitmq_server-3.7.7 as $RABBITMQ_HOME.

Note

There are many additional options for bootstrap.py for including dependencies, altering
the environment, etc.

You can check if the RabbitMQ server is installed by checking its status:

service rabbitmq status

Note

The RABBITMQ_HOME environment variable can be set in ~/.bashrc. If doing so, it needs to be set to the RabbitMQ
installation directory (default path is <user_home>/rabbitmq_server/rabbitmq_server-3.7.7)

echo 'export RABBITMQ_HOME=$HOME/rabbitmq_server/rabbitmq_server-3.7.7'|sudo tee --append ~/.bashrc
source ~/.bashrc
$RABBITMQ_HOME/sbin/rabbitmqctl status

Step 4 - Activate the environment

source env/bin/activate

Note

You can deactivate the environment at any time by running deactivate.

Step 5 - Configure RabbitMQ setup for VOLTTRON

vcfg --rabbitmq single [optional path to rabbitmq_config.yml]

Refer to examples/configurations/rabbitmq/rabbitmq_config.yml
for a sample configuration file. At a minimum you will need to provide the host name and a unique common-name
(under certificate-data) in the configuration file.

Note

common-name must be unique and the general convention is to use <volttron instance name>-root-ca.

Running the above command without the optional configuration file parameter will cause the user user to be prompted for
all the required data in the command prompt. “vcfg” will use that data to generate a rabbitmq_config.yml file in the
VOLTTRON_HOME directory.

Note

If the above configuration file is being used as a basis for creating your own configuration file, be sure to update
it with the hostname of the deployment (this should be the fully qualified domain name of the system).

This script creates a new virtual host and creates SSL certificates needed for this VOLTTRON instance. These
certificates get created under the subdirectory “certificates” in your VOLTTRON home (typically in ~/.volttron). It
then creates the main VIP exchange named “volttron” to route message between the platform and agents and alternate
exchange to capture unrouteable messages.

Note

We configure the RabbitMQ instance for a single volttron_home and volttron_instance. This script will confirm with
the user the volttron_home to be configured. The VOLTTRON instance name will be read from volttron_home/config
if available, if not the user will be prompted for VOLTTRON instance name. To run the scripts without any prompts,
save the the VOLTTRON instance name in volttron_home/config file and pass the VOLTTRON home directory as a command
line argument. For example: vcfg –vhome /home/vdev/.new_vhome –rabbitmq single

The Following are the example inputs for vcfg –rabbitmq single command. Since no config file is passed the script
prompts for necessary details.

Your VOLTTRON_HOME currently set to: /home/vdev/new_vhome2

Is this the volttron you are attempting to setup? [Y]:
Creating rmq config yml
RabbitMQ server home: [/home/vdev/rabbitmq_server/rabbitmq_server-3.7.7]:
Fully qualified domain name of the system: [cs_cbox.pnl.gov]:

Enable SSL Authentication: [Y]:

Please enter the following details for root CA certificates
Country: [US]:
State: Washington
Location: Richland
Organization: PNNL
Organization Unit: Volttron-Team
Common Name: [volttron1-root-ca]:
Do you want to use default values for RabbitMQ home, ports, and virtual host: [Y]: N
Name of the virtual host under which RabbitMQ VOLTTRON will be running: [volttron]:
AMQP port for RabbitMQ: [5672]:
http port for the RabbitMQ management plugin: [15672]:
AMQPS (SSL) port RabbitMQ address: [5671]:
https port for the RabbitMQ management plugin: [15671]:
INFO:rmq_setup.pyc:Starting rabbitmq server
Warning: PID file not written; -detached was passed.
INFO:rmq_setup.pyc:**Started rmq server at /home/vdev/rabbitmq_server/rabbitmq_server-3.7.7
INFO:requests.packages.urllib3.connectionpool:Starting new HTTP connection (1): localhost
INFO:requests.packages.urllib3.connectionpool:Starting new HTTP connection (1): localhost
INFO:requests.packages.urllib3.connectionpool:Starting new HTTP connection (1): localhost
INFO:rmq_setup.pyc:
Checking for CA certificate

INFO:rmq_setup.pyc:
Root CA (/home/vdev/new_vhome2/certificates/certs/volttron1-root-ca.crt) NOT Found. Creating root ca for volttron instance
Created CA cert
INFO:requests.packages.urllib3.connectionpool:Starting new HTTP connection (1): localhost
INFO:requests.packages.urllib3.connectionpool:Starting new HTTP connection (1): localhost
INFO:rmq_setup.pyc:**Stopped rmq server
Warning: PID file not written; -detached was passed.
INFO:rmq_setup.pyc:**Started rmq server at /home/vdev/rabbitmq_server/rabbitmq_server-3.7.7
INFO:rmq_setup.pyc:

#######################

Setup complete for volttron home /home/vdev/new_vhome2 with instance name=volttron1
Notes:

- Please set environment variable `VOLTTRON_HOME` to `/home/vdev/new_vhome2` before starting volttron

- On production environments, restrict write access to
 /home/vdev/new_vhome2/certificates/certs/volttron1-root-ca.crt to only admin user. For example: sudo chown root /home/vdev/new_vhome2/certificates/certs/volttron1-root-ca.crt

- A new admin user was created with user name: volttron1-admin and password=default_passwd.
 You could change this user's password by logging into <https://cs_cbox.pnl.gov:15671/> Please update /home/vdev/new_vhome2/rabbitmq_config.yml if you change password

#######################

Test the VOLTTRON Deployment

We are now ready to start VOLTTRON instance. If configured with RabbitMQ message bus a config file would have been
generated in $VOLTTRON_HOME/config with the entry message-bus=rmq. If you need to revert back to ZeroMQ based
VOLTTRON, you will have to either remove the message-bus parameter or set it to the default “zmq” in
$VOLTTRON_HOME/config.

The following command starts volttron process in the background:

volttron -vv -l volttron.log&

This enters the virtual Python environment and then starts the platform in debug (vv) mode with a log file
named volttron.log. Alternatively you can use the utility script start-volttron script that does the same.

./start-volttron

To stop the platform, use the vct command:

volttron-ctl shutdown --platform

or use the included stop-volttron script:

./stop-volttron

Warning

If you plan on running VOLTTRON in the background and detaching it from the
terminal with the disown command be sure to redirect stderr and stdout to /dev/null.
Some libraries which VOLTTRON relies on output directly to stdout and stderr.
This will cause problems if those file descriptors are not redirected to /dev/null

#To start the platform in the background and redirect stderr and stdout
#to /dev/null
volttron -vv -l volttron.log > /dev/null 2>&1&

Installing and Running Agents

VOLTTRON platform comes with several built in services and example agents out of the box. To install a agent
use the script install-agent.py

python scripts/install-agent.py -s <top most folder of the agent> [-c <config file. Might be optional for some agents>]

For example, we can use the command to install and start the Listener Agent - a simple agent that periodically publishes
heartbeat message and listens to everything on the message bus. Install and start the Listener agent using the
following command:

python scripts/install-agent.py -s examples/ListenerAgent --start

Check volttron.log to ensure that the listener agent is publishing heartbeat messages.

tail volttron.log

2016-10-17 18:17:52,245 (listeneragent-3.2 11367) listener.agent INFO: Peer: 'pubsub', Sender: 'listeneragent-3.2_1':, Bus: u'', Topic: 'heartbeat/listeneragent-3.2_1', Headers: {'Date': '2016-10-18T01:17:52.239724+00:00', 'max_compatible_version': u'', 'min_compatible_version': '3.0'}, Message: {'status': 'GOOD', 'last_updated': '2016-10-18T01:17:47.232972+00:00', 'context': 'hello'}

You can also use the volttron-ctl (or vctl) command to start, stop or check the status of an agent

(volttron)volttron@volttron1:~/git/rmq_volttron$ vctl status
 AGENT IDENTITY TAG STATUS HEALTH
6 listeneragent-3.2 listeneragent-3.2_1 running [13125] GOOD
f master_driveragent-3.2 platform.driver master_driver

vctl stop <agent id>

Note

The default working directory is ~/.volttron. The default directory for creation of agent packages is
~/.volttron/packaged

Next Steps

There are several walk-throughs and detailed explanations of platform features to explore additional aspects of the
platform:

	Agent Framework

	Driver Framework

	Demonstration of the management UI

	RabbitMQ setup with Federation and Shovel plugins

Definition of Terms

This page lays out a common terminology for discussing the components and underlying technologies used by the platform.
The first section discusses capabilities and industry standards that VOLTTRON conforms to while the latter is specific
to the VOLTTRON domain.

Industry Terms

	BACNet: Building Automation and Control network, that leverages ASHRAE, ANSI, and IOS 16484-5 standard protocols

	JSON-RPC: JSON-encoded Remote Procedure Call

	JSON: JavaScript object notation is a text-based, human-readable, open data interchange format, similar to XML,
but less verbose

	Modbus: Communications protocol for talking with industrial electronic devices

	Publish/subscribe: A message delivery pattern where senders (publishers) and receivers (subscribers) do not
communicate directly nor necessarily have knowledge of each other, but instead exchange messages through an
intermediary based on a mutual class or topic

	RabbitMQ:

	SSH: Secure shell is a network protocol providing encryption and authentication of data using public-key
cryptography

	SSL: Secure sockets layer is a technology for encryption and authentication of network traffic based on a chain
of trust

	TLS: Transport layer security is the successor to SSL

	ZeroMQ or ØMQ: A library used for inter-process and inter-computer communication

VOLTTRON Terms

Activated Environment

An activated environment is the environment a VOLTTRON instance is run in. The bootstrap process creates the
environment from the shell and to activate it the following command is executed.

user@computer> source env/bin/activate

Note once the above command has been run the prompt will have changed
(volttron)user@computer>

AIP

Agent Instantiation and Packaging - this is the module responsible for creating agent wheels, the agent execution
environment and running agents. Found in the VOLTTRON repository in the volttron/platform directory.

Bootstrap Environment

The process by which an operating environment (activated environment) is produced. From the
VOLTTRON_ROOT directory executing python bootstrap.py will start the bootstrap process.

VOLTTRON_HOME

The location for a specific VOLTTRON_INSTANCE to store its specific information. There can be many
VOLTTRON_HOMEs on a single computing resource(VM, machine, etc.), and each VOLTTRON_HOME will correspond to a
single instance of VOLTTRON.

VOLTTRON_INSTANCE

A single volttron process executing instructions on a computing resource. For each VOLTTRON_INSTANCE there WILL
BE only one VOLTTRON_HOME associated with it. In order for a VOLTTRON_INSTANCE to be able to
participate outside its computing resource it must be bound to an external ip address.

VOLTTRON_ROOT

The cloned directory from Github. When executing the command

git clone http://github.com/VOLTTRON/volttron

the top level volttron folder is the VOLTTRON_ROOT

VIP

VOLTTRON Interconnect Protocol is a secure routing protocol that facilitates communications between agents,
controllers, services and the supervisory VOLTTRON_INSTANCE.

License

Copyright 2019, Battelle Memorial Institute.

Licensed under the Apache License, Version 2.0 (the “License”); you may not use this file except in compliance with the License. You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

The patent license grant shall only be applicable to the following patent and patent application (Battelle IPID 17008-E), as assigned to the Battelle Memorial Institute, as used in conjunction with this Work: • US Patent No. 9,094,385, issued 7/28/15 • USPTO Patent App. No. 14/746,577, filed 6/22/15, published as US 2016-0006569.

Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an “AS IS” BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License.

Terms

This material was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor the United States Department of Energy, nor Battelle, nor any of their employees, nor any jurisdiction or organization that has cooperated in the development of these materials, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness or any information, apparatus, product, software, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or Battelle Memorial Institute. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

PACIFIC NORTHWEST NATIONAL LABORATORY operated by BATTELLE for the UNITED STATES DEPARTMENT OF ENERGY under Contract DE-AC05-76RL01830

Join the Community

The VOLTTRON project is transitioning into the Eclipse Foundation as Eclipse VOLTTRON. Current resources will still
be used during this time. Please watch this space!

The Eclipse VOLTTRON team aims to work with users and contributors to continuously improve the platform with features
requested by the community as well as architectural features that improve robustness, security, and scalability.
Contributing back to the project, which is encouraged but not required, enhances its capabilities for the whole community.
To learn more, check out Contributing and Documentation.

Slack Channel

volttron-community.slack.com is where the VOLTTRON™ community at large can ask questions and meet with others
using VOLTTRON™. To be added to Slack please email the VOLTTRON team at
volttron@pnnl.gov.

Mailing List

Join the mailing list by emailing volttron@pnnl.gov.

Stack Overflow

The VOLTTRON community supports questions being asked and answered through Stack Overflow. The questions tagged with
the volttron tag can be found at http://stackoverflow.com/questions/tagged/volttron.

Office Hours

PNNL hosts office hours every other week on Fridays at 11 AM (PST). These meetings are designed to be very informal
where VOLTTRON developers can answer specific questions about the inner workings of VOLTTRON. These meetings are also
available for topical discussions of different aspects of the VOLTTRON platform. Currently the office hours are
available through a Zoom meeting. To be invited to the link meeting, contact the volttron team via email:
mailto:volttron@pnnl.gov

Meetings are recorded and can be reviewed here [https://volttron.org/office-hours].

Setting Up a Development Environment

An example development environment used by the VOLTTRON team would consist of a Linux VM running on the host development
machine on which an IDE would be running. The guides can be used to set up a development environment.

	Forking the Repository
	Cloning ‘YOUR’ VOLTTRON forked repository

	Adding and Committing files

	Pushing to the remote repository

	Installing a Linux Virtual Machine
	Adding a VDI Image to VirtualBox Environment

	Pycharm Development Environment
	Open Pycharm and Load VOLTTRON

	Set the Project Interpreter

	Running the VOLTTRON Process

	Running an Agent

	Testing an Agent

Forking the Repository

The first step to editing the repository is to fork it into your own user space. Creating a fork makes a copy of the
repository in your GitHub for you to make any changes you may require for your use-case. This allows you to make
changes without impacting the core VOLTTRON repository.

Forking is done by pointing your favorite web browser to http://github.com/VOLTTRON/volttron and then clicking “Fork” on
the upper right of the screen. (Note: You must have a GitHub account to fork the repository. If you don’t have one, we
encourage you to sign up [https://github.com/join?source_repo=VOLTTRON%2Fvolttron].)

Note

After making changes to your repository, you may wish to contribute your changes back to the Core VOLTTRON
repository. Instructions for contributing code may be found here.

Cloning ‘YOUR’ VOLTTRON forked repository

The next step in the process is to copy your forked repository onto your computer to work on. This will create an
identical copy of the GitHub repository on your local machine. To do this you need to know the address of your
repository. The URL to your repository address will be https://github.com/<YOUR USERNAME>/volttron.git. From a
terminal execute the following commands:

Here, we are assuming you are doing develop work in a folder called `git`. If you'd rather use something else, that's OK.
mkdir -p ~/git
cd ~/git
git clone -b develop https://github.com/<YOUR USERNAME>/volttron.git
cd volttron

Note

VOLTTRON uses develop as its main development branch rather than the standard master branch (the default).

Adding and Committing files

Now that you have your repository cloned, it’s time to start doing some modifications. Using a simple text editor
you can create or modify any file in the volttron directory. After making a modification or creating a file
it is time to move it to the stage for review before committing to the local repository. For this example let’s assume
we have made a change to README.md in the root of the volttron directory and added a new file called foo.py. To get
those files in the staging area (preparing for committing to the local repository) we would execute the following
commands:

git add foo.py
git add README.md

Alternatively in one command
git add foo.py README.md

After adding the files to the stage you can review the staged files by executing:

git status

Finally, in order to commit to the local repository we need to think of what change we actually did and be able to
document it. We do that with a commit message (the -m parameter) such as the following.

git commit -m "Added new foo.py and updated copyright of README.md"

Pushing to the remote repository

The next step is to share our changes with the world through GitHub. We can do this by pushing the commits
from your local repository out to your GitHub repository. This is done by the following command:

git push

Installing a Linux Virtual Machine

VOLTTRON requires a Linux system to run. For Windows users this will require a virtual machine (VM).

This section describes the steps necessary to install
VOLTTRON using Oracle VirtualBox software. Virtual Box is free and can be downloaded from
https://www.virtualbox.org/wiki/Downloads.

[image: VirtualBox Download]

After installing VirtualBox download a virtual box appliance from https://www.osboxes.org/linux-mint/ extract the
VDI from the downlaoded archive, or download a system installation disk. VOLTTRON version 7.0.x has been tested
using Ubuntu 18.04, 18.10; Linux Mint 19; VOLTTRON version 6.0.x has been tested with Ubuntu 16.04, 18.04. However,
any modern apt based Linux distribution should work out of the box. Linux Mint 19.3 with the Xfce desktop is used
as an example, however platform setup in Ubuntu should be identical.

Note

A 32-bit version of Linux should be used when
running VOLTTRON on a system with limited hardware (less than 2 GB of RAM).

Adding a VDI Image to VirtualBox Environment

[image: Linux Mint]

The below info holds the VM’s preset username and password.

[image: Linux Mint Credentials]

Create a new VirtualBox Image.

[image: VirtualBox VM Naming]

Select the amount of RAM for the VM. The recommended minimum is shown in the image below:

[image: VirtualBox Memory Size Selection]

Specify the hard drive image using the extracted VDI file.

[image: VirtualBox Hard Disk]

With the newly created VM selected, choose Machine from the VirtualBox menu in the top left corner of the VirtualBox
window; from the drop down menu, choose Settings.

To enable bidirectional copy and paste, select the General tab in the VirtualBox Settings. Enable Shared Clipboard and
Drag’n’Drop as Bidirectional.

[image: VirtualBox Bidirectional]

Note

Currently, this feature only works under certain circumstances (e.g. copying / pasting text).

Go to System Settings. In the processor tab, set the number of processors to two.

[image: VirtualBox Processors]

Go to Storage Settings. Confirm that the Linux Mint VDI is attached to Controller: SATA.

Danger

Do NOT mount the Linux Mint iso for Controller: IDE. Will result in errors.

[image: VirtualBox Controller]

Start the machine by saving these changes and clicking the “Start” arrow located on the upper left hand corner of the
main VirtualBox window.

Pycharm Development Environment

Pycharm is an IDE dedicated to developing python projects. It provides coding
assistance and easy access to debugging tools as well as integration with
py.test. It is a popular tool for working with VOLTTRON.
Jetbrains provides a free community version that can be downloaded from
https://www.jetbrains.com/pycharm/

Open Pycharm and Load VOLTTRON

When launching Pycharm for the first time we have to tell it where to find the
VOLTTRON source code. If you have already cloned the repo then point Pycharm to
the cloned project. Pycharm also has options to access remote repositories.

Subsequent instances of Pycharm will automatically load the VOLTTRON project.

Note

When getting started make sure to search for gevent in the settings and
ensure that support for it is enabled.

[image: Open Pycharm]
[image: Load Volttron]

Set the Project Interpreter

This step should be completed after running the bootstrap script in the VOLTTRON
source directory. Pycharm needs to know which python environment it should use
when running and debugging code. This also tells Pycharm where to find python
dependencies. Settings menu can be found under the File option in Pycharm.

[image: Set Project Interpreter]

Running the VOLTTRON Process

If you are not interested in running the VOLTTRON process itself in Pycharm then
this step can be skipped.

In Run > Edit Configurations create a configuration that has
<your source dir>/env/bin/volttron in the script field, -vv in the script
parameters field (to turn on verbose logging), and set the working directory to
the top level source directory.

VOLTTRON can then be run from the Run menu.

[image: Run Settings]

Running an Agent

Running an agent is configured similarly to running VOLTTRON proper. In
Run > Edit Configurations add a configuration and give it the same name
as your agent. The script should be the path to scripts/pycharm-launch.py and
and the script parameter must be the path to your agent’s agent.py file.

In the Environment Variables field add the variable
AGENT_CONFIG that has the path to the agent’s configuration file as its value,
as well as AGENT_VIP_IDENTITY, which must be unique on the platform.

A good place to keep configuration files is in a directory called config in
top level source directory; git will ignore changes to these files.

Note

There is an issue with imports in Pycharm when there is a secondary file
(i.e. not agent.py but another module within the same
package). When that happens right click on the directory in the file tree
and select Mark Directory As -> Source Root

[image: Listener Settings]
[image: Run Listener]

Note

There will be issues if two agents create a file with the same name in the same working directory.
For instance: SQLHistorian agent and Forwarder agent both create a backup.sqlite
directory on the same working directory. When that happens both the agents attempt to use
the same backup db and eventually lock the db. To avoid this situation, create
different working directories for each agent and add the absolute path for the config file.
The best way to go about this is to create a new folder and assign working
directory to that folder as shown below.

[image: Run Forwarder]
[image: Run Historian]

Testing an Agent

Agent tests written in py.test can be run simply by right-clicking the tests
directory and selecting Run ‘py.test in tests, so long as the root directory
is set as the VOLTTRON source root.

[image: Run Tests]

Agent Development

The VOLTTRON platform now has utilities to speed the creation and installation of new agents. To use these utilities the
VOLTTRON environment must be activated.

From the project directory, activate the VOLTTRON environment with:

source env/bin/activate

Create Agent Code

Run the following command to start the Agent Creation Wizard:

vpkg init TestAgent tester

TestAgent is the directory that the agent code will be placed in. The directory must not exist when the command is
run. tester is the name of the agent module created by wizard.

The Wizard will prompt for the following information:

Agent version number: [0.1]: 0.5
Agent author: []: VOLTTRON Team
Author's email address: []: volttron@pnnl.gov
Agent homepage: []: https://volttron.org/
Short description of the agent: []: Agent development tutorial.

Once the last question is answered the following will print to the console:

2018-08-02 12:20:56,604 () volttron.platform.packaging INFO: Creating TestAgent
2018-08-02 12:20:56,604 () volttron.platform.packaging INFO: Creating TestAgent/tester
2018-08-02 12:20:56,604 () volttron.platform.packaging INFO: Creating TestAgent/setup.py
2018-08-02 12:20:56,604 () volttron.platform.packaging INFO: Creating TestAgent/config
2018-08-02 12:20:56,604 () volttron.platform.packaging INFO: Creating TestAgent/tester/agent.py
2018-08-02 12:20:56,604 () volttron.platform.packaging INFO: Creating TestAgent/tester/__init__.py

The TestAgent directory is created with the new Agent inside.

Agent Directory

At this point, the contents of the TestAgent directory should look like:

TestAgent/
├── setup.py
├── config
└── tester
 ├── agent.py
 └── __init__.py

Agent Skeleton

The agent.py file in the tester directory of the newly created agent module will contain skeleton code (below).
Descriptions of the features of this code as well as additional development help are found in the rest of this document.

"""
Agent documentation goes here.
"""

__docformat__ = 'reStructuredText'

import logging
import sys
from volttron.platform.agent import utils
from volttron.platform.vip.agent import Agent, Core, RPC

_log = logging.getLogger(__name__)
utils.setup_logging()
__version__ = "0.1"

def tester(config_path, **kwargs):
 """Parses the Agent configuration and returns an instance of
 the agent created using that configuration.

 :param config_path: Path to a configuration file.

 :type config_path: str
 :returns: Garbage
 :rtype: Garbage
 """
 try:
 config = utils.load_config(config_path)
 except StandardError:
 config = {}

 if not config:
 _log.info("Using Agent defaults for starting configuration.")

 setting1 = int(config.get('setting1', 1))
 setting2 = config.get('setting2', "some/random/topic")

 return Tester(setting1,
 setting2,
 **kwargs)

class Tester(Agent):
 """
 Document agent constructor here.
 """

 def __init__(self, setting1=1, setting2="some/random/topic",
 **kwargs):
 super(Garbage, self).__init__(**kwargs)
 _log.debug("vip_identity: " + self.core.identity)

 self.setting1 = setting1
 self.setting2 = setting2

 self.default_config = {"setting1": setting1,
 "setting2": setting2}

 #Set a default configuration to ensure that self.configure is called immediately to setup
 #the agent.
 self.vip.config.set_default("config", self.default_config)
 #Hook self.configure up to changes to the configuration file "config".
 self.vip.config.subscribe(self.configure, actions=["NEW", "UPDATE"], pattern="config")

 def configure(self, config_name, action, contents):
 """
 Called after the Agent has connected to the message bus. If a configuration exists at startup
 this will be called before onstart.

 Is called every time the configuration in the store changes.
 """
 config = self.default_config.copy()
 config.update(contents)

 _log.debug("Configuring Agent")

 try:
 setting1 = int(config["setting1"])
 setting2 = str(config["setting2"])
 except ValueError as e:
 _log.error("ERROR PROCESSING CONFIGURATION: {}".format(e))
 return

 self.setting1 = setting1
 self.setting2 = setting2

 self._create_subscriptions(self.setting2)

 def _create_subscriptions(self, topic):
 #Unsubscribe from everything.
 self.vip.pubsub.unsubscribe("pubsub", None, None)

 self.vip.pubsub.subscribe(peer='pubsub',
 prefix=topic,
 callback=self._handle_publish)

 def _handle_publish(self, peer, sender, bus, topic, headers,
 message):
 pass

 @Core.receiver("onstart")
 def onstart(self, sender, **kwargs):
 """
 This is method is called once the Agent has successfully connected to the platform.
 This is a good place to setup subscriptions if they are not dynamic or
 do any other startup activities that require a connection to the message bus.
 Called after any configurations methods that are called at startup.

 Usually not needed if using the configuration store.
 """
 #Example publish to pubsub
 #self.vip.pubsub.publish('pubsub', "some/random/topic", message="HI!")

 #Exmaple RPC call
 #self.vip.rpc.call("some_agent", "some_method", arg1, arg2)

 @Core.receiver("onstop")
 def onstop(self, sender, **kwargs):
 """
 This method is called when the Agent is about to shutdown, but before it disconnects from
 the message bus.
 """
 pass

 @RPC.export
 def rpc_method(self, arg1, arg2, kwarg1=None, kwarg2=None):
 """
 RPC method

 May be called from another agent via self.core.rpc.call """
 return self.setting1 + arg1 - arg2

def main():
 """Main method called to start the agent."""
 utils.vip_main(garbage,
 version=__version__)

if __name__ == '__main__':
 # Entry point for script
 try:
 sys.exit(main())
 except KeyboardInterrupt:
 pass

The resulting code is well documented with comments and documentation strings. It gives examples of how to do common
tasks in VOLTTRON Agents. The main agent code is found in tester/agent.py.

Building an Agent

The following section includes guidance on several important components for building agents in VOLTTRON.

Parse Packaged Configuration and Create Agent Instance

The code to parse a configuration file packaged and installed with the agent is found in the tester function:

def tester(config_path, **kwargs):
 """Parses the Agent configuration and returns an instance of
 the agent created using that configuration.

 :param config_path: Path to a configuration file.

 :type config_path: str
 :returns: Tester
 :rtype: Tester
 """
 try:
 config = utils.load_config(config_path)
 except StandardError:
 config = {}

 if not config:
 _log.info("Using Agent defaults for starting configuration.")

 setting1 = int(config.get('setting1', 1))
 setting2 = config.get('setting2', "some/random/topic")

 return Tester(setting1,
 setting2,
 **kwargs)

The configuration is parsed with the utils.load_config function and the results are stored in the config variable.
An instance of the Agent is created from the parsed values and is returned.

Initialization and Configuration Store Support

The configuration store is a powerful feature. The agent template provides
a simple example of setting up default configuration store values and setting up a configuration handler.

class Tester(Agent):
 """
 Document agent constructor here.
 """

 def __init__(self, setting1=1, setting2="some/random/topic",
 **kwargs):
 super(Tester, self).__init__(**kwargs)
 _log.debug("vip_identity: " + self.core.identity)

 self.setting1 = setting1
 self.setting2 = setting2

 self.default_config = {"setting1": setting1,
 "setting2": setting2}

 #Set a default configuration to ensure that self.configure is called immediately to setup
 #the agent.
 self.vip.config.set_default("config", self.default_config)
 #Hook self.configure up to changes to the configuration file "config".
 self.vip.config.subscribe(self.configure, actions=["NEW", "UPDATE"], pattern="config")

 def configure(self, config_name, action, contents):
 """
 Called after the Agent has connected to the message bus. If a configuration exists at startup
 this will be called before onstart.

 Is called every time the configuration in the store changes.
 """
 config = self.default_config.copy()
 config.update(contents)

 _log.debug("Configuring Agent")

 try:
 setting1 = int(config["setting1"])
 setting2 = str(config["setting2"])
 except ValueError as e:
 _log.error("ERROR PROCESSING CONFIGURATION: {}".format(e))
 return

 self.setting1 = setting1
 self.setting2 = setting2

 self._create_subscriptions(self.setting2)

Note

Support for the configuration store is instantiated by subscribing to configuration changes with
self.vip.config.subscribe.

self.vip.config.subscribe(self.configure_main, actions=["NEW", "UPDATE"], pattern="config")

Values in the default config can be built into the agent or come from the packaged configuration file. The subscribe
method tells our agent which function to call whenever there is a new or updated config file. For more information
on using the configuration store see Agent Configuration Store.

_create_subscriptions (covered in a later section) will use the value in self.setting2 to create a new subscription.

Agent Lifecycle Events

The agent lifecycle is controlled in the agents VIP core. The agent lifecycle manages scheduling and periodic
function calls, the main agent loop, and trigger a number of signals for callbacks in the
concrete agent code. These callbacks are listed and described in the skeleton code below:

Note

The lifecycle signals can trigger any method. To cause a method to be triggered by a lifecycle signal, use a
decorator:

@Core.receiver("<lifecycle_method>")
def my_callback(self, sender, **kwargs):
 # do my lifecycle method callback
 pass

@Core.receiver("onsetup")
def onsetup(self, sender, **kwargs)
 """
 This method is called after the agent has successfully connected to the platform, but before the scheduled
 methods loop has started. This method not often used, but is most commonly used to define periodic
 functions or do some pre-configuration.
 """
 self.vip.core.periodic(60, send_request)

@Core.receiver("onstart")
def onstart(self, sender, **kwargs):
 """
 This method is called once the Agent has successfully connected to the platform.
 This is a good place to setup subscriptions if they are not dynamic or to
 do any other startup activities that require a connection to the message bus.
 Called after any configurations methods that are called at startup.

 Usually not needed if using the configuration store.
 """
 #Example publish to pubsub
 self.vip.pubsub.publish('pubsub', "some/random/topic", message="HI!")

 #Example RPC call
 self.vip.rpc.call("some_agent", "some_method", arg1, arg2)

@Core.receiver("onstop")
def onstop(self, sender, **kwargs):
 """
 This method is called when the Agent is about to shutdown, but before it disconnects from
 the message bus. Common use-cases for this method are to stop periodic processing, closing connections and
 setting agent state prior to cleanup.
 """
 self.publishing = False
 self.cache.close()

@Core.receiver("onfinish")
def onfinish(self, sender, **kwargs)
 """
 This method is called after all scheduled threads have concluded. This method is rarely used, but could be
 used to send shut down signals to other agents, etc.
 """
 self.vip.pubsub.publish('pubsub', 'some/topic', message=f'agent {self.core.identity} shutdown')

Periodics and Scheduling

Periodic and Scheduled callback functions are callbacks made to functions in agent code from the thread scheduling in
the agent core.

Scheduled Callbacks

Scheduled callback functions are often used similarly to cron jobs to perform tasks at specific times, or to schedule
tasks ad-hoc as agent state is updated. There are 2 ways to schedule callbacks: using a decorator, or calling the
core’s scheduling function. Example usage follows.

using the agent's core to schedule a task
self.core.schedule(periodic(5), self.sayhi)

def sayhi(self):
 print("Hello-World!")

using the decorator to schedule a task
@Core.schedule(cron('0 1 * * *'))
def cron_function(self):
 print("this is a cron-scheduled function")

Note

Scheduled Callbacks can use CRON scheduling, a datetime object, a number of seconds (from current time), or a
periodic which will make the schedule function as a periodic.

inside some agent method
self.core.schedule(t, function)
self.core.schedule(periodic(t), periodic_function)
self.core.schedule(cron('0 1 * * *'), cron_function)

Periodic Callbacks

Periodic call back functions are functions which are repeatedly called at a regular interval until the periodic is
cancelled in the agent code or the agent stops running. Like scheduled callbacks, periodics can be specified using
either decorators or using core function calls.

self.core.periodic(10, self.saybye)

def saybye(self):
 print('Good-bye Cruel World!')

@Core.periodic(60)
def poll_api(self):
 return requests.get("https://lmgtfy.com").json()

Note

Periodic intervals are specified in seconds.

Publishing Data to the Message Bus

The agent’s VIP connection can be used to publish data to the message bus. The message published and topic to publish
to are determined by the agent implementation. Classes of agents already
specified by VOLTTRON may have well-defined intended topic usage, see those agent
specifications for further detail.

def publish_oscillating_update(self):
 self.publish_value = 1 if self.publish_value = 0 else 0
 self. vip.pubsub.publish('pubsub', 'some/topic/', message=f'{"oscillating_value": "{self.publish_value}"')

Setting up a Subscription

The Agent creates a subscription to a topic on the message bus using the value of self.setting2 in the method
_create_subscription. The messages for this subscription are handled with the _handle_publish method:

def _create_subscriptions(self, topic):
 #Unsubscribe from everything.
 self.vip.pubsub.unsubscribe("pubsub", None, None)

 self.vip.pubsub.subscribe(peer='pubsub',
 prefix=topic,
 callback=self._handle_publish)

def _handle_publish(self, peer, sender, bus, topic, headers,
 message):
 #By default no action is taken.
 pass

Alternatively, a decorator can be used to specify the function as a callback:

@PubSub.subscribe('pubsub', "topic_prefix")
def _handle_publish(self, peer, sender, bus, topic, headers,
 message):
 #By default no action is taken.
 pass

To unsubscribe from a topic, the self.vip.pubsub.unsubscribe can be used:

self.vip.pubsub.unsubscribe(peer='pubsub',
 prefix=topic,
 callback=self._handle_publish)

Giving None as values for the prefix and callback argument will unsubscribe from everything on that bus. This is
handy for subscriptions that must be updated base on a configuration setting.

Heartbeat

The heartbeat subsystem provides access to a periodic publish so that others can observe the agent’s status. Other
agents can subscribe to the heartbeat topic to see who is actively publishing to it. It it turned off by default.

Enabling the heartbeat publish:

Subscribing to the heartbeat topic:

Health

The health subsystem adds extra status information to the an agent’s heartbeat. Setting the status will start the
heartbeat if it wasn’t already. Health is used to represent the internal state of the agent at runtime. GOOD health
indicates that all is fine with the agent and it is operating normally. BAD health indicates some kind of problem,
such as if an agent is unable to reach a remote web API.

Example of setting health:

Remote Procedure Calls

An agent may receive commands from other agents via a Remote Procedure Call (RPC).
This is done with the @RPC.export decorator:

@RPC.export
def rpc_method(self, arg1, arg2, kwarg1=None, kwarg2=None):
 """
 RPC method

 May be called from another agent via self.core.rpc.call """
 return self.setting1 + arg1 - arg2

To send an RPC call to another agent running on the platform, the agent must invoke the rpc.call method of its VIP
connection.

in agent code
def send_remote_procedure_call(self):
 peer = "<agent identity>"
 peer_method = "<method in peer agent API>"
 args = ["list", "of", "peer", "method", "arguments", "..."]
 self.vip.rpc.call(peer, peer_method, *args)

Packaging Configuration

The wizard will automatically create a setup.py file. This file sets up the name, version, required packages, method
to execute, etc. for the agent based on your answers to the wizard. The packaging process will also use this
information to name the resulting file.

from setuptools import setup, find_packages

MAIN_MODULE = 'agent'

Find the agent package that contains the main module
packages = find_packages('.')
agent_package = 'tester'

Find the version number from the main module
agent_module = agent_package + '.' + MAIN_MODULE
_temp = __import__(agent_module, globals(), locals(), ['__version__'], -1)
__version__ = _temp.__version__

Setup
setup(
 name=agent_package + 'agent',
 version=__version__,
 author_email="volttron@pnnl.gov",
 url="https://volttron.org/",
 description="Agent development tutorial.",
 author="VOLTTRON Team",
 install_requires=['volttron'],
 packages=packages,
 entry_points={
 'setuptools.installation': [
 'eggsecutable = ' + agent_module + ':main',
]
 }
)

Launch Configuration

In TestAgent, the wizard will automatically create a JSON file called “config”. It contains configuration information
for the agent. This file contains examples of every data type supported by the configuration system:

{
 # VOLTTRON config files are JSON with support for python style comments.
 "setting1": 2, #Integers
 "setting2": "some/random/topic2", #Strings
 "setting3": true, #Booleans: remember that in JSON true and false are not capitalized.
 "setting4": false,
 "setting5": 5.1, #Floating point numbers.
 "setting6": [1,2,3,4], #Lists
 "setting7": {"setting7a": "a", "setting7b": "b"} #Objects
}

Packaging and Installation

To install the agent the platform must be running. Start the platform with the command:

./start-volttron

Note

If you are not in an activated environment, this script will start the platform running in the background in the
correct environment. However the environment will not be activated for you; you must activate it yourself.

Now we must install it into the platform. Use the following command to install it and add a tag for easily referring to
the agent. From the project directory, run the following command:

python scripts/install-agent.py -s TestAgent/ -c TestAgent/config -t testagent

To verify it has been installed, use the following command:

vctl list

This will result in output similar to the following:

 AGENT IDENTITY TAG Status Health PRI
df testeragent-0.5 testeragent-0.5_1 testagent

	The first string is a unique portion of the full UUID for the agent

	AGENT is the “name” of the agent based on the contents of its class name and the version in its setup.py.

	IDENTITY is the agent’s identity in the platform. This is automatically assigned based on class name and instance
number. This agent’s ID is _1 because it is the first instance.

	TAG is the name we assigned in the command above

	Status indicates the running status of an agent - running agents are running, agents which are not running will have
no listed status

	Health is an indication of the internal state of the agent. ‘Healthy’ agents will have GOOD health. If an agent
enters an error state, it will continue to run, but its health will be BAD.

	PRI is the priority for agents which have been “enabled” using the vctl enable command.

When using lifecycle commands on agents, they can be referred to by the UUID (default) or AGENT (name) or TAG.

Running and Testing the Agent

Now that the first pass of the agent code is complete, we can see if the agent works. It is highly-suggested to build
a set of automated tests for the agent code prior to writing the agent, and running those tests after the agent is
code-complete. Another quick way to determine if the agent is going the right direction is to run the agent on the
platform using the VOLTTRON command line interface.

From the Command Line

To test the agent, we will start the platform (if not already running), launch the agent, and check the log file.
With the VOLTTRON environment activated, start the platform by running (if needed):

./start-volttron

You can launch the agent in three ways, all of which you can find by using the vctl list command:

	By using the <uuid>:

vctl start <uuid>

	By name:

vctl start --name testeragent-0.1

	By tag:

vctl start --tag testagent

Check that it is running:

vctl status

	Start the ListenerAgent as in the platform installation guide.

	Check the log file for messages indicating the TestAgent is receiving the ListenerAgents messages:

TODO

Automated Test Cases and Documentation

Before contributing a new agent to the VOLTTRON source code repository, please consider adding two other essential
elements.

	Integration and unit test cases

	README file that includes details of pre-requisite software, agent setup details (such as setting up databases,
permissions, etc.) and sample configuration

VOLTTRON uses pytest as a framework for executing tests. All unit tests should be based on the pytest framework.
For instructions on writing unit and integration tests with pytest, refer to the
Writing Agent Tests documentation.

pytest is not installed with the distribution by default. To install py.test and it’s dependencies execute the
following:

python bootstrap.py --testing

Note

There are other options for different agent requirements. To see all of the options use:

python bootstrap.py --help

in the Extra Package Options section.

To run a single test module, use the command

pytest <testmodule.py>

To run all of the tests in the volttron repository execute the following in the root directory using an activated
command prompt:

./ci-integration/run-tests.sh

Scripts

In order to make repetitive tasks less repetitive the VOLTTRON team has create several scripts in order to help. These
tasks are available in the scripts directory.

Note

In addition to the scripts directory, the VOLTTRON team has added the config directory to the .gitignore file. By
convention this is where we store customized scripts and configuration that will not be made public. Please feel
free to use this convention in your own processes.

The scripts/core directory is laid out in such a way that we can build scripts on top of a base core. For example the
scripts in sub-folders such as the historian-scripts and demo-comms use the scripts that are present in the core
directory.

The most widely used script is scripts/install-agent.py. The install_agent.py script will remove an agent if the
tag is already present, create a new agent package, and install the agent to VOLTTRON_HOME. This script has three
required arguments and has the following signature:

Note

Agent to Package must have a setup.py in the root of the directory. Additionally, the user must be in an activated
Python Virtual Environment for VOLTTRON

cd $VOLTTRON_ROOT
source env/bin/activate

python scripts/install_agent.py -s <agent path> -c <agent config file> -i <agent VIP identity> --tag <Tag>

Note

The --help optional argument can be used with scripts/install-agent.py to view all available options for the
script

The install_agent.py script will respect the VOLTTRON_HOME specified on the command line or set in the global
environment. An example of setting VOLTTRON_HOME to /tmp/v1home is as follows.

VOLTTRON_HOME=/tmp/v1home python scripts/install-agent.py -s <Agent to Package> -c <Config file> --tag <Tag>

Agent Configuration Store Interface

The Agent Configuration Store Subsystem provides an interface for facilitating dynamic configuration via
the platform configuration store. It is intended to work alongside the original configuration file
to create a backwards compatible system for configuring agents with the bundled configuration file acting
as default settings for the agent.

If an Agent Author does not want to take advantage of the platform configuration store they need to make
no changes. To completely disable the Agent Configuration Store Subsystem an Agent may pass enable_store=False
to the Agent.__init__ method.

The Agent Configuration Store Subsystem caches configurations as the platform sends updates to the agent.
Updates from the platform will usually trigger callbacks on the agent.

Agent access to the Configuration Store is managed through the self.vip.config object in the Agent class.

The “config” Configuration

The configuration name config is considered the canonical name of an Agents main configuration.
As such the Agent will always run callbacks for that configuration first at startup and when a
change to another configuration triggers any callbacks for config.

Configuration Callbacks

Agents may setup callbacks for different configuration events. The callback method must have the following signature:

my_callback(self, config_name, action, contents)

Note

The example above is for a class member method, however the method does not need to be a member of the agent class.

	config_name - The method to call when a configuration event occurs.

	action - The specific configuration event type that triggered the callback. Possible values are “NEW”, “UPDATE”,
“DELETE”. See Configuration Events

	contents - The actual contents of the configuration. Will be a string, list, or dictionary for the actions “NEW”
and “UPDATE”. None if the action is “DELETE”.

Note

All callbacks which are connected to the “NEW” event for a configuration will called during agent startup with the
initial state of the configuration.

Configuration Events

	NEW - This event happens for every existing configuration at Agent startup and whenever a new configuration is
added to the Configuration Store.

	UPDATE - This event happens every time a configuration is changed.

	DELETE - The event happens every time a configuration is removed from the store.

Setting Up a Callback

A callback is setup with the self.vip.config.subscribe method.

Note

Subscriptions may be setup at any point in the life cycle of an Agent. Ideally they are setup in __init__.

subscribe(callback, actions=["NEW", "UPDATE", "DELETE"], pattern="*")

	callback - The method to call when a configuration event occurs.

	actions - The specific configuration event that will trigger the callback. May be a string with the name of a
single action or a list of actions.

	pattern - The pattern used to match configuration names to trigger the callback.

Configuration Name Pattern Matching

Configuration name matching uses Unix file name matching semantics. Specifically the python module fnmatch [https://docs.python.org/2.7/library/fnmatch.html#module-fnmatch] is
used.

Name matching is not case sensitive regardless of the platform VOLTTRON is running on.

For example, the pattern devices/* will trigger the supplied callback for any configuration name that starts with
devices/.

The default pattern matches all configurations.

Getting a Configuration

Once RPC methods are available to an agent (once onstart methods have been called or from any configuration callback)
the contents of any configuration may be acquired with the self.vip.config.get method.

get(config_name="config")

If the Configuration Subsystem has not been initialized with the starting values of the agent configuration that
will happen in order to satisfy the request.

If initialization occurs to satisfy the request callbacks will not be called before returning the results.

Typically an Agent will only obtain the contents of a configuration via a callback.
This method is included for agents that want to save state in the store and only need to
retrieve the contents of a configuration at startup and ignore any changes to the configuration going forward.

Setting a Configuration

Once RPC methods are available to an agent (once onstart methods have been called) the contents
of any configuration may be set with the self.vip.config.set method.

set(config_name, contents, trigger_callback=False, send_update=False)

The contents of the configuration may be a string, list, or dictionary.

This method is intended for agents that wish to maintain a copy of their state
in the store for retrieval at startup with the self.vip.config.get method.

Warning

This method may not be called from a configuration callback. The Configuration Subsystem will
detect this and raise a RuntimeError, even if trigger_callback or send_update is False.

The platform has a locking mechanism to prevent concurrent configuration updates to the Agent.
Calling self.vip.config.set would cause the Agent and the Platform configuration store for that Agent to
deadlock until a timeout occurs.

Optionally an agent may trigger any callbacks by setting trigger_callback to True. If trigger_callback is
set to False the platform will still send the updated configuration back to the agent. This ensures that a subsequent
call to self.cip.config.get will still return the correct value. This way the agent’s configuration subsystem
is kept in sync with the platform’s copy of the agent’s configuration store at all times.

Optionally the agent may prevent the platform from sending the updated file to the agent by setting send_update
to False. This setting is available strictly for performance tuning.

Warning

This setting will allow the agent’s view of the configuration to fall out of sync with the platform.
Subsequent calls to self.vip.config.get will return an old version of the file if it exists in the
agent’s view of the configuration store.

This will also affect any configurations that reference the configuration changed with this setting.

Care should be taken to ensure that the configuration is only retrieved at agent startup when using this
option.

Setting a Default Configuration

In order to more easily allow agents to use both the Configuration Store while still supporting configuration
via the tradition method of a bundled configuration file the self.vip.config.set_default method was created.

set_default(config_name, contents)

Warning

This method may not be called once the Agent Configuration Store Subsystem has been initialized. This method
should only be called from __init__ or an onsetup method.

The set_default method adds a temporary configuration to the Agents Configuration Subsystem. Nothing is sent
to the platform. If a configuration with the same name exists in the platform store it will be presented to
a callback method in place of the default configuration.

The normal way to use this is to set the contents of the packaged Agent configuration as the default
contents for the configuration named config. This way the same callback used to process config configuration
in the Agent will be called when the Configuration Subsystem can be used to process the configuration file
packaged with the Agent.

Note

No attempt is made to merge a default configuration with a configuration from the store.

If a configuration is deleted from the store and a default configuration exists with the same name
the Agent Configuration Subsystem will call the UPDATE callback for that configuration with
the contents of the default configuration.

Other Methods

In a well thought out configuration scheme these methods should not be needed but are included for completeness.

List Configurations

A current list of all configurations for the Agent may be called with the self.vip.config.list method.

Unsubscribe

All subscriptions can be removed with a call to the self.vip.config.unsubscribe_all method.

Delete

A configuration can be deleted with a call to the self.vip.config.delete method.

delete(config_name, trigger_callback=False)

Note

This method may not be called from a callback for the same reason as the self.vip.config.set method.

Delete Default

A default configuration can be deleted with a call to the self.vip.config.delete_default method.

delete_default(config_name)

Warning

This method may not be called once the Agent Configuration Store Subsystem has been initialized. This method should
only be called from __init__ or an onsetup method.

Example Agent

The following example shows how to use set_default with a basic configuration and how to setup callbacks.

def my_agent(config_path, **kwargs):

 config = utils.load_config(config_path) #Now returns {} if config_path does not exist.

 setting1 = config.get("setting1", 42)
 setting2 = config.get("setting2", 2.5)

 return MyAgent(setting1, setting2, **kwargs)

class MyAgent(Agent):
 def __init__(self, setting1=0, setting2=0.0, **kwargs):
 super(MyAgent, self).__init__(**kwargs)

 self.default_config = {"setting1": setting1,
 "setting2": setting2}

 self.vip.config.set_default("config", self.default_config)
 #Because we have a default config we don't have to worry about "DELETE"
 self.vip.config.subscribe(self.configure_main, actions=["NEW", "UPDATE"], pattern="config")
 self.vip.config.subscribe(self.configure_other, actions=["NEW", "UPDATE"], pattern="other_config/*")
 self.vip.config.subscribe(self.configure_delete, actions="DELETE", pattern="other_config/*")

 def configure_main(self, config_name, action, contents):
 #Ensure that we use default values from anything missing in the configuration.
 config = self.default_config.copy()
 config.update(contents)

 _log.debug("Configuring MyAgent")

 #Sanity check the types.
 try:
 setting1 = int(config["setting1"])
 setting2 = float(config["setting2"])
 except ValueError as e:
 _log.error("ERROR PROCESSING CONFIGURATION: {}".format(e))
 #TODO: set a health status for the agent
 return

 _log.debug("Using setting1 {}, setting2 {}". format(setting1, setting2))
 #Do something with setting1 and setting2.

 def configure_other(self, config_name, action, contents):
 _log.debug("Configuring From {}".format(config_name))
 #Do something with contents of configuration.

 def configure_delete(self, config_name, action, contents):
 _log.debug("Removing {}".format(config_name))
 #Do something in response to the removed configuration.

Writing Agent Tests

The VOLTTRON team strongly encourages developing agents with a set of unit and integration tests. Test-driven
development can save developers significant time and effort by clearly defining behavioral expectations for agent code.
We recommend developing agent tests using Pytest. Agent code contributed to VOLTTRON is expected to include a set of
tests using Pytest in the agent module directory. Following are instructions for setting up Pytest, structuring your
tests, how to write unit and integration tests (including some helpful tools using Pytest and Mock) and how to run your
tests.

Installation

To get started with Pytest, install it in an activated environment:

pip install pytest

Or when running VOLTTRON’s bootstrap process, specify the --testing optional argument.

python bootstrap.py --testing

Pytest on PyPI [https://pypi.org/project/pytest/]

Module Structure

We suggest the following structure for your agent module:

├── UserAgent
│ ├── user_agent
│ │ ├── data
│ │ │ └── user_agent_data.csv
│ │ ├── __init__.py
│ │ └── agent.py
│ ├── tests
│ │ └── test_user_agent.py
│ ├── README.md
│ ├── config.json
│ ├── contest.py
│ ├── requirements.txt
│ └── setup.py

The test suite should be in a tests directory in the root agent directory, and should contain one or more
test code files (with the test_<name of test> convention). conftest.py can be used to give all agent tests
access to some portion of the VOLTTRON code. In many cases, agents use conftest.py to import VOLTTRON testing
fixtures for integration tests.

Naming Conventions

Pytest tests are discovered and run using some conventions:

	Tests will be found recursively in either the directory specified when running Pytest, or the current
working directory if no argument was supplied

	Pytest will search in those directories for files called test_<name of test>.py or <name of test>_test.py

	
	In those files, Pytest will test:

	
	functions and methods prefixed by “test” outside of any class

	functions and methods prefixed by “test” inside of any class prefixed by “test”

├── TestDir
│ ├── MoreTests
│ │ ├── test2.py
│ ├── test1.py
│ └── file.py

test1.py

def helper_method():
 return 1

def test_success():
 assert helper_method()

test2.py

def test_success():
 assert True

def test_fail():
 assert False

file.py

def test_success():
 assert True

def test_fail():
 assert False

In the above example, Pytest will run the tests test_success from the file test1.py and test_success and test_fail
from test2.py. No tests will be run from file.txt, even though it contains test code, nor will it try to run
helper_method from test1.py as a test.

Writing Unit Tests

These tests should test the various methods of the code base, checking for success and fail conditions. These tests
should capture how the components of the system should function; and describe all the possible output
conditions given the possible range of inputs including how they should fail if given improper input.

Pytest guide to Unit Testing [https://docs.python-guide.org/writing/tests/#unittest]

Mocking Dependencies

VOLTTRON agents include code for many platform features; these features can be mocked to allow unit tests to test only
the features of the agent without having to account for the behaviors of the core platform. While there are many tools
that can mock dependencies of an agent, we recommend Volttron’s AgentMock or Python’s Mock testing library.

AgentMock

AgentMock was specifically created to run unit tests on agents. AgentMock takes an Agent class and mocks the attributes
and methods of that Agent’s dependencies. AgentMock also allows you to customize the behavior of dependencies within
each individual test. Below is an example:

Import the Pytest, Mock, base Agent, and Agent mock utility from VOLTTRON's repository
import pytest
import mock
from volttron.platform.vip.agent import Agent
from volttrontesting.utils.utils import AgentMock
Import your agent code
from UserAgent import UserAgentClass

UserAgentClass.__bases__ = (AgentMock.imitate(Agent, Agent()),)
agent = UserAgentClass()

def test_success_case():
 result = agent.do_function("valid input")
 assert isinstance(result, dict)
 for key in ['test1', 'test2']:
 assert key in result
 assert result.get("test1") == 10
 assert isinstance(result.get("test2"), str)
 # ...

def test_success_case_custom_mocks():
 agent.some_dependency.some_method.return_value = "foobar"
 agent.some_attribute = "custom, dummy value"
 result = agent.do_function_that_relies_on_custom_mocks("valid input")
 # ...

def test_failure_case()
 # pytests.raises can be useful for testing exceptions, more information about usage below
 with pytest.raises(ValueError, match=r'Invalid input string for do_function')
 result = agent.do_function("invalid input")

Mock

Simliar to AgentMock, Python’s Mock testing library allows a user to replace the behavior of dependencies with a
user-specified behavior. This is useful for replacing VOLTTRON platform behavior, remote API behavior, modules,
etc. where using them in unit or integration tests is impractical or impossible.
Below is an example that uses the patch decorator to mock an Agent’s web request.

Mock documentation [https://docs.python.org/3/library/unittest.mock.html#quick-guide]

class UserAgent()

 def __init__():
 # Code here

 def get_remote_data()
 response = self._get_data_from_remote()
 return "Remote response: {}".format(response)

 # it can be useful to create private functions for use with mock for things like making web requests
 def _get_data_from_remote():
 url = "test.com/test1"
 headers = {}
 return requests.get(url, headers)

~~

import pytest
import mock

def get_mock_response():
 return "test response"

here we're mocking the UserAgent's _get_data_from_remote method and replacing it with our get_mock_response method
to feed our test some fake remote data
@mock.patch.object(UserAgent, '_get_data_from_remote', get_mock_response)
def test_get_remote_data():
 assert UserAgent.get_remote_Data() == "Remote response: test response"

Pytest Tools

Pytest includes many helpful tools for developing your tests. We’ll highlight a few that have been useful for
VOLTTRON core tests, but checkout the Pytest documentation [https://docs.pytest.org/] for additional information on
each tool as well as tools not covered in this guide.

Pytest Fixtures

Pytest fixtures can be used to create reusable code for tests that can be accessed by every test in a module based on
scope. There are several kinds of scopes, but commonly used are “module” (the fixture is run once per module for all
the tests of that module) or “function” (the fixture is run once per test). For fixtures to be used by tests, they
should be passed as parameters.

Pytest Fixture documentation [https://docs.pytest.org/en/latest/fixture.html]

Here is an example of a fixture, along with using it in a test:

Fixtures with scope function will be run once per test if the test accepts the fixture as a parameter
@pytest.fixture(scope="function")
def cleanup_database():
 # This fixture cleans up a sqlite database in between each test run
 sqlite_conn = sqlite.connect("test.sqlite")
 cursor = sqlite_conn.cursor()
 cursor.execute("DROP TABLE 'TEST'")
 cursor.commit()

 cursor.execute("CREATE TABLE TEST (ID INTEGER, FirstName TEXT, LastName TEXT, Occupation Text)")
 cursor.commit()
 sqlite.conn.close()

when we pass the cleanup function, we expect that the table will be dropped and rebuilt before the test runs
def test_store_data(cleanup_database):
 sqlite_conn = sqlite.connect("test.sqlite")
 cursor = sqlite_conn.cursor()
 # after this insert, we'd expect to only have 1 value in the table
 cursor.execute("INSERT INTO TEST VALUES(1, 'Test', 'User', 'Developer')")
 cursor.commit()

 # validate the row count
 cursor.execute("SELECT COUNT(*) FROM TEST")
 count = cursor.fetchone()
 assert count == 1

Pytest.mark

Pytest marks are used to set metadata for test functions. Defining your own custom marks can allow you to run
subsections of your tests. Parametrize can be used to pass a series of parameters to a test, so that it can be run
many times to cover the space of potential inputs. Marks also exist to specify expected behavior for tests.

Mark documentation [https://docs.pytest.org/en/latest/mark.html]

Custom Marks

To add a custom mark, add the name of the mark followed by a colon then a description string to the ‘markers’ section
of Pytest.ini (an example of this exists in the core VOLTTRON repository). Then add the appropriate decorator:

@pytest.mark.UserAgent
def test_success_case():
 # TODO unit test here
 pass

The VOLTTRON team also has a dev mark for running individual (or a few) one-off tests.

@pytest.mark.dev
@pytest.mark.UserAgent
def test_success_case():
 # TODO unit test here
 pass

Parametrize

Parametrize will allow tests to be run with a variety of parameters. Add the parametrize decorator, and for parameters
include a list of parameter names matching the test parameter names as a comma-delimited string followed by a list of
tuples containing parameters for each test.

Parametrize docs [https://docs.pytest.org/en/latest/parametrize.html]

@pytest.mark.parametrize("test_input1, test_input2, expected", [(1, 2, 3), (-1, 0, "")])
def test_user_agent(param1, param2, param3):
 # TODO unit test here
 pass

Skip, skipif, and xfail

The skip mark can be used to skip a test for any reason every time the test suite is run:

This test will be skipped!
@pytest.mark.skip
def test_user_agent():
 # TODO unit test here
 pass

The skipif mark can be used to skip a test based on some condition:

This test will be skipped if RabbitMQ hasn't been set up yet!
@pytest.mark.skipif(not isRabbitMQInstalled)
def test_user_agent():
 # TODO unit test here
 pass

The xfail mark can be used to run a test, but to show that the test is currently expected to fail

This test will fail, but will not cause the module tests to be considered failing!
@pytest.mark.xfail
def test_user_agent():
 # TODO unit test here
 assert False

Skip, skipif, and xfail docs [https://docs.pytest.org/en/documentation-restructure/how-to/skipping.html]

Writing Integration Tests

Integration tests are useful for testing the faults that occur between integrated units. In the context of VOLTTRON
agents, integration tests should test the interactions between the agent, the platform, and other agents installed on
the platform that would interface with the agent. It is typical for integration tests to test configuration, behavior
and content of RPC calls and agent Pub/Sub, the agent subsystems, etc.

Pytest best practices for Integration Testing [https://docs.pytest.org/en/latest/goodpractices.html]

Volttrontesting Directory

The Volttrontesting directory includes several helpful fixtures for your tests. Including the following line at the
top of your tests, or in conftest.py, will allow you to utilize the platform wrapper fixtures, and more.

from volttrontesting.fixtures.volttron_platform_fixtures import *

Here is an example success case integration test:

import pytest
import mock
from volttrontesting.fixtures.volttron_platform_fixtures import *

If the test requires user specified values, setting environment variables or having settings files is recommended
API_KEY = os.environ.get('API_KEY')

request object is a pytest object for managing the context of the test
@pytest.fixture(scope="module")
def Weather(request, volttron_instance):
 config = {
 "API_KEY": API_KEY
 }
 # using the volttron_instance fixture (passed in by volttrontesting fixtures), we can install an agent
 # on the platform to test against
 agent = volttron_instance.install_agent(
 vip_identity=identity,
 agent_dir=source,
 start=False,
 config_file=config)

 volttron_instance.start_agent(agent)
 gevent.sleep(3)

 def stop_agent():
 print("stopping weather service")
 if volttron_instance.is_running():
 volttron_instance.stop_agent(agent)
 # here we used the passed request object to add something to happen when the test is finished
 request.addfinalizer(stop_agent)
 return agent, identity

Here we create a really simple agent which has only the core functionality, which we can use for Pub/Sub
or JSON/RPC
@pytest.fixture(scope="module")
def query_agent(request, volttron_instance):
 # Create the simple agent
 agent = volttron_instance.build_agent()

 def stop_agent():
 print("In teardown method of query_agent")
 agent.core.stop()

 request.addfinalizer(stop_agent)
 return agent

pass the 2 fixtures to our test, then we can run the test
def test_weather_success(Weather, query_agent):
 query_data = query_agent.vip.rpc.call(identity, 'get_current_weather', locations).get(timeout=30)
 assert query_data.get("weather_results") = "Its sunny today!"

For more integration test examples, it is recommended to take a look at some of the VOLTTRON core agents, such as
historian agents and weather service agents.

Using Docker for Limited-Integration Testing

If you want to run limited-integration tests which do not require the setup of a volttron system, you can use Docker
containers to mimic dependencies of an agent. The volttrontesting/fixtures/docker_wrapper.py module provides a
convenient function to create docker containers for use in limited-integration tests. For example, suppose that you
had an agent with a dependency on a MySQL database. If you want to test the connection between the Agent and the MySQL
dependency, you can create a Docker container to act as a real MySQL database. Below is an example:

from volttrontesting.fixtures.docker_wrapper import create_container
from UserAgent import UserAgentClass

def test_docker_wrapper_example():
 ports_config = {'3306/tcp': 3306}
 with create_container("mysql:5.7", ports=ports_config) as container:
 init_database(container)
 agent = UserAgent(ports_config)

 results = agent.some_method_that_talks_to_container()

Running your Tests and Debugging

Pytest can be run from the command line to run a test module.

pytest <path to module to be tested>

If using marks, you can add -m <mark> to specify your testing subset, and -s can be used to suppress standard
output. For more information about optional arguments you can type pytest –help into your command line interface to
see the full list of options.

Testing output should look something like this:

(volttron) <user>@<host>:~/volttron$ pytest services/core/SQLHistorian/
== test session starts ===
platform linux -- Python 3.6.9, pytest-5.4.1, py-1.8.1, pluggy-0.13.1 -- /home/<user>/volttron/env/bin/python
cachedir: .pytest_cache
rootdir: /home/<user>/volttron, inifile: pytest.ini
plugins: timeout-1.3.4
timeout: 240.0s
timeout method: signal
timeout func_only: False
collected 2 items

services/core/SQLHistorian/tests/test_sqlitehistorian.py::test_sqlite_timeout[volttron_3-volttron_instance0] ERROR [50%]
services/core/SQLHistorian/tests/test_sqlitehistorian.py::test_sqlite_timeout[volttron_3-volttron_instance1] PASSED [100%]

=== ERRORS ===
________________________________ ERROR at setup of test_sqlite_timeout[volttron_3-volttron_instance0] ________________________________

request = <SubRequest 'volttron_instance' for <Function test_sqlite_timeout[volttron_3-volttron_instance0]>>, kwargs = {}
address = 'tcp://127.0.0.113:5846'

 @pytest.fixture(scope="module",
 params=[
 dict(messagebus='zmq', ssl_auth=False),
 pytest.param(dict(messagebus='rmq', ssl_auth=True), marks=rmq_skipif),
])
 def volttron_instance(request, **kwargs):
 """Fixture that returns a single instance of volttron platform for testing

 @param request: pytest request object
 @return: volttron platform instance
 """
 address = kwargs.pop("vip_address", get_rand_vip())
 wrapper = build_wrapper(address,
 messagebus=request.param['messagebus'],
 ssl_auth=request.param['ssl_auth'],
> **kwargs)

address = 'tcp://127.0.0.113:5846'
kwargs = {}
request = <SubRequest 'volttron_instance' for <Function test_sqlite_timeout[volttron_3-volttron_instance0]>>

volttrontesting/fixtures/volttron_platform_fixtures.py:106:

Running Tests Via PyCharm

To run our Pytests using PyCharm, we’ll need to create a run configuration. To do so, select “edit configurations” from
the “Run” menu (or if using the toolbar UI element you can click on the run configurations dropdown to select “edit
configurations”). Use the plus symbol at the top right of the pop-up menu, scroll to “Python Tests” and expand this
menu and select “pytest”. This will create a run configuration, which will then need to be filled out. We recommend the
following in general:

	Set the “Script Path” radio and fill the form with the path to your module. Pytest will run any tests in that
module using the discovery process described above (and any marks if specified)

	In the interpreter dropdown, select the VOLTTRON virtual environment - this will likely be your project default

	Set the working directory to the VOLTTRON root directory

	Add any environment variables - For debugging, add variable “DEBUG_MODE” = True or “DEBUG” 1

	Add any optional arguments (-s will prevent standard output from being displayed in the console window, -m is used
to specify a mark)

[image: ../../_images/run_configuration.png]
PyCharm testing instructions [https://www.jetbrains.com/help/pycharm/run-debug-configuration-py-test.html]

More information on testing in Python [https://realpython.com/python-testing/]

Developing Historian Agents

VOLTTRON provides a convenient base class for developing new historian agents. The base class automatically performs
a number of important functions:

	subscribes to all pertinent topics

	caches published data to disk until it is successfully recorded to a historian

	creates the public facing interface for querying results

	spells out a simple interface for concrete implementation to meet to make a working Historian Agent

	breaks data to publish into reasonably sized chunks before handing it off to the concrete implementation for
publication. The size of the chunk is configurable

	sets up a separate thread for publication. If publication code needs to block for a long period of time (up to 10s of
seconds) this will no disrupt the collection of data from the bus or the functioning of the agent itself

The VOLTTRON repository provides several historians which can be deployed without
modification.

BaseHistorian

All Historians must inherit from the BaseHistorian class in volttron.platform.agent.base_historian and implement the
following methods:

publish_to_historian(self, to_publish_list)

This method is called by the BaseHistorian class when it has received data from the message bus to be published.
to_publish_list is a list of records to publish in the form:

[
 {
 '_id': 1,
 'timestamp': timestamp,
 'source': 'scrape',
 'topic': 'campus/building/unit/point',
 'value': 90,
 'meta': {'units':'F'}
 }
 {
 ...
 }
]

	_id - ID of the record used for internal record tracking. All IDs in the list are unique

	timestamp - Python datetime object of the time data was published at timezone UTC

	source - Source of the data: can be scrape, analysis, log, or actuator

	topic - Topic data was published on, topic prefix’s such as “device” are dropped

	value - Value of the data, can be any type.

	meta - Metadata for the value, some sources will omit this entirely.

For each item in the list the concrete implementation should attempt to publish (or discard if non-publishable) every
item in the list. Publication should be batched if possible. For every successfully published record and every record
that is to be discarded because it is non-publishable the agent must call report_handled on those records. Records
that should be published but were not for whatever reason require no action. Future calls to publish_to`_historian
will include these unpublished records. publish_to_historian is always called with the oldest unhandled records. This
allows the historian to no lose data due to lost connections or other problems.

As a convenience report_all_handled can be called if all of the items in published_list were successfully handled.

query_topic_list(self)

Must return a list of all unique topics published.

query_historian(self, topic, start=None, end=None, skip=0, count=None, order=None)

This function must return the results of a query in the form:

{"values": [(timestamp1: value1), (timestamp2: value2), ...],
 "metadata": {"key1": value1, "key2": value2, ...}}

metadata is not required (The caller will normalize this to {} for you if you leave it out)

	topic - the topic the user is querying for

	start - datetime of the start of the query, None for the beginning of time

	end - datetime of the end of of the query, None for the end of time

	skip - skip this number of results (for pagination)

	count - return at maximum this number of results (for pagination)

	order - FIRST_TO_LAST for ascending time stamps, LAST_TO_FIRST for descending time stamps

historian_setup(self)

Implementing this is optional. This function is run on the same thread as the rest of the concrete implementation at
startup. It is meant for connection setup.

Example Historian

An example historian can be found in the examples/CSVHistorian directory in the VOLTTRON repository. This example
historian uses a CSV file as the persistent data store. It is recommended to use this agent as a reference for
developing new historian agents.

Developing Market Agents

VOLTTRON provides a convenient base class for developing new market agents. The base class automatically subscribes to all pertinent topics,
and spells out a simple interface for concrete implementation to make a working Market Agent.

Markets are implemented by the Market Service Agent which is a core service agent. The Market Service Agent publishes
information on several topics to which the base agent automatically subscribes. The base agent also provides all the
methods you will need to interact with the Market Service Agent to implement your market transactions.

MarketAgent

All Market Agents must inherit from the MarketAgent class in volttron.platform.agent.base_market_agent and call the
following method:

self.join_market(market_name, buyer_seller, reservation_callback, offer_callback, aggregate_callback, price_callback, error_callback)

This method causes the market agent to join a single market. If the agent wishes to participate in several
markets it may be called once for each market. The first argument is the name of the market to join and this name must
be unique across the entire volttron instance because all markets are implemented by a single market service agent for
each volttron instance. The second argument describes the role that this agent wished to play in this market.
The value is imported as:

from volttron.platform.agent.base_market_agent.buy_sell import BUYER, SELLER

Arguments 3-7 are callback methods that the agent may implement as needed for the agent’s participation in the market.

The Reservation Callback

reservation_callback(self, timestamp, market_name, buyer_seller)

This method is called when it is time to reserve a slot in the market for the current market cycle. If this callback is
not registered a slot is reserved for every market cycle. If this callback is registered it is called for each market
cycle and returns True if a reservation is wanted and False if a reservation is not wanted.

The name of the market and the roll being played are provided so that a single callback can handle several markets.
If the agent joins three markets with the same reservation callback routine it will be called three times with the
appropriate market name and buyer/seller role for each call. The MeterAgent example illustrates the use of this of this
method and how to determine whether to make an offer when the reservation is refused.

A market will only exist if there are reservations for at least one buyer or one seller. If the market fails to achieve
the minimum participation the error callback will be called. If only buyers or only sellers make reservations any
offers will be rejected with the reason that the market has not formed.

The Offer Callback

offer_callback(self, timestamp, market_name, buyer_seller)

If the agent has made a reservation for the market and a callback has been registered this callback is called.
If the agent wishes to make an offer at this time the market agent computes either a supply or
a demand curve as appropriate and offers the curve to the market service by calling the
make_offer method.

The name of the market and the roll being played are provided so that a single callback can handle several markets.

For each market joined either an offer callback, an aggregate callback, or a cleared price callback is required.

The Aggregate Callback

aggregate_callback(self, timestamp, market_name, buyer_seller, aggregate_curve)

When a market has received all its buy offers it calculates an aggregate demand curve. When the market receives all of
its sell offers it calculates an aggregate supply curve. This callback delivers the aggregate curve to the market agent
whenever the appropriate curve becomes available.

If the market agent wants to use this opportunity to make an offer on this or another market it would do that using the
make_offer method.

	If the aggregate demand curve is received, only a supply offer may be submitted for this market

	If the aggregate supply curve is received, only make a demand offer will be accepted by this market.

You may use this information to make an offer on another market; The example AHUAgent does this. The name of the
market and the roll being played are provided so that a single callback can handle several markets.

For each market joined, either an offer callback, an aggregate callback, or a cleared price callback is required.

The Price Callback

price_callback(self, timestamp, market_name, buyer_seller, price, quantity)

This callback is called when the market clears. If the market agent wants to use this opportunity to make an offer on
this or another market it would do that using the
make_offer method.

Once the market has cleared you can not make an offer on that market. Again, you may use this information to make an
offer on another market as in the example AHUAgent. The name of the market and the roll being played are provided so
that a single callback can handle several markets.

For each market joined either an offer callback, an aggregate callback, or a cleared price callback is required.

The Error Callback

error_callback(self, timestamp, market_name, buyer_seller, error_code, error_message, aux)

This callback is called when an error occurs isn’t in response to an RPC call. The error codes are documented in:

from volttron.platform.agent.base_market_agent.error_codes import NOT_FORMED, SHORT_OFFERS, BAD_STATE, NO_INTERSECT

	NOT_FORMED - If a market fails to form this will be called at the offer time.

	SHORT_OFFERS - If the market doesn’t receive all its offers this will be called while clearing the market.

	BAD_STATE - This indicates a bad state transition while clearing the market and should never happen, but may be called while clearing the market.

	NO_INTERSECT - If the market fails to clear this would be called while clearing the market and an auxillary array will be included. The auxillary array contains comparisons between the supply max, supply min, demand max and demand min. They allow the market client to make determinations about why the curves did not intersect that may be useful.

The error callback is optional, but highly recommended.

Example Agents

Some example agents are included with the platform to help explore its features. These agents represent concrete
implementations of important agent sub-types such as Historians or Weather Agents, or demonstrate a development pattern
for accomplishing common tasks.

More complex agents contributed by other researchers can also be found in the examples directory. It is recommended
that developers new to VOLTTRON understand the example agents first before diving into the other agents.

	C Agent

	Config Actuation Example

	CSV Historian

	Data Publisher

	DDS Agent

	Listener Agent

	MatLab Agent

	Node Red Example

	Scheduler Example Agent

	Simple Web Agent Walk-through

C Agent

The C Agent uses the ctypes module to load a shared object into memory so its functions can be called from Python.

There are two versions of the C Agent:

	A standard agent that can be installed with the agent installation process

	A driver which can can be controlled using the Master Driver Agent

Building the Shared Object

The shared object library must be built before installing C Agent examples. Running make in the C Agent source
directory will compile the provided C code using the position independent flag, a requirement for creating shared
objects.

Files created by make can be removed by running

make clean

Agent Installation

After building the shared object library the standard agent can be installed with the scripts/install-agent.py
script:

python scripts/install-agent.py -s examples/CAgent

The other is a driver interface for the Master Driver. To use the C driver, the driver code file must be moved into
the Master Driver’s interfaces directory:

examples/CAgent/c_agent/driver/cdriver -> services/core/MasterDriverAgent/master_driver/interfaces

The C Driver configuration tells the interface where to find the shared object. An example is available in the C
Agent’s driver directory.

Config Actuation Example

The Config Actuation example attempts to set points on a device when files are added or updated in its
configuration store.

Configuration

The name of a configuration file must match the name of the device to be actuated. The configuration file is a JSON
dictionary of point name and value pairs. Any number of points on the device can be listed in the config.

{
 "point0": value,
 "point1": value
}

CSV Historian

The CSV Historian Agent is an example historian agent that writes device data to the CSV file specified in the
configuration file.

Explanation of CSV Historian

The Utils module of the VOLTTRON platform includes functions for setting up global logging for the platform:

utils.setup_logging()
_log = logging.getLogger(__name__)

The historian method is called by utils.vip_main when the agents is started (see below). utils.vip_main
expects a callable object that returns an instance of an Agent. This method of dealing with a configuration file and
instantiating an Agent is common practice.

def historian(config_path, **kwargs):
 if isinstance(config_path, dict):
 config_dict = config_path
 else:
 config_dict = utils.load_config(config_path)

 output_path = config_dict.get("output", "~/historian_output.csv")

 return CSVHistorian(output_path = output_path, **kwargs)

All historians must inherit from BaseHistorian. The BaseHistorian class handles the capturing and caching of all
device, logging, analysis, and record data published to the message bus.

class CSVHistorian(BaseHistorian):

The Base Historian creates a separate thread to handle publishing data to the data store. In this thread the Base
Historian calls two methods on the created historian, historian_setup and publish_to_historian.

The Base Historian created the new thread in it’s __init__ method. This means that any instance variables
must assigned in __init__ before calling the Base Historian’s __init__ method.

def __init__(self, output_path="", **kwargs):
 self.output_path = output_path
 self.csv_dict = None
 super(CSVHistorian, self).__init__(**kwargs)

Historian setup is called shortly after the new thread starts. This is where a Historian sets up a connect the first
time. In our example we create the Dictwriter object that we will use to create and add lines to the CSV file.

We keep a reference to the file object so that we may flush its contents to disk after writing the header and after we
have written new data to the file.

The CSV file we create will have 4 columns: timestamp, source, topic, and value.

def historian_setup(self):
 self.f = open(self.output_path, "wb")
 self.csv_dict = csv.DictWriter(self.f, ["timestamp", "source", "topic", "value"])
 self.csv_dict.writeheader()
 self.f.flush()

publish_to_historian is called when data is ready to be published. It is passed a list of dictionaries. Each
dictionary contains a record of a single value that was published to the message bus.

The dictionary takes the form:

{
 '_id': 1,
 'timestamp': timestamp1.replace(tzinfo=pytz.UTC), #Timestamp in UTC
 'source': 'scrape', #Source of the data point.
 'topic': "pnnl/isb1/hvac1/thermostat", #Topic that published to without prefix.
 'value': 73.0, #Value that was published
 'meta': {"units": "F", "tz": "UTC", "type": "float"} #Meta data published with the topic
}

Once the data is written to the historian we call self.report_all_handled() to inform the BaseHistorian that all
data we received was successfully published and can be removed from the cache. Then we can flush the file to ensure
that the data is written to disk.

def publish_to_historian(self, to_publish_list):
 for record in to_publish_list:
 row = {}
 row["timestamp"] = record["timestamp"]

 row["source"] = record["source"]
 row["topic"] = record["topic"]
 row["value"] = record["value"]

 self.csv_dict.writerow(row)

 self.report_all_handled()
 self.f.flush()

This agent does not support the Historian Query interface.

Agent Testing

The CSV Historian can be tested by running the included launch_my_historian.sh script.

Agent Installation

This Agent may be installed on the platform using the standard method.

Data Publisher

This is a simple agent that plays back data either from the config store or a CSV to the configured topic. It can also
provide basic emulation of the Actuator Agent for testing agents that expect to be able to set points on a device in
response to device publishes.

Installation notes

In order to simulate the actuator you must install the agent with the VIP identity of platform.actuator. If an
an actuator is already installed on the platform, this will cause VIP identity conflicts. To install the agent, the
agent install script can be used:

python scripts/install-agent.py -s examples/DataPublisher -c <config file>

Configuration

{
 # basetopic can be devices, analysis, or custom base topic
 "basepath": "devices/PNNL/ISB1",

 # use_timestamp uses the included in the input_data if present.
 # Currently the column must be named `Timestamp`.
 "use_timestamp": true,

 # Only publish data at most once every max_data_frequency seconds.
 # Extra data is skipped.
 # The time windows are normalized from midnight.
 # ie 900 will publish one value for every 15 minute window starting from
 # midnight of when the agent was started.
 # Only used if timestamp in input file is used.
 "max_data_frequency": 900,

 # The meta data published with the device data is generated
 # by matching point names to the unittype_map.
 "unittype_map": {
 ".*Temperature": "Farenheit",
 ".*SetPoint": "Farenheit",
 "OutdoorDamperSignal": "On/Off",
 "SupplyFanStatus": "On/Off",
 "CoolingCall": "On/Off",
 "SupplyFanSpeed": "RPM",
 "Damper*.": "On/Off",
 "Heating*.": "On/Off",
 "DuctStatic*.": "On/Off"
 },
 # Path to input CSV file.
 # May also be a list of records or reference to a CSV file in the config store.
 # Large CSV files should be referenced by file name and not
 # stored in the config store.
 "input_data": "econ_test2.csv",
 # Publish interval in seconds
 "publish_interval": 1,

 # Tell the playback to maintain the location a the file in the config store.
 # Playback will be resumed from this point
 # at agent startup even if this setting is changed to false before restarting.
 # Saves the current line in line_marker in the DataPublishers's config store
 # as plain text.
 # default false
 "remember_playback": true,

 # Start playback from 0 even if the line_marker configuration is set a non 0 value.
 # default false
 "reset_playback": false,

 # Repeat data from the start if this flag is true.
 # Useful for data that does not include a timestamp and is played back in real time.
 "replay_data": false
}

CSV File Format

The CSV file must have a single header line. The column names are appended to the basepath setting in the
configuration file and the resulting topic is normalized to remove extra` / characters. The values are all treated
as floating point values and converted accordingly.

The corresponding device for each point is determined and the values are combined together to create an all topic
publish for each device.

If a Timestamp column is in the input it may be used to set the timestamp in the header of the published data.

Publisher Data

	Timestamp

	centrifugal_chiller/OutsideAirTemperature

	centrifugal_chiller/DischargeAirTemperatureSetPoint

	fuel_cell/DischargeAirTemperature

	fuel_cell/CompressorStatus

	absorption_chiller/SupplyFanSpeed

	absorption_chiller/SupplyFanStatus

	boiler/DuctStaticPressureSetPoint

	boiler/DuctStaticPressure

	2012/05/19 05:07:00

	0

	56

	0

	0

	75

	1

	1.4

	1.38

	2012/05/19 05:08:00

	0

	56

	0

	0

	75

	1

	1.4

	1.38

	2012/05/19 05:09:00

	0

	56

	0

	0

	75

	1

	1.4

	1.38

	2012/05/19 05:10:00

	0

	56

	0

	0

	75

	1

	1.4

	1.38

	2012/05/19 05:11:00

	0

	56

	0

	0

	75

	1

	1.4

	1.38

	2012/05/19 05:12:00

	0

	56

	0

	0

	75

	1

	1.4

	1.38

	2012/05/19 05:13:00

	0

	56

	0

	0

	75

	1

	1.4

	1.38

	2012/05/19 05:14:00

	0

	56

	0

	0

	75

	1

	1.4

	1.38

	2012/05/19 05:15:00

	0

	56

	0

	0

	75

	1

	1.4

	1.38

	2012/05/19 05:16:00

	0

	56

	0

	0

	75

	1

	1.4

	1.38

	2012/05/19 05:17:00

	0

	56

	0

	0

	75

	1

	1.4

	1.38

	2012/05/19 05:18:00

	0

	56

	0

	0

	75

	1

	1.4

	1.38

	2012/05/19 05:19:00

	0

	56

	0

	0

	75

	1

	1.4

	1.38

	2012/05/19 05:20:00

	0

	56

	0

	0

	75

	1

	1.4

	1.38

	2012/05/19 05:21:00

	0

	56

	0

	0

	75

	1

	1.4

	1.38

	2012/05/19 05:22:00

	0

	56

	0

	0

	75

	1

	1.4

	1.38

	2012/05/19 05:23:00

	0

	56

	0

	0

	75

	1

	1.4

	1.38

	2012/05/19 05:24:00

	0

	56

	58.77

	0

	75

	1

	1.4

	1.38

	2012/05/19 05:25:00

	48.78

	56

	58.87

	0

	75

	1

	1.4

	1.38

	2012/05/19 05:26:00

	48.88

	56

	58.95

	0

	75

	1

	1.4

	1.38

	2012/05/19 05:27:00

	48.93

	56

	58.91

	0

	75

	1

	1.4

	1.38

	2012/05/19 05:28:00

	48.95

	56

	58.81

	0

	75

	1

	1.4

	1.38

	2012/05/19 05:29:00

	48.92

	56

	58.73

	0

	75

	1

	1.4

	1.38

	2012/05/19 05:30:00

	48.88

	56

	58.69

	0

	75

	1

	1.4

	1.38

	2012/05/19 05:31:00

	48.88

	56

	58.81

	0

	75

	1

	1.4

	1.38

	2012/05/19 05:32:00

	48.99

	56

	58.91

	0

	75

	1

	1.4

	1.38

	2012/05/19 05:33:00

	49.09

	56

	58.85

	0

	75

	1

	1.4

	1.38

	2012/05/19 05:34:00

	49.11

	56

	58.79

	0

	75

	1

	1.4

	1.38

	2012/05/19 05:35:00

	49.07

	56

	58.71

	0

	75

	1

	1.4

	1.38

	2012/05/19 05:36:00

	49.05

	56

	58.77

	0

	75

	1

	1.4

	1.38

	2012/05/19 05:37:00

	49.09

	56

	58.87

	0

	75

	1

	1.4

	1.38

	2012/05/19 05:38:00

	49.13

	56

	58.85

	0

	75

	1

	1.4

	1.38

	2012/05/19 05:39:00

	49.09

	56

	58.81

	0

	75

	1

	1.4

	1.38

	2012/05/19 05:40:00

	49.01

	56

	58.75

	0

	75

	1

	1.4

	1.38

	2012/05/19 05:41:00

	48.92

	56

	58.71

	0

	75

	1

	1.4

	1.38

	2012/05/19 05:42:00

	48.86

	56

	58.77

	0

	75

	1

	1.4

	1.38

	2012/05/19 05:43:00

	48.92

	56

	58.87

	0

	75

	1

	1.4

	1.38

	2012/05/19 05:44:00

	48.95

	56

	58.79

	0

	75

	1

	1.4

	1.38

	2012/05/19 05:45:00

	48.92

	56

	58.69

	0

	75

	1

	1.4

	1.38

	2012/05/19 05:46:00

	48.86

	56

	58.5

	0

	75

	1

	1.4

	1.38

	2012/05/19 05:47:00

	48.78

	56

	58.34

	0

	75

	1

	1.4

	1.38

	2012/05/19 05:48:00

	48.69

	56

	58.36

	0

	75

	1

	1.4

	1.38

	2012/05/19 05:49:00

	48.65

	56

	58.46

	0

	75

	1

	1.4

	1.38

	2012/05/19 05:50:00

	48.65

	56

	58.56

	0

	75

	1

	1.4

	1.38

	2012/05/19 05:51:00

	48.65

	56

	58.48

	0

	75

	1

	1.4

	1.38

	2012/05/19 05:52:00

	48.61

	56

	58.36

	0

	75

	1

	1.4

	1.38

	2012/05/19 05:53:00

	48.59

	56

	58.21

	0

	75

	1

	1.4

	1.38

	2012/05/19 05:54:00

	48.55

	56

	58.25

	0

	75

	1

	1.4

	1.38

	2012/05/19 05:55:00

	48.63

	56

	58.42

	0

	75

	1

	1.4

	1.38

	2012/05/19 05:56:00

	48.76

	56

	58.56

	0

	75

	1

	1.4

	1.38

	2012/05/19 05:57:00

	48.95

	56

	58.71

	0

	75

	1

	1.4

	1.38

	2012/05/19 05:58:00

	49.24

	56

	58.83

	0

	75

	1

	1.4

	1.38

	2012/05/19 05:59:00

	49.54

	56

	58.93

	0

	75

	1

	1.4

	1.38

	2012/05/19 06:00:00

	49.71

	56

	58.95

	0

	75

	1

	1.4

	1.38

	2012/05/19 06:01:00

	49.79

	56

	59.07

	0

	75

	1

	1.4

	1.38

	2012/05/19 06:02:00

	49.94

	56

	59.17

	0

	75

	1

	1.4

	1.38

	2012/05/19 06:03:00

	50.13

	56

	59.25

	0

	75

	1

	1.4

	1.38

	2012/05/19 06:04:00

	50.18

	56

	59.15

	0

	75

	1

	1.4

	1.38

	2012/05/19 06:05:00

	50.15

	56

	59.04

	0

	75

	1

	1.4

	1.38

DDS Agent

The DDS example agent demonstrates VOLTTRON’s capacity to be extended with tools and libraries not used in the core
codebase. DDS is a messaging platform that implements a publish-subscribe system for well defined data types.

This agent example is meant to be run the command line, as opposed to installing it like other agents. From the
examples/DDSAgent directory, the command to start it is:

$ AGENT_CONFIG=config python -m ddsagent.agent

The rticonnextdds-connector library needs to be installed for this example to function properly. We’ll retrieve it
from GitHub since it is not available through Pip. Download the source with:

$ wget https://github.com/rticommunity/rticonnextdds-connector/archive/master.zip

and unpack it in examples/DDSAgent/ddsagent with:

$ unzip master.zip

The demo_publish() output can be viewed with the rtishapesdemo available from RTI.

Configuration

Each data type that this agent will have access to needs to have an XML document defining its structure. The XML will
include a participant name, publisher name, and a subscriber name. These are recorded in the configuration with the
location on disk of the XML file.

{
 "square": {
 "participant_name": "MyParticipantLibrary::Zero",
 "xml_config_path": "./ddsagent/rticonnextdds-connector-master/examples/python/ShapeExample.xml",
 "publisher_name": "MyPublisher::MySquareWriter",
 "subscriber_name": "MySubscriber::MySquareReader"
 }
}

Listener Agent

The ListenerAgent subscribes to all topics and is useful for testing that agents being developed are publishing
correctly. It also provides a template for building other agents as it expresses the requirements of a platform agent.

Explanation of Listener Agent Code

Use utils to setup logging, which we’ll use later.

utils.setup_logging()
_log = logging.getLogger(__name__)

The Listener agent extends (inherits from) the Agent class for its default functionality such as responding to platform
commands:

class ListenerAgent(Agent):
 '''
 Listens to everything and publishes a heartbeat according to the
 heartbeat period specified in the settings module.
 '''

After the class definition, the Listener agent reads the configuration file, extracts the configuration parameters, and
initializes any Listener agent instance variable. This is done through the agent’s __init__ method:

def __init__(self, config_path, **kwargs):
 super(ListenerAgent, self).__init__(**kwargs)
 self.config = utils.load_config(config_path)
 self._agent_id = self.config.get('agentid', DEFAULT_AGENTID)
 log_level = self.config.get('log-level', 'INFO')
 if log_level == 'ERROR':
 self._logfn = _log.error
 elif log_level == 'WARN':
 self._logfn = _log.warn
 elif log_level == 'DEBUG':
 self._logfn = _log.debug
 else:
 self._logfn = _log.info

Next, the Listener agent will run its setup method. This method is tagged to run after the agent is initialized by the
decorator @Core.receiver('onsetup'). This method accesses the configuration parameters, logs a message to the
platform log, and sets the agent ID.

@Core.receiver('onsetup')
def onsetup(self, sender, **kwargs):
 # Demonstrate accessing a value from the config file
 _log.info(self.config.get('message', DEFAULT_MESSAGE))
 self._agent_id = self.config.get('agentid')

The Listener agent subscribes to all topics published on the message bus. Publish and subscribe interactions with the
message bus are handled by the PubSub module located at ~/volttron/volttron/platform/vip/agent/subsystems/pubsub.py.

The Listener agent uses an empty string to subscribe to all messages published. This is done in a
decorator [http://en.wikipedia.org/wiki/Python_syntax_and_semantics#Decorators] for simplifying subscriptions.

@PubSub.subscribe('pubsub', '')
def on_match(self, peer, sender, bus, topic, headers, message):
 '''Use match_all to receive all messages and print them out.'''
 if sender == 'pubsub.compat':
 message = compat.unpack_legacy_message(headers, message)
 self._logfn(
 "Peer: %r, Sender: %r:, Bus: %r, Topic: %r, Headers: %r, "
 "Message: %r", peer, sender, bus, topic, headers, message)

MatLab Agent

The MatLab agent and Matlab Standalone Agent together are example agents that allow for MatLab scripts to be run in a
Windows environment and interact with the VOLTTRON platform running in a Linux environment.

The MatLab agent takes advantage of the config store to dynamically send scripts and commandline arguments across the
message bus to one or more Standalone Agents in Windows. The Standalone Agent then executes the requested script and
arguments, and sends back the results to the MatLab agent.

Overview of Matlab Agents

There are multiple components that are used for the MatLab agent. This diagram is to represent the components that are
connected to the MatLab Agents. In this example, the scripts involved are based on the default settings in the MatLab
Agent.

[image: matlab-agent-diagram]

MatLabAgentV2

MatLabAgentV2 publishes the name of a python script along with any command line arguments that are needed for the script
to the appropriate topic. The agent then listens on another topic, and whenever anything is published on this topic, it
stores the message in the log file chosen when the VOLTTRON instance is started. If there are multiple standalone
agents, the agent can send a a script to each of them, along with their own set of command line arguments. In this
case, each script name and set of command line arguments should be sent to separate subtopics. This is done so that no
matter how many standalone agents are in use, MatLabAgentV2 will record all of their responses.

class MatlabAgentV2(Agent):

 def __init__(self,script_names=[], script_args=[], topics_to_matlab=[],
 topics_to_volttron=None,**kwargs):

 super(MatlabAgentV2, self).__init__(**kwargs)
 _log.debug("vip_identity: " + self.core.identity)

 self.script_names = script_names
 self.script_args = script_args
 self.topics_to_matlab = topics_to_matlab
 self.topics_to_volttron = topics_to_volttron
 self.default_config = {"script_names": script_names,
 "script_args": script_args,
 "topics_to_matlab": topics_to_matlab,
 "topics_to_volttron": topics_to_volttron}

 #Set a default configuration to ensure that self.configure is called immediately to setup
 #the agent.
 self.vip.config.set_default("config", self.default_config)
 #Hook self.configure up to changes to the configuration file "config".
 self.vip.config.subscribe(self.configure, actions=["NEW", "UPDATE"], pattern="config")

 def configure(self, config_name, action, contents):
 """
 Called after the Agent has connected to the message bus.
 If a configuration exists at startup this will be
 called before onstart.
 Is called every time the configuration in the store changes.
 """
 config = self.default_config.copy()
 config.update(contents)

 _log.debug("Configuring Agent")

 try:
 script_names = config["script_names"]
 script_args = config["script_args"]
 topics_to_matlab = config["topics_to_matlab"]
 topics_to_volttron = config["topics_to_volttron"]

 except ValueError as e:
 _log.error("ERROR PROCESSING CONFIGURATION: {}".format(e))
 return

 self.script_names = script_names
 self.script_args = script_args
 self.topics_to_matlab = topics_to_matlab
 self.topics_to_volttron = topics_to_volttron
 self._create_subscriptions(self.topics_to_volttron)

 for script in range(len(self.script_names)):
 cmd_args = ""
 for x in range(len(self.script_args[script])):
 cmd_args += ",{}".format(self.script_args[script][x])
 _log.debug("Publishing on: {}".format(self.topics_to_matlab[script]))
 self.vip.pubsub.publish('pubsub', topic=self.topics_to_matlab[script],
 message="{}{}".format(self.script_names[script],cmd_args))
 _log.debug("Sending message: {}{}".format(self.script_names[script],cmd_args))

 _log.debug("Agent Configured!")

For this example, the agent is publishing to the matlab/to_matlab/1 topic, and is listening to the
matlab/to_volttron topic. It is sending the script name testScript.py with the argument 20. These are the default
values found in the agent, if no configuration is loaded.

script_names = config.get('script_names', ["testScript.py"])
script_args = config.get('script_args', [["20"]])
topics_to_matlab = config.get('topics_to_matlab', ["matlab/to_matlab/1"])
topics_to_volttron = config.get('topics_to_volttron', "matlab/to_volttron/")

StandAloneMatLab.py

The StandAloneMatLab.py script is a standalone agent designed to be able to run in a Windows environment. Its purpose
is to listen to a topic, and when something is published to this topic, it takes the message, and sends it to the
script_runner function in scriptwrapper.py. This function processes the inputs, and then the output is published
to another topic.

class StandAloneMatLab(Agent):
 '''The standalone version of the MatLab Agent'''

 @PubSub.subscribe('pubsub', _topics['volttron_to_matlab'])
 def print_message(self, peer, sender, bus, topic, headers, message):
 print('The Message is: ' + str(message))
 messageOut = script_runner(message)
 self.vip.pubsub.publish('pubsub', _topics['matlab_to_volttron'], message=messageOut)

settings.py

The topic to listen to and the topic to publish to are defined in settings.py, along with the information needed to
connect the Standalone Agent to the primary VOLTTRON instance. These should be the same topics that the MatLabAgentV2
is publishing and listening to, so that the communication can be successful. To connect the Standalone Agent to the
primary VOLTTRON instance, the IP address and port of the instance are needed, along with the server key.

_topics = {
 'volttron_to_matlab': 'matlab/to_matlab/1',
 'matlab_to_volttron': 'matlab/to_volttron/1'
 }

The parameters dictionary is used to populate the agent's
remote vip address.
_params = {
 # The root of the address.
 # Note:
 # 1. volttron instance should be configured to use tcp. use command vcfg
 # to configure
 'vip_address': 'tcp://192.168.56.101',
 'port': 22916,

 # public and secret key for the standalone_matlab agent.
 # These can be created using the command: volttron-ctl auth keypair
 # public key should also be added to the volttron instance auth
 # configuration to enable standalone agent access to volttron instance. Use
 # command 'vctl auth add' Provide this agent's public key when prompted
 # for credential.

 'agent_public': 'dpu13XKPvGB3XJNVUusCNn2U0kIWcuyDIP5J8mAgBQ0',
 'agent_secret': 'Hlya-6BvfUot5USdeDHZ8eksDkWgEEHABs1SELmQhMs',

 # Public server key from the remote platform. This can be
 # obtained using the command:
 # volttron-ctl auth serverkey
 'server_key': 'QTIzrRGQ0-b-37AbEYDuMA0l2ETrythM2V1ac0v9CTA'

}

def remote_url():
 return "{vip_address}:{port}?serverkey={server_key}" \
 "&publickey={agent_public}&" \
 "secretkey={agent_secret}".format(**_params)

The primary VOLTTRON instance will then need to add the public key from the Standalone Agent. In this example, the
topic that the Standalone Agent is listening to is matlab/to_matlab/1, and the topic it is publishing to is
matlab/to_volttron/1.

scriptwrapper.py

Scriptwrapper.py contains the script_runner function. The purpose of this function is to take in a string that
contains a Python script and command line arguments separated by commas. This string is parsed and passed to the system
arguments, which allows the script sent to the function to use the command line arguments. The function then redirects
standard output to a StringIO file object, and then attempts to execute the script. If there are any errors with the
script, the error that is generated is returned to the standalone agent. Otherwise, the file object stores the output
from the script, is converted to a string, and is sent to the standalone agent. In this example, the script that is to
be run is testScript.py.

#Script to take in a string, run the program,
#and output the results of the command as a string.

import time
import sys
from io import StringIO

def script_runner(message):
 original = sys.stdout
print(message)
print(sys.argv)
 sys.argv = message.split(',')
print(sys.argv)

 try:
 out = StringIO()
 sys.stdout = out
 exec(open(sys.argv[0]).read())
 sys.stdout = original
 return out.getvalue()
 except Exception as ex:
 out = str(ex)
 sys.stdout = original
 return out

Note

The script that is to be run needs to be in the same folder as the agent and the scriptwrapper.py script. The
script_runner function needs to be edited if it is going to call a script at a different location.

testScript.py

This is a very simple test script designed to demonstrate the calling of a MatLab function from within Python. First it
initializes the MatLab engine for Python. It then takes in a single command line argument, and passes it to the MatLab
function testPy.m. If no arguments are sent, it will send 0 to the testPy.m function. It then prints the result of
the testPy.m function. In this case, since standard output is being redirected to a file object, this is how the
result is passed from this function to the Standalone Agent.

import matlab.engine
import sys

eng = matlab.engine.start_matlab()

if len(sys.argv) == 2:
 result = eng.testPy(float(sys.argv[1]))
else:
 result = eng.testPy(0.0)

print(result)

testPy.m

This MatLab function is a very simple example, designed to show a function that takes an argument, and produces an array
as the output. The input argument is added to each element in the array, and the entire array is then returned.

function out = testPy(z)
x = 1:100
out = x + z
end

Setup on Linux

	Setup and run VOLTTRON from develop branch using instructions here.

	Configure volttron instance using the vcfg command. When prompted for the vip address use
tcp://<ip address of the linux machine>. This is necessary to enable volttron communication with external
processes.

Note

If you are running VOLTTRON from within VirtualBox, jit would be good to set one of your adapters as a
Host-only adapter. This can be done within the VM’s settings, under the Network section. Once this is
done, use this IP for the VIP address.

	Update the configuration for MatLabAgent_v2 at <volttron source dir>/example/MatLabAgent_v2/config.

The configuration file for the MatLab agent has four variables.

	script_names

	script_args

	topics_to_matlab

	topics_to_volttron

An example config file included with the folder.

{
 # VOLTTRON config files are JSON with support for python style comments.
 "script_names": ["testScript.py"],
 "script_args": [["20"]],
 "topics_to_matlab": ["matlab/to_matlab/1"],
 "topics_to_volttron": "matlab/to_volttron/"
}

To edit the configuration, the format should be as follows:

{
 "script_names": ["script1.py", "script2.py", "..."],
 "script_args": [["arg1","arg2"], ["arg1"], ["..."]],
 "topics_to_matlab": ["matlab/to_matlab/1", "matlab/to_matlab/2", "..."],
 "topics_to_volttron": "matlab/to_volttron/"
}

The config requires that each script name lines up with a set of commandline arguments and a topic. A
commandline argument must be included, even if it is not used. The placement of brackets are important, even when
only communicating with one standalone agent.

For example, if only one standalone agent is used, and no command line arguments are in place, the config file may
look like this.

{
 "script_names": ["testScript.py"],
 "script_args": [["0"]],
 "topics_to_matlab": ["matlab/to_matlab/1"],
 "topics_to_volttron": "matlab/to_volttron/"
}

	Install MatLabAgent_v2 and start agent (from volttron root directory)

python ./scripts/install-agent.py -s examples/MatLabAgent_v2 --start

Note

The MatLabAgent_v2 publishes the command to be run to the message bus only on start or on a configuration
update. Once we configure the standalone_matlab agent on the Windows machine, we will send a configuration
update to the running MatLabAgent_v2. The configuration would contain the topics to which the Standalone Agent
is listening to and will be publishing result to.

See also

The MatLab agent uses the configuration store to dynamically change inputs. More information on the config
store and how it used can be found here.

	VOLTTRON Configuration Store

	Agent Configuration Store

	Agent Configuration Store Interface

	Run the below command and make a note of the server key. This is required for configuring the stand alone agent
on Windows. (This is run on the linux machine)

vctl auth serverkey

Setup on Windows

Install pre-requisites

	Install Python3.6 64-bit from the Python website [https://www.python.org/downloads/windows/].

	Install the MatLab engine from
MathWorks [https://www.mathworks.com/help/matlab/matlab_external/install-the-matlab-engine-for-python.html].

Warning

The MatLab engine for Python only supports certain version of Python depending on the version of MatLab used.
Please check here [https://www.mathworks.com/help/matlab/matlab-engine-for-python.html] to see if the current
version of MatLab supports your version of Python.

Note

At this time, you may want to verify that you are able to communicate with your Linux machine across your network.
The simplest method would be to open up the command terminal and use ping <ip of Linux machine>, and telnet
<ip of Linux machine> <port of volttron instance, default port is 22916>. Please make sure that the port is
opened for outside access.

Install Standalone MatLab Agent

The standalone MatLab agent is designed to be usable in a Windows environment.

Warning

VOLTTRON is not designed to run in a Windows environment. Outside of cases where it is stated to be usable in a
Windows environment, it should be assumed that it will NOT function as expected.

	Download VOLTTRON

Download the VOLTTRON develop repository from Github. Download the zip from
GitHub [https://github.com/VOLTTRON/volttron/tree/develop].

[image: github-image]

[image: github-zip-image]

Once the zipped file has been downloaded, go to your Downloads folder, right-click on the file, and select
Extract All…

[image: extract-image_1]

Choose a location for the extracted folder, and select “Extract”

[image: extract-image_2]

	Setup the PYTHONPATH

Open the Windows explorer, and navigate to Edit environment variables for your account.

[image: cmd-image]

Select “New”

[image: env-vars-image_1]

For “Variable name” enter: PYTHONPATH
For “Variable value” either browse to your VOLTTRON installation, or enter in the path to your VOLTTRON
installation.

[image: env-vars-image_2]

Select OK twice.

	Set Python version in MatLab

Open your MatLab application. Run the command:

pyversion

This should print the path to Python2.7. If you have multiple versions of python on your machine and pyversion
points to a different version of Python, use:

pyversion /path/to/python.exe

to set the appropriate version of python for your system.

For example, to use python 3.6 with MatLab:

pyversion C:\Python36\python.exe

	Set up the environment.

Open up the command prompt

[image: cmd-image_2]

Navigate to your VOLTTRON installation

cd \Your\directory\path\to\volttron-develop

Use pip to install and setup dependencies.

pip install -r examples\StandAloneMatLab\requirements.txt

pip install -e .

Note

If you get the error doing the second step because of an already installed volttron from a different directory,
manually delete the volttron-egg. link file from your <python path>\Lib\site-packages directory (for
example:

del C:\\Python27\\lib\\site-packages\\volttron-egg.link

and re-run the second command

	Configure the agent

The configuration settings for the standalone agent are in setting.py (located in
volttron-develop\examples\StandAloneMatLab\)

settings.py

	volttron_to_matlab needs to be set to the topic that will send your script and command line arguments to your
stand alone agent. This was defined in the config.

	matlab_to_volttron needs to be set to the topic that will send your script’s
output back to your volttron platform. This was defined in config.

	vip_address needs to be set to the address of your volttron instance

	port needs to be set to the port of your volttron instance

	server_key needs to be set to the public server key of your primary volttron platform. This can be obtained
from the primary volttron platform using vctl auth serverkey (VOLTTRON must be running to use this command.)

It is possible to have multiple standalone agents running. In this case, copy the StandAloneMatLab folder, and
make the necessary changes to the new settings.py file. Unless it is connecting to a separate VOLTTRON instance,
you should only need to change the volttron_to_matlab setting.

Note

It is recommended that you generate a new “agent_public” and “agent_private” key for your standalone agent.
This can be done using the vctl auth keypair command on your primary VOLTTRON platform on Linux. If you
plan to use multiple standalone agents, they will each need their own keypair.

	Add standalone agent key to VOLTTRON platform

	Copy the public key from settings.py in the StandAloneMatLab folder.

	While the primary VOLTTRON platform is running on the linux machine, add the agent public key using the vctl
auth command on the Linux machine. This will make VOLTTRON platform allow connections from the standalone agent

vctl auth add --credentials <standalone agent public key>

	Run standalone agent

At this point, the agent is ready to run. To use the agent, navigate to the example folder and use python to start
the agent. The agent will then wait for a message to be published to the selected topic by the MatLab agent.

cd examples\StandAloneMatLab\

python standalone_matlab.py

The output should be similar to this:

2019-08-01 10:42:47,592 volttron.platform.vip.agent.core DEBUG: identity: standalone_matlab
2019-08-01 10:42:47,592 volttron.platform.vip.agent.core DEBUG: agent_uuid: None
2019-08-01 10:42:47,594 volttron.platform.vip.agent.core DEBUG: serverkey: None
2019-08-01 10:42:47,596 volttron.platform.vip.agent.core DEBUG: AGENT RUNNING on ZMQ Core standalone_matlab
2019-08-01 10:42:47,598 volttron.platform.vip.zmq_connection DEBUG: ZMQ connection standalone_matlab
2019-08-01 10:42:47,634 volttron.platform.vip.agent.core INFO: Connected to platform: router: ebae9efa-5e8f-49e3-95a0-2020ddff9e8a version: 1.0 identity: standalone_matlab
2019-08-01 10:42:47,634 volttron.platform.vip.agent.core DEBUG: Running onstart methods.

Note

If you have Python3 as your default Python run the command python -2 standalone_matlab.py

8. On the Linux machine configure the Matlab Agent to publish commands to the topic standalone agent is listening to.
To load a new configuration or to change the current configuration enter

vctl config store <agent vip identity> config <path\to\configfile>

Whenever there is a change in the configuration in the config store, or whenever the agent starts, the MatLab Agent
sends the configured command to the topic configured. As long as the standalone agent has been started and is
listening to the appropriate topic, the output in the log should look similar to this:

2019-08-01 10:43:18,925 (matlab_agentV2agent-0.3 3539) matlab_agentV2.agent DEBUG: Configuring Agent
2019-08-01 10:43:18,926 (matlab_agentV2agent-0.3 3539) matlab_agentV2.agent DEBUG: Publishing on: matlab/to_matlab/1
2019-08-01 10:43:18,926 (matlab_agentV2agent-0.3 3539) matlab_agentV2.agent DEBUG: Sending message: testScript2.py,20
2019-08-01 10:43:18,926 (matlab_agentV2agent-0.3 3539) matlab_agentV2.agent DEBUG: Agent Configured!
2019-08-01 10:43:18,979 (matlab_agentV2agent-0.3 3539) matlab_agentV2.agent INFO: Agent: matlab/to_volttron/1
Message:
'20'

Once the matlab agent publishes the message (in the above case, “testScript2.py,20”) on the windows command prompt
running the standalone agent, you should see the message that was received by the standalone agent.

2019-08-01 10:42:47,671 volttron.platform.vip.agent.subsystems.configstore DEBUG: Processing callbacks for affected files: {}
The Message is: testScript2.py,20

Note

If MatLabAgent_v2 has been installed and started, and you have not started the standalone_matlab agent, you
will need to either restart the matlab_agentV2, or make a change to the configuration in the config store to
send command to the topic standalone agent is actively listening to.

Node Red Example

Node Red is a visual programming language wherein users connect small units of functionality “nodes” to create “flows”.

There are two example nodes that allow communication between Node-Red and VOLTTRON. One node reads subscribes to
messages on the VOLTTRON message bus and the other publishes to it.

Dependencies

The example nodes depend on python-shell to be installed and available to the Node Red environment.

Installation

Copy all files from volttron/examples/NodeRed to your ~/.node-red/nodes directory. ~/.node-red is the default
directory for Node Red files. If you have set a different directory use that instead.

Set the variables at the beginning of the volttron.js file to be a valid VOLTTRON environment, VOLTTRON home, and
Python PATH.

Valid CURVE keys need to be added to the settings.py file. If they are generated with the vctl auth keypair command
then the public key should be added to VOLTTRON’s authorization file with the following:

$ vctl auth add

The serverkey can be found with:

$ vctl auth serverkey

Usage

Start VOLTTRON and Node Red.

$ node-red

Welcome to Node-RED
===================

11 Jan 15:26:49 - [info] Node-RED version: v0.14.4
11 Jan 15:26:49 - [info] Node.js version: v0.10.25
11 Jan 15:26:49 - [info] Linux 3.16.0-38-generic x64 LE
11 Jan 15:26:49 - [info] Loading palette nodes
11 Jan 15:26:49 - [warn] --
11 Jan 15:26:49 - [warn] [rpi-gpio] Info : Ignoring Raspberry Pi specific node
11 Jan 15:26:49 - [warn] --
11 Jan 15:26:49 - [info] Settings file : /home/volttron/.node-red/settings.js
11 Jan 15:26:49 - [info] User directory : /home/volttron/.node-red
11 Jan 15:26:49 - [info] Flows file : /home/volttron/.node-red/flows_volttron.json
11 Jan 15:26:49 - [info] Server now running at http://127.0.0.1:1880/
11 Jan 15:26:49 - [info] Starting flows
11 Jan 15:26:49 - [info] Started flows

The output from the Node Red command indicates the address of its web interface. Nodes available for use are in the
left sidebar.

[image: Node Red]

We can now use the VOLTTRON nodes to read from and write to VOLTTRON.

[image: Flow]

Scheduler Example Agent

The Scheduler Example Agent demonstrates how to use the scheduling feature of the :ref`Actuator Agent <Actuator-Agent>`
as well as how to send a command. This agent publishes a request for a reservation on a (fake) device then takes an
action when it’s scheduled time appears. The ActuatorAgent must be running to exercise this example.

Note

Since there is no actual device, an error is produced when the agent attempts to take its action.

def publish_schedule(self):
 '''Periodically publish a schedule request'''
 headers = {
 'AgentID': agent_id,
 'type': 'NEW_SCHEDULE',
 'requesterID': agent_id, #The name of the requesting agent.
 'taskID': agent_id + "-ExampleTask", #The desired task ID for this task. It must be unique among all other scheduled tasks.
 'priority': 'LOW', #The desired task priority, must be 'HIGH', 'LOW', or 'LOW_PREEMPT'
 }

 start = str(datetime.datetime.now())
 end = str(datetime.datetime.now() + datetime.timedelta(minutes=1))

 msg = [
 ['campus/building/unit',start,end]
]
 self.vip.pubsub.publish(
 'pubsub', topics.ACTUATOR_SCHEDULE_REQUEST, headers, msg)

The agent listens to schedule announcements from the actuator and then issues a command:

@PubSub.subscribe('pubsub', topics.ACTUATOR_SCHEDULE_ANNOUNCE(campus='campus',
 building='building',unit='unit'))
def actuate(self, peer, sender, bus, topic, headers, message):
 print ("response:",topic,headers,message)
 if headers[headers_mod.REQUESTER_ID] != agent_id:
 return
 '''Match the announce for our fake device with our ID
 Then take an action. Note, this command will fail since there is no
 actual device'''
 headers = {
 'requesterID': agent_id,
 }
 self.vip.pubsub.publish(
 'pubsub', topics.ACTUATOR_SET(campus='campus',
 building='building',unit='unit',
 point='point'),
 headers, 0.0)

Simple Web Agent Walk-through

A simple web enabled agent that will hook up with a VOLTTRON message bus and allow interaction between it via HTTP.
This example agent shows a simple file serving agent, a JSON-RPC based call, and a websocket based connection mechanism.

Starting VOLTTRON Platform

Note

Activate the environment first active the environment

In order to start the simple web agent, we need to bind the VOLTTRON instance to the a web server. We need to specify
the address and the port for the web server. For example, if we want to bind the localhost:8080 as the web server
we start the VOLTTRON platform as follows:

./start-volttron --bind-web-address http://127.0.0.1:8080

Once the platform is started, we are ready to run the Simple Web Agent.

Running Simple Web Agent

Note

The following assumes the shell is located at the VOLTTRON_ROOT.

Copy the following into your shell (save it to a file for executing it again later):

python scripts/install-agent.py \
 --agent-source examples/SimpleWebAgent \
 --tag simpleWebAgent \
 --vip-identity webagent \
 --force \
 --start

This will create a web server on http://localhost:8080. The index.html file under simpleweb/webroot/simpleweb/
can be any HTML page which binds to the VOLTTRON message bus .This provides a simple example of providing a web endpoint
in VOLTTRON.

Path based registration examples

	Files will need to be in webroot/simpleweb in order for them to be browsed from
http://localhost:8080/simpleweb/index.html

	Filename is required as we don’t currently auto-redirect to any default pages as shown in
self.vip.web.register_path("/simpleweb", os.path.join(WEBROOT))

The following two examples show the way to call either a JSON-RPC (default) endpoint and one that returns a different
content-type. With the JSON-RPC example from volttron central we only allow post requests, however this is not
required.

	Endpoint will be available at http://localhost:8080/simple/text
self.vip.web.register_endpoint("/simple/text", self.text)

	Endpoint will be available at http://localhost:8080/simple/jsonrpc
self.vip.web.register_endpoint("/simpleweb/jsonrpc", self.rpcendpoint)

	text/html content type specified so the browser can act appropriately like [("Content-Type", "text/html")]

	The default response is application/json so our endpoint returns appropriately with a JSON based response.

Agent Specifications

Documents included below are intended to provide a specification to classes of agents which include a base class in the
VOLTTRON repository and have a well defined set of functions and services.

	Aggregate Historian
	Description

	Software Interfaces

	User Interfaces

	Functional Capabilities

	Data Structure

	Use Cases
	Collect monthly average of multiple topic using data from MongoDBHistorian

	Collect weekly average(sunday to saturday) of single topic using data from MongoDBHistorian

	Collect hourly average for multiple topics based on topic_name pattern

	Collect 7 day average of two topics and time synchronize them for easy comparison

	Qurey list of aggregate data collected

	Qurey list of supported aggregation types

	Constraints and Limitations

	Tagging Service
	Description

	Taxonomy

	Dependency

	Features

	API
	1. Get the list of tag categories available

	2. Get the list of tags for a specific category

	3. Get the list of tags for a topic_name or topic_name_prefix

	4. Find topic names by tags

	5. Query data based on tags

	6. Add tags to specific topic name or topic name prefix

	7. Add tags to multiple topics

	Use case examples
	1. Loading news tags for an existing VOLTTRON instance
	Step 1:

	Step 2: Create tags using template above

	Step 3: Create tags specific to a point or device

	2. Querying based on a topic’s tag and it parent’s tags

	Possible future improvements

	Weather Service
	Description

	Features

	API
	1. Get available features

	2. Get current weather data

	3. Get hourly forecast data

	4. Get historical weather data

	5. Periodic polling of current weather data

	Configuration

	Caching

	Assumptions

Aggregate Historian

Description

An aggregate historian computes aggregates of data stored in a given volttron
historian’s data store. It runs periodically to compute aggregate data
and store it in new tables/collections in the historian’s data store. Each
regular historian (BaseHistorian)
needs a corresponding aggregate historian to compute and store aggregates of
the data collected by the regular historian.

[image: ../../../_images/aggregate_historian.jpg]

Software Interfaces

Data Collection - Data store that the aggregate historian uses as input source needs to be up. Access to it should be provided using an account that has create, read, and write privileges. For example, a MongoAggregateHistorian needs to be able to connect to the mongodb used by MongoHistorian using an account that has read and write access to the db used by the MongoHistorian.

Data retrieval
Aggregate Historian Agent does not provide api for retrieving the aggregate data collected. Use Historian agent’s query interface. Historian’s query api will be modified as below

	topic_name can now be a list of topic names or a single topic

	Two near optional parameters have been added to the query api - agg_type (aggregation type), agg_period (aggregation time period). Both these parameters are mandatory for query aggregate data.

	New api to get the list of aggregate topics available for querying

User Interfaces

Aggregation agent requires user to configure the following details as part of the agent configuration file

	Connection details for historian’s data store (same as historian agent configuration)

	
	List of aggregation groups where each group contains:

	
	Aggregation period - integer followed by m/h/d/w/M (minutes, hours, days, weeks or months)

	Boolean parameter to indicate if aggregation periods should align to calendar times

	Optional collection start time in utc. If not provided, aggregation collection will start from current time

	List of aggregation points with topic name, type of aggregation (sum, avg, etc.), and minimum number of records that should be available for the aggregate to be computed

	Topic name can be specified either as a list of specific topic names (topic_names=[topic1, topic2]) or a regular expression pattern (topic_name_pattern=”Building1/device_*/Zone*temperature”)

	When aggregation is done for a single topic then name of topic will be used for the computed aggregation as well. You could optionally provide a unique aggregation_topic_name

	When topic_name_pattern or multiple topics are specified a unique aggregate topic name should be specified for the collected aggregate. Users can query for the collected aggregate data using this aggregate topic name.

	User should be able to configure multiple aggregations done with the same time period/time interval and these should be time synchronized.

Functional Capabilities

	Should run periodically to compute aggregate data.

	Same instance of the agent should be able to collect data at more than one time interval

	For each configured time period/interval agent should be able to collect different type of aggregation for different topics/points

	Support aggregation over multiple topics/points

	Agent should be able to handle and normalize different time units such as minutes, hours, days, weeks and months

	Agent should be able to compute aggregate both based on wall clock based time intervals and calendar based time interval. For example, agent should be able to calculate daily average based on 12.00AM to 11.59PM of a calendar day or between current time and the same time the previous day.

	Data should be stored in such a way that users can easily retrieve multiple aggregate topics data within a given time interval

Data Structure

Collected aggregate data should be stored in the historian data store into new collection or tables and should be accessible by historian agent’s query interface. Users should easily be able to query aggregate data of multiple points for which data is time synchronized.

Use Cases

Collect monthly average of multiple topic using data from MongoDBHistorian

1. Create a configuration file with connection details from Mongo Historian configuration file and add additional aggregation specific configuration

{
 # configuration from mongo historian - START
 "connection": {
 "type": "mongodb",
 "params": {
 "host": "localhost",
 "port": 27017,
 "database": "mongo_test",
 "user": "test",
 "passwd": "test"
 }
 },
 # configuration from mongo historian - START
 "aggregations":[
 # list of aggregation groups each with unique aggregation_period and
 # list of points that needs to be collected
 {
 "aggregation_period": "1M",
 "use_calendar_time_periods": true,
 "utc_collection_start_time":"2016-03-01T01:15:01.000000",
 "points": [
 {
 "topic_names": ["Building/device/point1", "Building/device/point2"],
 "aggregation_topic_name":"building/device/point1_2/month_sum",
 "aggregation_type": "avg",
 "min_count": 2
 }
]
 }
]
}

In the above example configuration, here is what each field under “aggregations” represent

	aggregation_period: can be minutes(m), hours(h), weeks(w), or months(M)

	
	use_calendar_time_periods: true or false - Should aggregation period align to calendar time periods. Default False. Example,

	
	if “aggregation_period”:”1h” and “use_calendar_time_periods”: false, example periods: 10.15-11.15, 11.15-12.15, 12.15-13.15 etc.

	if “aggregation_period”:”1h” and “use_calendar_time_periods”: true, example periods: 10.00-11.00, 11.00-12.00, 12.00-13.00 etc.

	if “aggregation_period”:”1M” and “use_calendar_time_periods”: true, aggregation would be computed from the first day of the month to last day of the month

	if “aggregation_period”:”1M” and “use_calendar_time_periods”: false, aggregation would be computed with a 30 day interval based on aggregation collection start time

	utc_collection_start_time: The time from which aggregation computation should start. If not provided this would default to current time.

	
	points: List of points, its aggregation type and min_count

	topic_names: List of topic_names across which aggregation should be computed.
aggregation_topic_name: Unique name given for this aggregate. Optional if aggregation is for a single topic.
aggregation_type: Type of aggregation to be done. Please see Constraints and Limitations

min_count: Optional. Minimum number of records that should exist within the configured time period for a aggregation to be computed.

	install and starts the aggregate historian using the above configuration

3. Query aggregate data: Query using historian’s query api by passing two additional parameters - agg_type and agg_period

result1 = query_agent.vip.rpc.call('platform.historian',
 'query',
 topic='building/device/point1_2/month_sum',
 agg_type='avg',
 agg_period='1M',
 count=20,
 order="FIRST_TO_LAST").get(10)

Collect weekly average(sunday to saturday) of single topic using data from MongoDBHistorian

	
	Create a configuration file with connection details from Mongo Historian configuration file and add additional aggregation specific configuration. The configuration file should be similar to the first use case except

	
	aggregation_period: “1w”,

	topic_names: [“Building/device/point1”], #topic for which you want to compute aggregation

	aggregation_topic_name need not be provided

	install and starts the aggregate historian using the above configuration

3. Query aggregate data: Query using historian’s query api by passing two additional parameters - agg_type and agg_period. topic_name will be the same as the point name for which aggregation is collected

result1 = query_agent.vip.rpc.call('platform.historian',
 'query',
 topic='Building/device/point1',
 agg_type='avg',
 agg_period='1w',
 count=20,
 order="FIRST_TO_LAST").get(10)

Collect hourly average for multiple topics based on topic_name pattern

	
	Create a configuration file with connection details from Mongo Historian configuration file and add additional aggregation specific configuration. The configuration file should be similar to the first use case except

	
	aggregation_period: “1h”,

	Insetead of topic_names provide topic_name_pattern. For example, “topic_name_pattern”:”Building1/device_a*/point1”

	aggregation_topic_name provide a unique aggregation topic name

	install and starts the aggregate historian using the above configuration

3. Query aggregate data: Query using historian’s query api by passing two additional parameters - agg_type and agg_period. topic_name will be the same as the point name for which aggregation is collected

result1 = query_agent.vip.rpc.call('platform.historian',
 'query',
 topic="unique aggregation_topic_name provided in configuration",
 agg_type='avg',
 agg_period='1h',
 count=20,
 order="FIRST_TO_LAST").get(10)

Collect 7 day average of two topics and time synchronize them for easy comparison

1. Create a configuration file with connection details from Mongo Historian configuration file and add additional aggregation specific configuration. The configuration file should be similar to the below example

{
 # configuration from mongo historian - START
 "connection": {
 "type": "mongodb",
 "params": {
 "host": "localhost",
 "port": 27017,
 "database": "mongo_test",
 "user": "test",
 "passwd": "test"
 }
 },
 # configuration from mongo historian - START
 "aggregations":[
 # list of aggregation groups each with unique aggregation_period and
 # list of points that needs to be collected
 {
 "aggregation_period": "1w",
 "use_calendar_time_periods": false, #compute for last 7 days, then the next and so on..
 "points": [
 {
 "topic_names": ["Building/device/point1"],
 "aggregation_type": "avg",
 "min_count": 2
 },
 {
 "topic_names": ["Building/device/point2"],
 "aggregation_type": "avg",
 "min_count": 2
 }
]
 }
]
}

	install and starts the aggregate historian using the above configuration

3. Query aggregate data: Query using historian’s query api by passing two additional parameters - agg_type and agg_period. provide the list of topic names for which aggregate was configured above. Since both the points were configured within a single “aggregations” array element, their aggregations will be time synchronized

result1 = query_agent.vip.rpc.call('platform.historian',
 'query',
 topic=['Building/device/point1''Building/device/point2'],
 agg_type='avg',
 agg_period='1w',
 count=20,
 order="FIRST_TO_LAST").get(10)

Results will be of the format

{'values': [
 ['Building/device/point1', '2016-09-06T23:31:27.679910+00:00', 2],
 ['Building/device/point1', '2016-09-15T23:31:27.679910+00:00', 3],
 ['Building/device/point2', '2016-09-06T23:31:27.679910+00:00', 2],
 ['Building/device/point2', '2016-09-15T23:31:27.679910+00:00', 3]],
'metadata': {}}

Qurey list of aggregate data collected

result = query_agent.vip.rpc.call('platform.historian',
 'get_aggregate_topics').get(10)

The result will be of the format:

[(aggregate topic name, aggregation type, aggregation time period, configured list of topics or topic name pattern), ...]

This shows the list of aggregation currently being computed periodically

Qurey list of supported aggregation types

result = query_agent.vip.rpc.call(
 AGG_AGENT_VIP,
 'get_supported_aggregations').get(timeout=10)

Constraints and Limitations

	Initial implementation of this agent will not support any data filtering for raw data before computing data aggregation

	Initial implementation should support all aggregation types directly supported by underlying data store. End user input is needed to figure out what additional aggregation methods are to be supported

MySQL

	Name

	Description

	AVG()

	Return the average value of the argument

	BIT_AND()

	Return bitwise AND

	BIT_OR()

	Return bitwise OR

	BIT_XOR()

	Return bitwise XOR

	COUNT()

	Return a count of the number of rows returned

	GROUP_CONCAT()

	Return a concatenated string

	MAX()

	Return the maximum value

	MIN()

	Return the minimum value

	STD()

	Return the population standard deviation

	STDDEV()

	Return the population standard deviation

	STDDEV_POP()

	Return the population standard deviation

	STDDEV_SAMP()

	Return the sample standard deviation

	SUM()

	Return the sum

	VAR_POP()

	Return the population standard variance

	VAR_SAMP()

	Return the sample variance

	VARIANCE()

	Return the population standard variance

SQLite

	Name

	Description

	AVG()

	Return the average value of the argument

	COUNT()

	Return a count of the number of rows returned

	GROUP_CONCAT()

	Return a concatenated string

	MAX()

	Return the maximum value

	MIN()

	Return the minimum value

	SUM()

	Return sum of all non-NULL values in the group. If there are no non-NULL input rows then returns NULL .

	TOTAL()

	Return sum of all non-NULL values in the group.If there are no non-NULL input rows returns 0.0

MongoDB

	Name

	Description

	SUM

	Returns a sum of numerical values. Ignores non-numeric values

	AVG

	Returns a average of numerical values. Ignores non-numeric values

	MAX

	Returns the highest expression value for each group.

	MIN

	Returns the lowest expression value for each group.

	FIRST

	Returns a value from the first document for each group. Order is only defined if the documents are in a defined order.

	LAST

	Returns a value from the last document for each group. Order is only defined if the documents are in a defined order.

	PUSH

	Returns an array of expression values for each group

	ADDTOSET

	Returns an array of unique expression values for each group. Order of the array elements is undefined.

	STDDEVPOP

	Returns the population standard deviation of the input values

	STDDEVSAMP

	Returns the sample standard deviation of the input values

Tagging Service

Description

Tagging service provides VOLTTRON users the ability to add semantic tags to
different topics so that topic can be queried by tags instead of specific
topic name or topic name pattern.

Taxonomy

VOLLTTRON will use tags from
Project Haystack [http://project-haystack.org/tag].
Tags defined in haystack will be imported into VOLTTRON and grouped by
categories to tag topics and topic name prefix.

Dependency

Once data in VOLTTRON has been tagged, users will be able to query topics
based on tags and use the resultant topics to query the historian

Features

	User should be able to tag individual components of a topic such as campus,
building, device, point etc.

	Using the tagging service users should only be able to add tags already
defined in the volttron tagging schema. New tags should be explicitly added
to the tagging schema before it can be used to tag topics or topic prefix

	Users should be able batch process and tag multiple topic names or topic
prefix using a template. At the end of this, users should be notified about
the list of topics that did not confirm to the template. This will help users
to individually add or edit tags for those specific topics

	When users query for topics based on a tag, the results would correspond
to the current metadata values. It is up to the calling agent/application
to periodically query for latest updates if needed.

	Users should be able query based on tags on a specific topic or its topic
prefix/parents

	Allow for count and skip parameters in queries to restrict count and
allow pagination

API

1. Get the list of tag categories available

rpc call to tagging service method ‘get_categories’ with optional parameters:

	include_description - set to True to return available description
for each category. Default = False

	skip - number of categories to skip. this parameter along with count can be
used for paginating results

	count - limit the total number of tag categories returned to given count

	order - ASCENDING or DESCENDING. By default, it will be sorted in
ascending order

2. Get the list of tags for a specific category

rpc call to tagging service method ‘get_tags_by_category’ with parameter:

	category - <category name>

and optional parameters:

	
	include_kind - indicate if result should include the

	kind/data type for tags returned. Defaults to False

	
	include_description - indicate if result should include

	available description for tags returned. Defaults to False

	skip - number of tags to skip. this parameter along with count can be
used for paginating results

	count - limit the total number of tags returned to given count

	order - ASCENDING or DESCENDING. By default, it will be sorted in
ascending order

3. Get the list of tags for a topic_name or topic_name_prefix

rpc call to tagging service method get_tags_by_topic

	with parameter

	
	topic_prefix - topic name or topic name prefix

and optional parameters:

	
	include_kind - indicate if result should include the

	kind/data type for tags returned. Defaults to False

	
	include_description - indicate if result should include

	available description for tags returned. Defaults to False

	skip - number of tags to skip. this parameter along with count can be
used for paginating results

	count - limit the total number of tags returned to given count

	order - ASCENDING or DESCENDING. By default, it will be sorted in
ascending order

4. Find topic names by tags

rpc call to tagging service method ‘get_topics_by_tags’ with the one or
more of the following parameters

	and_condition - dictionary of tag and its corresponding values that
should be matched using equality operator or a list of tags that should
exists/be true. Tag conditions are combined with AND condition. Only
topics that match all the tags in the list would be returned

	or_condition - dictionary of tag and its corresponding values that
should be matched using equality operator or a list tags that should
exist/be true. Tag conditions are combined with OR condition.
Topics that match any of the tags in the list would be returned.
If both and_condition and or_condition are provided then they
are combined using AND operator.

	condition - conditional statement to be used for matching tags. If
this parameter is provided the above two parameters are ignored. The
value for this parameter should be an expression that contains one or
more query conditions combined together with an “AND” or “OR”.
Query conditions can be grouped together using parenthesis.
Each condition in the expression should conform to one of the following format:

	<tag name/ parent.tag_name> <binary_operator> <value>

	<tag name/ parent.tag_name>

	<tag name/ parent.tag_name> LIKE <regular expression within single quotes

	the word NOT can be prefixed before any of the above three to negate
the condition.

	expressions can be grouped with parenthesis.

For example

condition="tag1 = 1 and not (tag2 < '' and tag2 > '') and tag3 and NOT tag4 LIKE '^a.*b$'"
condition="NOT (tag5='US' OR tag5='UK') AND NOT tag3 AND NOT (tag4 LIKE 'a.*')"
condition="campusRef.geoPostalCode='20500' and equip and boiler"

	skip - number of topics to skip. this parameter along with count can be
used for paginating results

	count - limit the total number of tag topics returned to given count

	order - ASCENDING or DESCENDING. By default, it will be sorted in
ascending order

5. Query data based on tags

Use above api to get topics by tags and then use the result to query
historian’s query api.

6. Add tags to specific topic name or topic name prefix

rpc call to to tagging service method ‘add_topic_tags’ with parameters:

	topic_prefix - topic name or topic name prefix

	tags - {<valid tag>:value, <valid_tag>: value,… }

	update_version - True/False. Default to False. If set to True and if any
of the tags update an existing tag value the older value would be preserved
as part of tag version history. NOTE: This is a placeholder.
Current version does not support versioning.

7. Add tags to multiple topics

rpc call to to tagging service method ‘add_tags’ with parameters:

	tags - dictionary object containing the topic and the tag details.
format:

<topic_name or prefix or topic_name pattern>: {<valid tag>:<value>, ... }, ... }

	update_version - True/False. Default to False. If set to True and if any
of the tags update an existing tag value the older value would be preserved
as part of tag version history

Use case examples

1. Loading news tags for an existing VOLTTRON instance

Current topic names:

/campus1/building1/deviceA1/point1

/campus1/building1/deviceA1/point2

/campus1/building1/deviceA1/point3

/campus1/building1/deviceA2/point1

/campus1/building1/deviceA2/point2

/campus1/building1/deviceA2/point3

/campus1/building1/deviceB1/point1

/campus1/building1/deviceB1/point2

/campus1/building1/deviceB2/point1

/campus1/building1/deviceB1/point2

Step 1:

Create a python dictionary object contains topic name pattern and its
corresponding tag/value pair. Use topic pattern names to fill out tags that
can be applied to more than one topic or topic prefix. Use specific topic name
and topic prefix for tags that apply only to a single entity. For example:

{
tags specific to building1
'/campus1/building1':
 {
 'site': true,
 'dis': ": 'some building description',
 'yearBuilt': 2015,
 'area': '24000sqft'
 },
tags that apply to all device of a specific type
'/campus1/building1/deviceA*':
 {
 'dis': "building1 chilled water system - CHW",
 'equip': true,
 'campusRef':'campus1',
 'siteRef': 'campus1/building1',
 'chilled': true,
 'water' : true,
 'secondaryLoop': true
 }
tags that apply to point1 of all device of a specific type
'/campus1/building1/deviceA*/point1':
 {
 'dis': "building1 chilled water system - point1",
 'point': true,
 'kind': 'Bool',
 'campusRef':'campus1',
 'siteRef': 'campus1/building1'
 }
tags that apply to point2 of all device of a specific type
'/campus1/building1/deviceA*/point2':
 {
 'dis': "building1 chilled water system - point2",
 'point': true,
 'kind': 'Number',
 'campusRef':'campus1',
 'siteRef': 'campus1/building1'
 }
tags that apply to point3 of all device of a specific type
'/campus1/building1/deviceA*/point3':
 {
 'dis': "building1 chilled water system - point3",
 'point': true,
 'kind': 'Number',
 'campusRef':'campus1',
 'siteRef': 'campus1/building1'
 }
tags that apply to all device of a specific type
'/campus1/building1/deviceB*':
 {
 'dis': "building1 device of type B",
 'equip': true,
 'chilled': true,
 'water' : true,
 'secondaryLoop': true,
 'campusRef':'campus1',
 'siteRef': 'campus1/building1'
 }
tags that apply to point1 of all device of a specific type
'/campus1/building1/deviceB*/point1':
 {
 'dis': "building1 device B - point1",
 'point': true,
 'kind': 'Bool',
 'campusRef':'campus1',
 'siteRef': 'campus1/building1',
 'command':true
 }
tags that apply to point1 of all device of a specific type
'/campus1/building1/deviceB*/point2':
 {
 'dis': "building1 device B - point2",
 'point': true,
 'kind': 'Number',
 'campusRef':'campus1',
 'siteRef': 'campus1/building1'
 }
}

Step 2: Create tags using template above

Make an RPC call to the add_tags method and pass the python dictionary object

Step 3: Create tags specific to a point or device

Any tags that were not included in step one and needs to be added later can be
added using the rpc call to tagging service either the method
‘add_topic_tags’ ‘add_tags’

For example:

agent.vip.rpc.call(
 'platform.tagging',
 'add_topic_tags',
 topic_prefix='/campus1/building1/deviceA1',
 tags={'tag1':'value'})

agent.vip.rpc.call(
 'platform.tagging',
 'add_topic_tags',
 tags={
 '/campus1/building1/deviceA2':
 {'tag1':'value'},
 '/campus1/building1/deviceA2/point1':
 {'equipRef':'campus1/building1/deviceA2'}
 }
)

2. Querying based on a topic’s tag and it parent’s tags

Query - Find all points that has the tag ‘command’ and belong to a device/unit
that has a tag ‘chilled’

agent.vip.rpc.call(
 'platform.tagging',
 'get_topics_by_tags',
 condition='temperature and equip.chilled)

In the above code block ‘command’ and ‘chilled’ are the tag names that would be
searched, but since the tag ‘chilled’ is prefixed with ‘equip.’ the tag in a parent topic

The above query would match the topic ‘/campus1/building1/deviceB1/point1’ if
tags in the system are as follows

‘/campus1/building1/deviceB1/point1’ tags:

{
'dis': "building1 device B - point1",
'point': true,
'kind': 'Bool',
'campusRef':'campus1',
'siteRef': 'campus1/building1',
'equipRef': 'campus1/building1/deviceB1',
'command':true
}

‘/campus1/building1/deviceB1’ tags

{
'dis': "building1 device of type B",
'equip': true,
'chilled': true,
'water' : true,
'secondaryLoop': true,
'campusRef':'campus1',
'siteRef': 'campus1/building1'
}

Possible future improvements

	Versioning - When a value of a tag is changed, users should be prompted
to verify if this change denotes a new version or a value correction.
If this value denotes a new version, then older value of the tag should
preserved in a history/audit store

	Validation of tag values based on data type

	Support for units validation and conversions

	Processing and saving geologic coordinates that can enable users to do
geo-spatial queries in databases that support it.

Weather Service

Description

The weather service agent provides API to access current weather data,
historical data and weather forecast data. There are several weather data
providers, some paid and some free. Weather data providers differs from one
and other

	In the kind of features provided - current data, historical data, forecast
data

	The data points returned

	The naming schema used to represent the data returned

	Units of data returned

	Frequency of data updates

The weather service agent has a design similar to historians. There
is a single base weather service that defines the api signatures and
the ontology of the weather data points. There is one concrete
weather service agents for each weather provider. Users can install one or
more provider specific agent to access weather data.

The initial implementation is for NOAA [http://www.noaa.gov] and
would support current and forecast data requests. NOAA does not support
accessing historical weather data through their api. This agent implements
request data caching.

The second implementation is for darksky.net [https://darksky.net/dev].

Features

	Base weather agent features:

	
	Caching

The weather service provides basic caching capability so that
repeated request for same data can be returned from cache instead of network
round trip to the weather data provider. This is also useful to limit the
number of request made to the provider as most weather data provider
have restrictions on number of requests for developer/free api keys. The
size of the cache can be restricted by setting an optional configuration
parameter ‘max_size_gb’

	Name mapping

Data points returned by concrete weather agents is mapped to
standard names based on
CF standard names table [http://cfconventions.org/Data/cf-standard-names/57/build/cf-standard-name-table.html]
Name mapping is done using a CSV file. See Configuration section
for an example configuration

	Unit conversion

If data returned from the provider is of the format
{“data_point_name”:value}, base weather agent can do unit conversions on
the value. Both name mapping and unit conversions can be specified as a
csv file and packaged with the concrete implementing agent. This feature
is not mandatory. See Configuration section for an example
configuration

Core weather data retrieval features :

	Retrieve current weather data.

	Retrieve hourly weather forecast data.

	Retrieve historical weather data.

	Periodic polling of current weather data for one or more locations.
Users can configure one or more locations in a config file and weather
agent will periodically poll for current weather data for the configured
locations and publish the results to message bus.

The set of points returned from the above queries depends on the specific
weather data provider, however the point names returned are from the
standard schema.

Note:

	Since individual weather data provider can support slightly different
sets of features, users are able to query for the list of available
features. For example a provider could provide daily weather forecast in
addition to the hourly forecast data.

API

1. Get available features

rpc call to weather service method ’get_api_features’

Parameters - None

Returns - dictionary of api features that can be called for this weather agent.

2. Get current weather data

rpc call to weather service method ’get_current_weather’

Parameters:

	locations - dictionary containing location details. The format of
location accepted differs between different weather providers and
even different APIs supported by the same provider
For example the location input could be either
{“zipcode”:value} or {“region”:value, “country”: value}.

	Returns:

	List of dictionary objects containing current weather data.
The actual data points returned depends on the weather service provider.

3. Get hourly forecast data

rpc call to weather service method ’get_hourly_forecast’

Parameters:

	locations - dictionary containing location details. The format of
location accepted differs between different weather providers and
even different APIs supported by the same provider
For example the location input could be either
{“zipcode”:value} or {“region”:value, “country”: value}.

optional parameters:

	hours - The number of hours for which forecast data are
returned. By default, it is 24 hours.

	Returns:

	List of dictionary objects containing forecast data. If weather data provider
returns less than requested number of hours result returned would contain a
warning message in addition to the result returned by the provider

4. Get historical weather data

rpc call to weather service method ’get_hourly_historical’

Parameters:

	locations - dictionary containing location details.
For example the location input could be either
{“zipcode”:value} or {“region”:value, “country”: value}.

	start_date - start date of requested data

	end_date - end date of requested data

	Returns:

	List of dictionary objects containing historical data.

Note

Based on the weather data provider this api could do
multiple calls to the data provider to get the requested data. For example,
darksky.net allows history data query by a single date and not a date range.

5. Periodic polling of current weather data

This can be achieved by configuring the locations for which data is requested
in the agent’s configuration file along with polling interval. Results for
each location configured, is published to its corresponding result topic.
is no result topic prefix is configured, then results for all locations are
posted to the topic weather/poll/current/all. poll_topic_suffixes when
provided should be a list of string with the same length as the number of
poll_locations. When topic prefix is specified, each location’s result is
published to weather/poll/current/<poll_topic_suffix for that location>
topic_prefix.

Configuration

Example configuration:

{
 poll_locations: [
 {"zip": "22212"},
 {"zip": "99353"}
],
 poll_topic_suffixes: ["result_22212", "result_99353"],
 poll_interval: 20 #seconds,

 #optional cache arguments
 max_cache_size: ...

}

Example configuration for mapping point names returned by weather provider to
a standard name and units:

Service_Point_Name,Standard_Point_Name,Service_Units,Standard_Units
temperature,air_temperature,fahrenheit,celsius

Caching

Weather agent will cache data until the configured size limit is reached
(if provided).

	Current and forecast data:

If current/forecast weather data exists in cache and if the request time
is within the update time period of the api (specified by a concrete
implementation) then by default cached data would be returned otherwise a
new request is made for it. If hours is provided and the amount of cached
data records is less than hours, this will also result in a new request.

	Historical data cache:

Weather api will query the cache for available data for the given
time period and fill and missing time period with data from the
remote provider.

	Clearing of cache:

Users can configure the maximum size limit for cache.
For each api call, before data is inserted in cache, weather agent will
check for this size limit and purge records in this order.
- Current data older than update time period
- Forecast data older than update time period
- History data starting with the oldest cached data

Assumptions

	User has api key for accessing weather api for a specific weather data
provider, if a key is required.

	Different weather agent might have different requirement for how
input locations are specified. For example NOAA expects a station id
for querying current weather and requires either a lat/long or
gridpoints to query for forecast. weatherbit.io accepts zip code.

	Not all features might be implemented by a specific weather agent.
For example NOAA doesn’t make history data available using their weather
api.

	Concrete agents could expose additional api features

	Optionally, data returned will be based on standard names provided by
the CF standard names table (see Ontology). Any points with a name not
mapped to a standard name would be returned as is.

Driver Development

In order for VOLTTRON agents to gather data from a device or to set device values, agents send requests to the Master
Driver Agent to read or set points. The Master Driver Agent then sends these requests on to the appropriate driver for
interfacing with that device based on the topic specified in the request and the configuration of the Master Driver.
Drivers provide an interface between the device and the master driver by implementing portions of the devices’ protocols
needed to serve the functions of setting and reading points.

As a demonstration of developing a driver a driver can be made to read and set points in a CSV file. This driver will
only differ from a real device driver in terms of the specifics of the protocol.

Create a Driver and Register class

When a new driver configuration is added to the Master Driver, the Master Driver will look for a file or directory in
its interfaces directory (services/core/MasterDriverAgent/master_driver/interfaces) that shares the name of the value
specified by “driver_type” in the configuration file. For the CSV Driver, create a file named csvdriver.py in that
directory.

├── master_driver
│ ├── agent.py
│ ├── driver.py
│ ├── __init__.py
│ ├── interfaces
│ │ ├── __init__.py
│ │ ├── bacnet.py
| | ├── csvdriver.py
│ │ └── modbus.py
│ └── socket_lock.py
├── master-driver.agent
└── setup.py

Following is an example using the directory type structure:

├── master_driver
│ ├── agent.py
│ ├── driver.py
│ ├── __init__.py
│ ├── interfaces
│ │ ├── __init__.py
│ │ ├── bacnet.py
| | ├── csvdriver.py
│ │ ├── modbus.py
│ │ ├── modbus_tk.py
│ │ | ├── __init__.py
│ │ | ├── tests
│ │ | ├── requirements.txt
│ │ | └── README.rst

Note

Using this format, the directory must be the name specified by “driver_type” in the configuration file and the
Interface class must be in the __init__.py file in that directory.

This format is ideal for including additional code files as well as requirements files, tests and documentation.

Interface Basics

A complete interface consists of two parts: the interface class and one or more register classes.

Interface Class Skeleton

When the Master Driver processes a driver configuration file it creates an instance of the interface class found in the
interface file (such as the one we’ve just created). The interface class is responsible for managing the communication
between the Volttron Platform, and the device. Each device has many registers which hold the values Volttron agents are
interested in so generally the interface manages reading and writing to and from a device’s registers. At a minimum,
the interface class should be configurable, be able to read and write registers, as well as read all registers with a
single request. First create the csv interface class boilerplate.

class Interface(BasicRevert, BaseInterface):
 def __init__(self, **kwargs):
 super(Interface, self).__init__(**kwargs)

 def configure(self, config_dict, registry_config_str):
 pass

 def get_point(self, point_name):
 pass

 def _set_point(self, point_name, value):
 pass

 def _scrape_all(self):
 pass

This class should inherit from the BaseInterface and at a minimum implement the configure, get_point, set_point, and
scrape_all methods.

Note

In some sense, drivers are sub-agents running under the same process as the Master Driver. They should be
instantiated following the agent pattern, so a function to handle configuration and create the Driver object has
been included.

Register Class Skeleton

The interface needs some information specifying the communication for each register on the device. For each different
type of register a register class should be defined which will help identify individual registers and determine how
to communicate with them. Our CSV driver will be fairly basic, with one kind of “register”, which will be a column in
a CSV file. Other drivers may require many kinds of registers; for instance, the Modbus protocol driver has
registers which store data in byte sized chunks and registers which store individual bits, therefore the Modbus driver
has bit and byte registers.

For the CSV driver, create the register class boilerplate:

class CsvRegister(BaseRegister):
 def __init__(self, csv_path, read_only, pointName, units, reg_type,
 default_value=None, description=''):
 super(CsvRegister, self).__init__("byte", read_only, pointName, units, description=description)

This class should inherit from the BaseRegister. The class should keep register metadata, and depending upon the
requirements of the protocol/device, may perform the communication.

The BACNet and Modbus drivers may be used as examples of more specific implementations. For the purpose of this
demonstration writing and reading points will be done in the register, however, this may not always be the case (as in
the case of the BACNet driver).

Filling out the Interface class

The CSV interface will be writing to and reading from a CSV file, so the device configuration should include a path
specifying a CSV file to use as the “device”. The CSV “device: path value is set at the beginning of the agent loop
which runs the configure method when the Master Driver starts. Since this Driver is for demonstration, we’ll create the
CSV with some default values if the configured path doesn’t exist. The CSV device will consist of 2 columns: “Point
Name” specifying the name of the register, and “Point Value”, the current value of the register.

_log = logging.getLogger(__name__)

CSV_FIELDNAMES = ["Point Name", "Point Value"]
CSV_DEFAULT = [
 {
 "Point Name": "test1",
 "Point Value": 0
 },
 {
 "Point Name": "test2",
 "Point Value": 1
 },
 {
 "Point Name": "test3",
 "Point Value": "testpoint"
 }
]
type_mapping = {"string": str,
 "int": int,
 "integer": int,
 "float": float,
 "bool": bool,
 "boolean": bool}

class Interface(BasicRevert, BaseInterface):
def __init__(self, **kwargs):
 super(Interface, self).__init__(**kwargs)
 self.csv_path = None

def configure(self, config_dict, registry_config_str):
 self.csv_path = config_dict.get("csv_path", "csv_device.csv")
 if not os.path.isfile(self.csv_path):
 _log.info("Creating csv 'device'")
 with open(self.csv_path, "w+") as csv_device:
 writer = DictWriter(csv_device, fieldnames=CSV_FIELDNAMES)
 writer.writeheader()
 writer.writerows(CSV_DEFAULT)
 self.parse_config(registry_config_str)

At the end of the configuration method, the Driver parses the registry configuration. The registry configuration is
a csv which is used to tell the Driver which register the user wishes to communicate with and includes a few meta-data
values about each register, such as whether the register can be written to, if the register value uses a specific
measurement unit, etc. After each register entry is parsed from the registry config a register is added to the
driver’s list of active registers.

def parse_config(self, config_dict):
 if config_dict is None:
 return

 for index, regDef in enumerate(config_dict):
 # Skip lines that have no point name yet
 if not regDef.get('Point Name'):
 continue

 read_only = regDef.get('Writable', "").lower() != 'true'
 point_name = regDef.get('Volttron Point Name')
 if not point_name:
 point_name = regDef.get("Point Name")
 if not point_name:
 raise ValueError("Registry config entry {} did not have a point name or volttron point name".format(
 index))
 description = regDef.get('Notes', '')
 units = regDef.get('Units', None)
 default_value = regDef.get("Default Value", "").strip()
 if not default_value:
 default_value = None
 type_name = regDef.get("Type", 'string')
 reg_type = type_mapping.get(type_name, str)

 register = CsvRegister(
 self.csv_path,
 read_only,
 point_name,
 units,
 reg_type,
 default_value=default_value,
 description=description)

 if default_value is not None:
 self.set_default(point_name, register.value)

 self.insert_register(register)

Since the driver’s registers will be doing the work of parsing the registers the interface only needs to select the
correct register to read from or write to and instruct the register to perform the corresponding unit of work.

def get_point(self, point_name):
 register = self.get_register_by_name(point_name)
 return register.get_state()

def _set_point(self, point_name, value):
 register = self.get_register_by_name(point_name)
 if register.read_only:
 raise IOError("Trying to write to a point configured read only: " + point_name)
 register.set_state(value)
 return register.get_state()

def _scrape_all(self):
 result = {}
 read_registers = self.get_registers_by_type("byte", True)
 write_registers = self.get_registers_by_type("byte", False)
 for register in read_registers + write_registers:
 result[register.point_name] = register.get_state()
 return result

Writing the Register class

The CSV driver’s register class is responsible for parsing the CSV, reading the corresponding rows to return the
register’s current value and writing updated values into the CSV for the register. On a device which communicates via
a protocol such as Modbus the same units of work would be done, but using pymodbus to perform the reads and writes.
Here, Python’s CSV library will be used as our “protocol implementation”.

The Register class determines which file to read based on values passed from the Interface class.

class CsvRegister(BaseRegister):
 def __init__(self, csv_path, read_only, pointName, units, reg_type,
 default_value=None, description=''):
 super(CsvRegister, self).__init__("byte", read_only, pointName, units,
 description=description)
 self.csv_path = csv_path

To find its value the register will read the CSV file, iterate over each row until a row with the point name the same
as the register name at which point it extracts the point value, and returns it. The register should be written to
handle problems which may occur, such as no correspondingly named row being present in the CSV file.

def get_state(self):
 if os.path.isfile(self.csv_path):
 with open(self.csv_path, "r") as csv_device:
 reader = DictReader(csv_device)
 for point in reader:
 if point.get("Point Name") == self.point_name:
 point_value = point.get("Point Value")
 if not point_value:
 raise RuntimeError("Point {} not set on CSV Device".format(self.point_name))
 else:
 return point_value
 raise RuntimeError("Point {} not found on CSV Device".format(self.point_name))
 else:
 raise RuntimeError("CSV device at {} does not exist".format(self.csv_path))

Likewise to overwrite an existing value, the register will iterate over each row until the point name matches the
register name, saving the output as it goes. When it finds the correct row it instead saves the output updated with the
new value then continues on. Finally it writes the output back to the csv.

def set_state(self, value):
 _log.info("Setting state for {} on CSV Device".format(self.point_name))
 field_names = []
 points = []
 found = False
 with open(self.csv_path, "r") as csv_device:
 reader = DictReader(csv_device)
 field_names = reader.fieldnames
 for point in reader:
 if point["Point Name"] == self.point_name:
 found = True
 point_copy = point
 point_copy["Point Value"] = value
 points.append(point_copy)
 else:
 points.append(point)

 if not found:
 raise RuntimeError("Point {} not found on CSV Device".format(self.point_name))
 else:
 with open(self.csv_path, "w") as csv_device:
 writer = DictWriter(csv_device, fieldnames=field_names)
 writer.writeheader()
 writer.writerows([dict(row) for row in points])
 return self.get_state()

At this point we should be able to scrape the CSV device using the Master Driver and set points using the actuator.

Creating Driver Configurations

The configuration files for the CSV driver are very simple, but in general, the device configuration should specify
the parameters which the interface requires to communicate with the device and the registry configuration contains
rows which correspond to registers and specifies their usage.

Here’s the driver configuration for the CSV driver:

{
 "driver_config": {"csv_path": "csv_driver.csv"},
 "driver_type": "csvdriver",
 "registry_config":"config://csv_registers.csv",
 "interval": 30,
 "timezone": "UTC"
}

Note

The “driver_type” value must match the name of the driver’s python file as this is what the Master Driver
will look for when searching for the correct interface.

And here’s the registry configuration:

	Volttron Point Name

	Point Name

	Writable

	test1

	test1

	true

	test2

	test2

	true

	test3

	test3

	true

The BACNet and Modbus driver docs and example configurations can be used to compare these configurations to more complex
configurations.

Testing your driver

To test the driver’s scrape all functionality, one can install a ListenerAgent and Master Driver with the driver’s
configurations, and run them. To do so for the CSV driver using the configurations above: activate the Volttron
environment start the platform, tail the platform’s log file, then try the following:

python scripts/install-agent.py -s examples/ListenerAgent
python scripts/install-agent.py -s services/core/MasterDriverAgent -c services/core/MasterDriverAgent/master-driver.agent
vctl config store platform.driver devices/<campus>/<building>/csv_driver <path to driver configuration>
vctl config store platform.driver <registry config path from driver configuration> <path to registry configuration>

Note

vctl config list platform.driver will list device and registry configurations stored for the master driver and
vctl config delete platform.driver <config in configs list> can be used to remove a configuration entry -
these commands are very useful for debugging

After the Master Driver starts the driver’s output should appear in the logs at regular intervals based on the Master
Driver’s configuration.

Here is some sample CSV driver output:

2019-11-15 10:32:00,010 (listeneragent-3.3 22996) listener.agent INFO: Peer: pubsub, Sender: platform.driver:, Bus:
, Topic: devices/pnnl/isb1/csv_driver/all, Headers: {'Date': '2019-11-15T18:32:00.001360+00:00', 'TimeStamp':
'2019-11-15T18:32:00.001360+00:00', 'SynchronizedTimeStamp': '2019-11-15T18:32:00.000000+00:00',
'min_compatible_version': '3.0', 'max_compatible_version': ''}, Message:
[{'test1': '0', 'test2': '1', 'test3': 'testpoint'},
 {'test1': {'type': 'integer', 'tz': 'UTC', 'units': None},
 'test2': {'type': 'integer', 'tz': 'UTC', 'units': None},
 'test3': {'type': 'integer', 'tz': 'UTC', 'units': None}}]

This output is an indication of the basic scrape all functionality working in the Interface class - in our
implementation this is also an indication of the basic functionality of the Interface class “get_point” method and
Register class “get_state” methods working (although edge cases should still be tested!).

To test the Interface’s “set_point” method and Register’s “set_state” method we’ll need to use the Actuator agent.
The following agent code can be used to alternate a point’s value on a schedule using the actuator, as well as perform
an action based on a pubsub subscription to a single point:

def CsvDriverAgent(config_path, **kwargs):
 """Parses the Agent configuration and returns an instance of
 the agent created using that configuration.

 :param config_path: Path to a configuration file.

 :type config_path: str
 :returns: Csvdriveragent
 :rtype: Csvdriveragent
 """
 _log.debug("Config path: {}".format(config_path))
 try:
 config = utils.load_config(config_path)
 except Exception:
 config = {}

 if not config:
 _log.info("Using Agent defaults for starting configuration.")
 _log.debug("config_dict before init: {}".format(config))
 utils.update_kwargs_with_config(kwargs, config)
 return Csvdriveragent(**kwargs)

class Csvdriveragent(Agent):
 """
 Document agent constructor here.
 """

 def __init__(self, csv_topic="", **kwargs):
 super(Csvdriveragent, self).__init__(**kwargs)
 _log.debug("vip_identity: " + self.core.identity)

 self.agent_id = "csv_actuation_agent"
 self.csv_topic = csv_topic

 self.value = 0
 self.default_config = {
 "csv_topic": self.csv_topic
 }

 # Set a default configuration to ensure that self.configure is called immediately to setup
 # the agent.
 self.vip.config.set_default("config", self.default_config)

 # Hook self.configure up to changes to the configuration file "config".
 self.vip.config.subscribe(self.configure, actions=["NEW", "UPDATE"], pattern="config")

 def configure(self, config_name, action, contents):
 """
 Called after the Agent has connected to the message bus. If a configuration exists at startup
 this will be called before onstart.

 Is called every time the configuration in the store changes.
 """
 config = self.default_config.copy()
 config.update(contents)

 _log.debug("Configuring Agent")
 _log.debug(config)

 self.csv_topic = config.get("csv_topic", "")

 # Unsubscribe from everything.
 self.vip.pubsub.unsubscribe("pubsub", None, None)

 self.vip.pubsub.subscribe(peer='pubsub',
 prefix="devices/" + self.csv_topic + "/all",
 callback=self._handle_publish)

 def _handle_publish(self, peer, sender, bus, topic, headers, message):
 _log.info("Device {} Publish: {}".format(self.csv_topic, message))

 @Core.receiver("onstart")
 def onstart(self, sender, **kwargs):
 """
 This is method is called once the Agent has successfully connected to the platform.
 This is a good place to setup subscriptions if they are not dynamic or
 do any other startup activities that require a connection to the message bus.
 Called after any configurations methods that are called at startup.

 Usually not needed if using the configuration store.
 """
 self.core.periodic(30, self.actuate_point)

 def actuate_point(self):
 _now = get_aware_utc_now()
 str_now = format_timestamp(_now)
 _end = _now + td(seconds=10)
 str_end = format_timestamp(_end)
 schedule_request = [[self.csv_topic, str_now, str_end]]
 result = self.vip.rpc.call(
 'platform.actuator', 'request_new_schedule', self.agent_id, 'my_test', 'HIGH', schedule_request).get(
 timeout=4)
 point_topic = self.csv_topic + "/" + "test1"
 result = self.vip.rpc.call(
 'platform.actuator', 'set_point', self.agent_id, point_topic, self.value).get(
 timeout=4)
 self.value = 0 if self.value is 1 else 1

 @Core.receiver("onstop")
 def onstop(self, sender, **kwargs):
 """
 This method is called when the Agent is about to shutdown, but before it disconnects from
 the message bus.
 """
 pass

def main():
 """Main method called to start the agent."""
 utils.vip_main(CsvDriverAgent,
 version=__version__)

if __name__ == '__main__':
 # Entry point for script
 try:
 sys.exit(main())
 except KeyboardInterrupt:
 pass

While this code runs, since the Actuator is instructing the Interface to set points on the device, the pubsub all
publish can be used to check that the values are changing as expected.

Contributing Code

As an open source project VOLTTRON requires input from the community to keep development focused on new and useful
features. To that end we are revising our commit process to hopefully allow more contributors to be apart of the
community. The following document outlines the process for source code and documentation to be submitted.
There are GUI tools that may make this process easier, however this document will focus on what is required from the
command line.

The only requirements for contributing are Git (Linux version control software) and your favorite web browser.

Note

The following guide assumes the user has already created a fork of the core VOLTTRON repository. Please review the
docs if you have not yet created a fork.

Reviewing Changes

Okay, we’ve written a cool new foo.py script to service bar in our deployment. Let’s make sure our code is
up-to-snuff.

Code

First, go through the code.

Note

We on the VOLTTRON team would recommend an internal code review - it can be really hard to catch small mistakes,
typos, etc. for code you just finished writing.

	Does the code follow best-practices for Python, object-oriented programming, unit and integration testing, etc.?

	Does the code contain any typos and does it follow Pep8 guidelines [https://www.python.org/dev/peps/pep-0008/]?

	Does the code follow the guidelines laid out in the VOLTTRON documentation?

Docs

Next, Check out the documentation.

	Is it complete?

	Has an introduction describing purpose

	Describes configuration including all parameters

	Includes installation instructions

	Describes behavior at runtime

	Describes all available endpoints (JSON-RPC, pub/sub messages, Web-API endpoints, etc.)

	Does it follow the VOLTTRON documentation guidelines?

Tests

You’ve included tests, right? Unit and integration tests show users that foo.py is better than their wildest
dreams - all of the features work, and include components they hadn’t even considered themselves!

	Are the unit tests thorough?

	Success and failure cases

	Tests for each independent component of the code

	Do the integration tests capture behavior with a running VOLTTRON platform?

	Success and Failure cases

	Tests for each endpoint

	Tests for interacting with other agents if necessary

	Are status, health, etc. updating as expected when things go wrong or the code recovers?

	Can the tests be read to describe the behavior of the code?

Structure

For agents and drivers, the VOLTTRON team has some really simple structure recommendations. These make your project
structure nice and tidy, and integrate nicely with the core repository.

For agents:

TestAgent/
├── setup.py
├── config
├── README.rst
├── tester
| ├── agent.py
| └── __init__.py
└── tests
 └── test_agent.py

For drivers, the interface should be a file named after the driver in the Master Driver’s interfaces directory:

├── master_driver
│ ├── agent.py
│ ├── driver.py
│ ├── __init__.py
│ ├── interfaces
│ │ ├── __init__.py
│ │ ├── bacnet.py
| | ├── csvdriver.py
│ │ └── new_driver.py

Or in the __init__.py file in a directory named after the driver in the Master Driver’s interfaces directory:

├── master_driver
│ ├── agent.py
│ ├── driver.py
│ ├── __init__.py
│ ├── interfaces
│ │ ├── __init__.py
│ │ ├── bacnet.py
│ │ ├── new_driver
│ │ | └── __init__.py

This option is ideal for adding additional code files, and including documentation and tests.

Creating a Pull Request to the main VOLTTRON repository

After reviewing changes to our fork of the VOLTTRON repository, we want our changes to be added into the main VOLTTRON
repository. After all, our foo.py can cure a lot of the world’s problems and of course it is always good to have a
copyright with the correct year. Open your browser to
https://github.com/VOLTTRON/volttron/compare/develop…YOUR_USERNAME:develop [https://github.com/VOLTTRON/volttron/compare/develop...YOUR_USERNAME:develop].

On that page the base fork should always be VOLTTRON/volttron with the base develop, the head fork should
be <YOUR USERNAME>/volttron and the compare should be the branch in your repository to pull from. Once you have
verified that you have got the right changes made then, click on create pull request, enter a title and description that
represent your changes and submit the pull request.

The VOLTTRON repository has a description template to use to format your PR:

Description

Please include a summary of the change and which issue is fixed. Please also include relevant motivation and context. List any dependencies that are required for this change.

Fixes # (issue)

Type of change

Please delete options that are not relevant.

- [] Bug fix (non-breaking change which fixes an issue)
- [] New feature (non-breaking change which adds functionality)
- [] Breaking change (fix or feature that would cause existing functionality to not work as expected)
- [] This change requires a documentation update

How Has This Been Tested?

Please describe the tests that you ran to verify your changes. Provide instructions so we can reproduce. Please also list any relevant details for your test configuration

- [] Test A
- [] Test B

Test Configuration:
* Firmware version:
* Hardware:
* Toolchain:
* SDK:

Checklist:

- [] My code follows the style guidelines of this project
- [] I have performed a self-review of my own code
- [] I have commented my code, particularly in hard-to-understand areas
- [] I have made corresponding changes to the documentation
- [] My changes generate no new warnings
- [] I have added tests that prove my fix is effective or that my feature works
- [] New and existing unit tests pass locally with my changes
- [] Any dependent changes have been merged and published in downstream modules

Note

The VOLTTRON repository includes a stub for completing your pull request. Please follow the stub to facilitate the
reviewing and merging processes.

What happens next?

Once you create a pull request, one or more VOLTTRON team members will review your changes and either accept them as is
ask for modifications in order to have your commits accepted. Typical response time is approximately two weeks; please
be patient, your pull request will be reviewed. You will be automatically emailed through the GitHub notification
system when this occurs (assuming you haven’t changed your GitHub preferences).

Merging changes from the main VOLTTRON repository

As time goes on the VOLTTRON code base will continually be modified so the next time you want to work on a change to
your files the odds are your local and remote repository will be out of date. In order to get your remote VOLTTRON
repository up to date with the main VOLTTRON repository you could simply do a pull request to your remote repository
from the main repository. To do so, navigate your browser to
https://github.com/YOUR_USERNAME/volttron/compare/develop…VOLTTRON:develop [https://github.com/YOUR_USERNAME/volttron/compare/develop...VOLTTRON:develop].

Click the ‘Create Pull Request’ button. On the following page click the ‘Create Pull Request’ button. On the next page
click ‘Merge Pull Request’ button.

Once your remote is updated you can now pull from your remote repository into your local repository through the
following command:

git pull

The other way to get the changes into your remote repository is to first update your local repository with the
changes from the main VOLTTRON repository and then pushing those changes up to your remote repository. To do that you
need to first create a second remote entry to go along with the origin. A remote is simply a pointer to the url of a
different repository than the current one. Type the following command to create a new remote called ‘upstream’:

git remote add upstream https://github.com/VOLTTRON/volttron

To update your local repository from the main VOLTTRON repository then execute the following command where upstream is
the remote and develop is the branch to pull from:

git pull upstream develop

Finally to get the changes into your remote repository you can execute:

git push origin

Other commands to know

At this point in time you should have enough information to be able to update both your local and remote repository
and create pull requests in order to get your changes into the main VOLTTRON repository. The following commands are
other commands to give you more information that the preceding tutorial went through

Viewing what the remotes are in our local repository

git remote -v

Stashing changed files so that you can do a merge/pull from a remote

git stash save 'A comment to be listed'

Applying the last stashed files to the current repository

git stash pop

Finding help about any git command

git help
git help branch
git help stash
git help push
git help merge

Creating a branch from the branch and checking it out

git checkout -b newbranchname

Checking out a branch (if not local already will look to the remote to checkout)

git checkout branchname

Removing a local branch (cannot be current branch)

git branch -D branchname

Determine the current and show all local branches

git branch

Using Travis Continuous Integration Tools

The main VOLTTRON repository is hooked into an automated build tool called travis-ci. Your remote repository can be
automatically built with the same tool by hooking your account into travis-ci’s environment. To do this go to
https://travis-ci.org and create an account. You can using your GitHub login directly to this service. Then you will
need to enable the syncing of your repository through the travis-ci service. Finally you need to push a new change to
the repository. If the build fails you will receive an email notifying you of that fact and allowing you to modify the
source code and then push new changes out.

Contributing Documentation

The Community is encouraged to contribute documentation back to the project as they work through use cases the
developers may not have considered or documented. By contributing documentation back, the community can
learn from each other and build up a more extensive knowledge base.

VOLTTRON™ documentation utilizes ReadTheDocs: http://volttron.readthedocs.io/en/develop/ and is built
using the Sphinx [http://www.sphinx-doc.org/en/stable/] Python library with static content in
Restructured Text [http://docutils.sourceforge.net/docs/user/rst/quickref.html].

Building the Documentation

Static documentation can be found in the docs/source directory. Edit or create new .rst files to add new content
using the Restructured Text [http://docutils.sourceforge.net/docs/user/rst/quickref.html] format. To see the results
of your changes the documentation can be built locally through the command line using the following instructions:

If you’ve already bootstrapped VOLTTRON™, do the following while activated. If not,
this will also pull down the necessary VOLTTRON™ libraries.

python bootstrap.py --documentation
cd docs
make html

Then, open your browser to the created local files:

file:///home/<USER>/git/volttron/docs/build/html/overview/index.html

When complete, changes can be contributed back using the same process as code contributions
by creating a pull request. When the changes are accepted and merged, they will be reflected in the ReadTheDocs site.

Documentation Styleguide

Naming Conventions

	File names and directories should be all lower-case and use only dashes/minus signs (-) as word separators

index.rst
├── first-document.rst
├── more-documents
│ ├──second-document.rst

	Reference Labels should be Capitalized and dash/minus separated:

.. _Reference-Label:

	Headings and Sub-headings should be written like book titles:

==============
The Page Title
==============

Headings

Each page should have a main title:

==================================
This is the Main Title of the Page
==================================

It can be useful to include reference labels throughout the document to use to refer back to that section of
documentation. Include reference labels above titles and important headings:

.. _Main-Title:

==================================
This is the main title of the page
==================================

Heading Levels

	Page titles and documentation parts should use over-line and underline hashes:

=====
Title
=====

	Chapter headings should be over-lined and underlined with asterisks

Chapter

	For sections, subsections, sub-subsections, etc. underline the heading with the following:

	=, for sections

	-, for subsections

	^, for sub-subsections

	“, for paragraphs

In addition to following guidelines for styling, please separate headers from previous content by two newlines.

=====
Title
=====

 Content

Subheading
==========

Example Code Blocks

Use bash for commands or user actions:

ls -al

Use this for the results of a command:

total 5277200
drwxr-xr-x 22 volttron volttron 4096 Oct 20 09:44 .
drwxr-xr-x 23 volttron volttron 4096 Oct 19 18:39 ..
-rwxr-xr-x 1 volttron volttron 164 Sep 29 17:08 agent-setup.sh
drwxr-xr-x 3 volttron volttron 4096 Sep 29 17:13 applications

Use this when Python source code is displayed

@RPC.export
def status_agents(self):
 return self._aip.status_agents()

Directives

Danger

Something very bad!

Tip

This is something good to know

Some other directives

“attention”, “caution”, “danger”, “error”, “hint”, “important”, “note”, “tip”, “warning”, “admonition”

Links

Linking to external sites is simple:

Link to `Google <www.google.com>`_

References

You can reference other sections of documentation using the ref directive:

This will reference the :ref:`platform installation <Platform-Installation>`

Other resources

	http://pygments.org/docs/lexers/

	http://documentation-style-guide-sphinx.readthedocs.io/en/latest/style-guide.html

	http://www.sphinx-doc.org/en/stable/markup/code.html

Jupyter Notebooks

Jupyter is an open-source web application that lets you create and share “notebook” documents. A notebook displays
formatted text along with live code that can be executed from the browser, displaying the execution output and
preserving it in the document. Notebooks that execute Python code used to be called iPython Notebooks. The iPython
Notebook project has now merged into Project Jupyter.

Using Jupyter to Manage a Set of VOLTTRON Servers

The following Jupyter notebooks for VOLTTRON have been provided as examples:

	Collector notebooks. Each Collector notebook sets up a particular type of device driver
and forwards device data to another VOLTTRON instance, the Aggregator.

	SimulationCollector notebook. This notebook sets up a group of Simulation device drivers
and forwards device data to another VOLTTRON instance, the Aggregator.

	BacnetCollector notebook. This notebook sets up a Bacnet (or Bacnet gateway) device driver
and forwards device data to another VOLTTRON instance, the Aggregator.

	ChargePointCollector notebook. This notebook sets up a ChargePoint device driver
and forwards device data to another VOLTTRON instance, the Aggregator.

	SEP2Collector notebook. This notebook sets up a SEP2.0 (IEEE 2030.5) device driver
and forwards device data to another VOLTTRON instance, the Aggregator.
The Smart Energy Profile 2.0 (“SEP2”) protocol implements IEEE 2030.5, and is capable
of connecting a wide array of smart energy devices to the Smart Grid. The standard is
designed to run over TCP/IP and is physical layer agnostic.

	Aggregator notebook. This notebook sets up and executes aggregation of forwarded data
from other VOLTTRON instances, using a historian to record the data.

	Observer notebook. This notebook sets up and executes a DataPuller that captures data from
another VOLTTRON instance, using a Historian to record the data. It also uses the
Message Debugger agent to monitor messages flowing across the VOLTTRON bus.

Each notebook configures and runs a set of VOLTTRON Agents. When used as a set they implement a
multiple-VOLTTRON-instance architecture that captures remote device data, aggregates it, and reports on it, routing the
data as follows:

[image: ../../_images/jupyter_notebooks.jpg]

Install VOLTTRON and Jupyter on a Server

The remainder of this guide describes how to set up a host for VOLTTRON and Jupyter. Use this setup process on a server
in order to prepare it to run Jupyter notebook for VOLTTRON.

Set Up the Server and Install VOLTTRON

The following is a complete, but terse, description of the steps for installing and running VOLTTRON on a server. For
more detailed, general instructions, see Installing Volttron.

The VOLTTRON server should run on the same host as the Jupyter server.

	Load third-party software:

$ sudo apt-get update
$ sudo apt-get install build-essential python-dev openssl libssl-dev libevent-dev git
$ sudo apt-get install sqlite3

	Clone the VOLTTRON repository from github:

$ cd ~
$ mkdir repos
$ cd repos
$ git clone https://github.com/VOLTTRON/volttron/

	Check out the develop (or master) branch and bootstrap the development environment:

$ cd volttron
$ git checkout develop
$ python bootstrap.py

	Activate and initialize the VOLTTRON virtual environment:

Run the following each time you open a new command-line shell on the server:

$ export VOLTTRON_ROOT=~/repos/volttron
$ export VOLTTRON_HOME=~/.volttron
$ cd $VOLTTRON_ROOT
$ source env/bin/activate

Install Extra Libraries

	Add Python libraries to the VOLTTRON virtual environment:

These notebooks use third-party software that’s not included in VOLTTRON’s standard distribution that was loaded by
bootstrap.py. The following additional packages are required:

	Jupyter

	SQLAlchemy (for the Message Debugger)

	Suds (for the ChargePoint driver, if applicable)

	Numpy and MatPlotLib (for plotted output)

Note

A Jupyter installation also installs and/or upgrades many dependent libraries. Doing so could disrupt other work on
the OS, so it’s safest to load Jupyter (and any other library code) in a virtual environment. VOLTTRON runs in a
virtual environment during normal operation, so if you’re using Jupyter in conjunction with VOLTTRON, it should be
installed in your VOLTTRON virtual environment (In other words, be sure to use cd $VOLTTRON_ROOT and
source env/bin/activate to activate the virtual environment before running pip install.)

	Install the third-party software:

$ pip install SQLAlchemy==1.1.4
$ pip install suds-jurko==0.6
$ pip install numpy
$ pip install matplotlib
$ pip install jupyter

Note

If pip install fails due to an untrusted cert, try using this command instead:

$ pip install --trusted-host pypi.python.org <libraryname>

An InsecurePlatformWarning may be displayed, but it typically won’t stop the installation from proceeding.

Configure VOLTTRON

Use the vcfg wizard to configure the VOLTTRON instance. By default, the wizard configures a VOLTTRON instance that
communicates with agents only on the local host (ip 127.0.0.1). This set of notebooks manages communications among
multiple VOLTTRON instances on different hosts. To enable this cross-host communication on VOLTTRON’s web server,
replace 127.0.0.1 with the host’s IP address, as follows:

$ vcfg

Accept all defaults, except as follows:

	If a prompt defaults to 127.0.0.1 as an IP address, substitute the host’s IP address (this may happen multiple
times).

	When asked whether this is a volttron central, answer Y.

	When prompted for a username and password, use admin and admin.

Start VOLTTRON

Start the main VOLTTRON process, logging to $VOLTTRON_ROOT/volttron.log:

$ volttron -vv -l volttron.log --msgdebug

This runs VOLTTRON as a foreground process. To run it in the background, use:

This also enables the Message Debugger, a non-production VOLTTRON debugging aid that’s used by some notebooks. To run
with the Message Debugger disabled (VOLTTRON’s normal state), omit the --msgdebug flag.

Now that VOLTTRON is running, it’s ready for agent configuration and execution. Each Jupyter notebook contains detailed
instructions and executable code for doing that.

Configure Jupyter

More detailed information about installing, configuring and using Jupyter Notebooks is available on the Project Jupyter
site, http://jupyter.org/.

	Create a Jupyter configuration file:

$ jupyter notebook --generate-config

	Revise the Jupyter configuration:

Open ~/.jupyter/jupyter_notebook_config.py in your favorite text editor. Change the configuration to accept
connections from any IP address (not just from localhost) and use a specific, non-default port number:

	Un-comment c.NotebookApp.ip and set it to: * instead of localhost

	Un-comment c.NotebookApp.port and set it to: 8891 instead of 8888

Save the config file.

	Open ports for TCP connections:

Make sure that your Jupyter server host’s security rules allow inbound TCP connections on port 8891.

If the VOLTTRON instance needs to receive TCP requests, for example ForwardHistorian or DataPuller messages from other
VOLTTRON instances, make sure that the host’s security rules also allow inbound TCP communications on VOLTTRON’s port,
which is usually 22916.

Launch Jupyter

	Start the Jupyter server:

In a separate command-line shell, set up VOLTTRON’s environment variables and virtual environment, and then launch the
Jupyter server:

$ export VOLTTRON_HOME=(your volttron home directory, e.g. ~/.volttron)
$ export VOLTTRON_ROOT=(where volttron was installed; e.g. ~/repos/volttron)
$ cd $VOLTTRON_ROOT
$ source env/bin/activate
$ cd examples/JupyterNotebooks
$ jupyter notebook --no-browser

	Open a Jupyter client in a web browser:

Look up the host’s IP address (e.g., using ifconfig). Open a web browser and navigate to the URL that was displayed when
you started jupyter, replacing localhost with that IP address. A Jupyter web page should display, listing your
notebooks.

Python for Matlab Users

Matlab is a popular proprietary programming language and tool suite with built in support for matrix operations and
graphically plotting computation results. The purpose of this document is to introduce Python to those already familiar
Matlab so it will be easier for them to develop tools and agents in VOLTTRON.

A Simple Function

Python and Matlab are similar in many respects, syntactically and semantically. With the addition of the NumPy library
in Python, almost all numerical operations in Matlab can be emulated or directly translated. Here are functions in each
language that perform the same operation:

% Matlab
function [result] = times_two(number)
 result = number * 2;
end

Python
def times_two(number):
 result = number * 2
 return result

Some notes about the previous functions:

	Values are explicitly returned with the return statement. It is possible to return multiple values, as in Matlab,
but doing this without a good reason can lead to overcomplicated functions.

	Semicolons are not used to end statements in python, and white space is significant. After a block is started (if,
for, while, functions, classes) subsequent lines should be indented with four spaces. The block ends when the
programmer stops adding the extra level of indentation.

Translating

The following may be helpful if you already have a Matlab file or function that will be translated into Python. Many of
the syntax differences between Matlab and Python can be rectified with your text editor’s find and replace feature.

Start by copying all of your Matlab code into a new file with a .py extension. It is recommended to start by
commenting everything out and uncommenting the Matlab code in chunks. This way it is possible to write valid Python and
verify it as you translate, instead of waiting till the whole file is “translated”. Editors designed to work with
Python should be able to highlight syntax errors as well.

	Comments are created with a %. Find and replace these with #.

def test_function():
 # single line Python comment
 """
 Multi-line Python comment
 """
 pass # inline Python comment

	Change elseif blocks to elif blocks.

if thing == 0:
 do_thing1()
elif thing ==1:
 do_thing2()
else:
 do_the_last_thing()

	Python indexes start at zero instead of one. Array slices and range operations don’t include the upper bound, so
only the lower bound should decrease by one. The following examples are of Python code in the console:

>>> test_array = [0, 1, 2, 3, 4]
>>> test_array[0]
0
>>> test_array[1]
1
>>> test_array[0:2]
[0, 1]
>>>>>> test_array[:2]
[0, 1]
>>> test_array[2:]
[2, 3, 4]
>>>

	Semicolons in Matlab are used to suppress output at the end of lines and for organizing array literals. After
arranging the arrays into nested lists, all semicolons can be removed.

	The end keyword in Matlab is used both to access the last element in an array and to close blocks. The array use
case can be replaced with -1 and the others can be removed entirely.

>>> test_array = [0, 1, 2, 3, 4]
>>> test_array[-1]
4
>>>

A More Concrete Example

In the Building Economic Dispatch [https://github.com/VOLTTRON/econ-dispatch] project, a sibling project to VOLTTRON,
a number of components written in Matlab would create a matrix out of some collection of columns and perform least
squares regression using the matrix division operator. This is straightforward and very similar in both languages
assuming that all of the columns are defined and are the same length.

% Matlab
XX = [U, xbp, xbp2, xbp3, xbp4, xbp5];
AA = XX \ ybp;

Python
import numpy as np

XX = np.column_stack((U, xbp, xbp2, xbp3, xbp4, xbp5))
AA, resid, rank, s = np.linalg.lstsq(XX, ybp)

This pattern also included the creation of the U column, a column of ones used as the bias term in the linear equation
. In order to make the Python version more readable and more robust, the pattern was removed from each component and
replaced with a single function call to least_squares_regression.

This function does some validation on the input parameters, automatically creates the bias column, and returns the least
squares solution to the system. Now if we want to change how the solution is calculated we only have to change the one
function, instead of each instance where the pattern was written originally.

def least_squares_regression(inputs=None, output=None):
 if inputs is None:
 raise ValueError("At least one input column is required")
 if output is None:
 raise ValueError("Output column is required")

 if type(inputs) != tuple:
 inputs = (inputs,)

 ones = np.ones(len(inputs[0]))
 x_columns = np.column_stack((ones,) + inputs)

 solution, resid, rank, s = np.linalg.lstsq(x_columns, output)
 return solution

Lessons Learned (sometimes the hard way)

Variable Names

Use descriptive function and variable names whenever possible. The most important things to consider here are reader
comprehension and searching. Consider a variable called hdr. Is it header without any vowels, or is it short for
high-dynamic-range? Spelling out full words in variable names can save someone else a lot of guesswork.

Searching comes in when we’re looking for instances of a string or variable. Single letter variable names are
impossible to search for. Variables names describing the value being stored in a concise but descriptive manner are
preferred.

Matlab load/save

Matlab has built-in functions to automatically save and load variables from your programs to disk. Using these
functions can lead to poor program design and should be avoided if possible. It would be best to refactor as you
translate if they are being used. Few operations are so expensive that that cannot be redone every time the program is
run. For part of the program that saves variables, consider making a function that simply returns them instead.

If your Matlab program is loading csv files then use the Pandas library when working in python. Pandas works well with
NumPy and is the go-to library when using csv files that contain numeric data.

More Resources

NumPy for Matlab Users [https://docs.scipy.org/doc/numpy-dev/user/numpy-for-matlab-users.html]
Has a nice list of common operations in Matlab and NumPy.

NumPy Homepage [http://www.numpy.org/]

Pandas Homepage [http://pandas.pydata.org/]

Bootstrap Process

The bootstrap.py Python script in the root directory of the VOLTTRON repository may be used to create
VOLTTRON’s Python virtual environment and install or update service agent dependencies.

The first running of bootstrap.py will be against the systems python3 executable. During this initial step a
virtual environment is created using the venv module. Additionally, all requirements for running a base volttron
instance are installed. A user can specify additional arguments to the bootstrap.py script allowing a way to
quickly install dependencies for service agents (e.g. bootstrap.py –mysql).

boostrap with additional dependency requirements for web enabled agents.
user@machine$ python3 bootstrap.py --web

After activating an environment (source env/bin/activate) one can use the bootstrap.py script to install more
service agent dependencies by executing the same boostrap.py command.

Note

In the following example one can tell the environment is activated based upon the (volttron) prefix to the
command prompt

Adding additional database requirement for crate
(volttron) user@machine$ python3 bootstrap.py --crate

If a fresh install is necessary one can use the –force argument to rebuild the virtual environment from scratch.

Rebuild the environment from the system's python3
user@machine$ python3 bootstrap.py --force

Note

Multiple options can be specified on the command line python3 bootstrap.py –web –crate installs
dependencies for web enabled agents as well as the Crate database historian.

Bootstrap Options

The bootstrap.py script takes several options that allow customization of the environment, installing and
update packages, and setting the package locations. The following sections can be reproduced by executing:

Show the help output from bootstrap.py
user@machine$ python3 bootstrap --help

The options for customizing the location of the virtual environment are as follows.

--envdir VIRTUAL_ENV alternate location for virtual environment
--force force installing in non-empty directory
-o, --only-virtenv create virtual environment and exit (skip install)
--prompt PROMPT provide alternate prompt in activated environment
 (default: volttron)

Additional options are available for customizing where an environment will retrieve packages and/or upgrade
existing packages installed.

update options:
 --offline install from cache without downloading
 -u, --upgrade upgrade installed packages
 -w, --wheel build wheels in the pip wheelhouse

To help boostrap an environment in the shortest number of steps we have grouped dependency packages under named
collections. For example, the –web argument will install six different packages from a single call to
boostrap.py –web. The following collections are available to use.

...

Extra packaging options:
 --all All dependency groups.
 --crate Crate database adapter
 --databases All of the databases (crate, mysql, postgres, etc).
 --dnp3 Dependencies for the dnp3 agent.
 --documentation All dependency groups to allow generation of documentation without error.
 --drivers All drivers known to the platform driver.
 --influxdb Influx database adapter
 --market Base market agent dependencies
 --mongo Mongo database adapter
 --mysql Mysql database adapter
 --pandas Pandas numerical analysis tool
 --postgres Postgres database adapter
 --testing A variety of testing tools for running unit/integration tests.
 --web Packages facilitating the building of web enabled agents.
 --weather Packages for the base weather agent

rabbitmq options:
 --rabbitmq [RABBITMQ]
 install rabbitmq server and its dependencies. optional
 argument: Install directory that exists and is
 writeable. RabbitMQ server will be installed in a
 subdirectory.Defaults to /home/osboxes/rabbitmq_server

...

Platform Configuration

Each instance of the VOLTTRON platform includes a config file which is used to configure the platform instance on
startup. This file is kept in VOLTTRON_HOME and is created using the volttron-cfg (vcfg) command, or will be
created with default values on start up of the platform otherwise.

Following is helpful information about the config file and the vcfg command.

VOLTTRON Environment

By default, the VOLTTRON projects bases its files out of VOLTTRON_HOME
which defaults to ~/.volttron.

	$VOLTTRON_HOME/agents contains the agents installed on the
platform

	$VOLTTRON_HOME/certificates contains the certificates for use
with the Licensed VOLTTRON code.

	$VOLTTRON_HOME/run contains files create by the platform during
execution. The main ones are the 0MQ files created for publish and
subcribe.

	$VOLTTRON_HOME/ssh keys used by agent mobility in the Licensed
VOLTTRON code

	$VOLTTRON_HOME/config Default location to place a config file to
override any platform settings.

	$VOLTTRON_HOME/packaged is where agent packages created with volttron-pkg are created

VOLTTRON Config File

The VOLTTRON platform config file can contain any of the command line arguments for starting the platform…

-c FILE, --config FILE
 read configuration from FILE
-l FILE, --log FILE send log output to FILE instead of stderr
-L FILE, --log-config FILE
 read logging configuration from FILE
-q, --quiet decrease logger verboseness; may be used multiple
 times
-v, --verbose increase logger verboseness; may be used multiple
 times
--verboseness LEVEL set logger verboseness
--help show this help message and exit
--version show program's version number and exit

agent options:

--autostart automatically start enabled agents and services
--publish-address ZMQADDR
 ZeroMQ URL for used for agent publishing
--subscribe-address ZMQADDR
 ZeroMQ URL for used for agent subscriptions

control options:

--control-socket FILE
 path to socket used for control messages
--allow-root allow root to connect to control socket
--allow-users LIST users allowed to connect to control socket
--allow-groups LIST user groups allowed to connect to control socket

Boolean options, which take no argument, may be inverted by prefixing the option with no ‘-‘ (e.g. --autostart may
be inverted using --no-autostart).

VOLTTRON Config

The volttron-cfg or vcfg command allows for an easy configuration of the VOLTTRON environment. The command includes
the ability to set up the platform configuration, an instance of the platform historian, VOLTTRON Central UI, and
VOLTTRON Central Platform agent.

Running vcfg will create a config file in VOLTTRON_HOME which will be populated according to the answers to
prompts. This process should be repeated for each platform instance, and can be re-run to reconfigure a platform
instance.

Note

To create a simple instance of VOLTTRON, leave the default response, or select yes (y) if prompted for a yes or no
response [Y/N]. You must choose a username and password for the VOLTTRON Central admin account if selected.

A set of example responses are included here (username is user, localhost is volttron-pc):

(volttron) user@volttron-pc:~/volttron$ vcfg

Your VOLTTRON_HOME currently set to: /home/user/.volttron

Is this the volttron you are attempting to setup? [Y]:
What type of message bus (rmq/zmq)? [zmq]:
What is the vip address? [tcp://127.0.0.1]:
What is the port for the vip address? [22916]:
Is this instance web enabled? [N]: y
What is the protocol for this instance? [https]:
Web address set to: https://volttron-pc
What is the port for this instance? [8443]:
Would you like to generate a new web certificate? [Y]:
WARNING! CA certificate does not exist.
Create new root CA? [Y]:

Please enter the following details for web server certificate:
 Country: [US]:
 State: WA
 Location: Richland
 Organization: PNNL
 Organization Unit: VOLTTRON
Created CA cert
Creating new web server certificate.
Is this an instance of volttron central? [N]: y
Configuring /home/user/volttron/services/core/VolttronCentral.
Installing volttron central.
['volttron', '-vv', '-l', '/home/user/.volttron/volttron.cfg.log']
Should the agent autostart? [N]: y
VC admin and password are set up using the admin web interface.
After starting VOLTTRON, please go to https://volttron-pc:8443/admin/login.html to complete the setup.
Will this instance be controlled by volttron central? [Y]:
Configuring /home/user/volttron/services/core/VolttronCentralPlatform.
What is the name of this instance? [volttron1]:
Volttron central address set to https://volttron-pc:8443
['volttron', '-vv', '-l', '/home/user/.volttron/volttron.cfg.log']
Should the agent autostart? [N]: y
Would you like to install a platform historian? [N]: y
Configuring /home/user/volttron/services/core/SQLHistorian.
['volttron', '-vv', '-l', '/home/user/.volttron/volttron.cfg.log']
Should the agent autostart? [N]: y
Would you like to install a master driver? [N]: y
Configuring /home/user/volttron/services/core/MasterDriverAgent.
['volttron', '-vv', '-l', '/home/user/.volttron/volttron.cfg.log']
Would you like to install a fake device on the master driver? [N]: y
Should the agent autostart? [N]: y
Would you like to install a listener agent? [N]: y
Configuring examples/ListenerAgent.
['volttron', '-vv', '-l', '/home/user/.volttron/volttron.cfg.log']
Should the agent autostart? [N]: y
Finished configuration!

You can now start the volttron instance.

If you need to change the instance configuration you can edit
the config file is at /home/user/.volttron/config

Once this is finished, run VOLTTRON and test the new configuration.

Optional Arguments

	-v, –verbose - Enables verbose output in standard-output (PIP output, etc.)

	–vhome VHOME - Provide a path to set VOLTTRON_HOME for this instance

	–instance-name INSTANCE_NAME - Provide a name for this instance. Required for running secure agents mode

	–list-agents - Display a list of configurable agents (Listener, Master Driver, Platform Historian, VOLTTRON
Central, VOLTTRON Central Platform)

	–agent AGENT [AGENT …] - Configure listed agents

	–rabbitmq RABBITMQ [RABBITMQ …] - Configure rabbitmq for single instance, federation, or shovel either based
on configuration file in yml format or providing details when prompted.

Usage:

vcfg --rabbitmq single|federation|shovel [rabbitmq config file]``

	–secure-agent-users - Require that agents run as their own Unix users (this requires running
scripts/secure_user_permissions.sh as sudo)

Planning a Deployment

The 3 major installation types for VOLTTRON are doing development, doing research using VOLTTRON, and
collecting and managing physical devices.

Development and Research installation tend to be smaller footprint installations. For development, the
data is usually synthetic or copied from another source. The existing documentation covers development
installs in significant detail.

Other deployments will have a better installation experience if they consider certain kinds of questions
while they plan their installation.

Questions

	Do you want to send commands to the machines ?

	Do you want to store the data centrally ?

	How many machines do you expect to collect data from on each “collector” ?

	How often will the machines collect data ?

	Are all the devices visible to the same network ?

	What types of VOLTTRON applications do you want to run ?

Commands

If you wish to send commands to the devices, you will want to install and configure the Volttron Central
agent. If you are only using VOLTTRON to securely collect the data, you can turn off the extra agents
to reduce the footprint.

Storing Data

VOLTTRON supports multiple historians. MySQL and MongoDB are the most commonly used. As you plan your
installation, you should consider how quickly you need access to the data and where. If you are looking
at the health and well-being of an entire suite of devices, its likely that you want to do that from a
central location. Analytics can be performed at the edge by VOLTTRON applications or can be performed
across the data usually from a central data repository. The latency that you can tolerate in your data
being available will also determine choices in different agents (ForwardHistorian versus Data Mover)

How Many

The ratio of how many devices-to-collector machine is based on several factors. These include:

	how much memory and network bandwidth the collection machine has. More = More devices

	how fast the local storage is can affect how fast the data cache can be written. Very slow
storage devices can fall behind

The second half of the “how many” question is how many collector platforms are writing to a single
VOLTTRON platform to store data - and whether that storage is local, remote, big enough, etc.

If you are storing more than moderate amount of data, you will probably benefit from installing
your database on a different machine than your concrete historian machine.

Note

This is contra-indicated if you have a slow network connection between you concrete historian and your database
machine.

In synthetic testing up to 6 virtual machines hosting 500 devices each (18 points) were easily
supported by a single centralized platform writing to a Mongo database - using a high speed network.
That central platform experienced very little CPU or memory load when the VOLTTRON Central agent was disabled.

How Often

This question is closely related to the last. A higher sampling frequency will create more data. This
will place more work in the storage phase.

Networks

In many cases, there are constraints on how networks can interact with each other. In many cases,
these include security considerations. On some sites, the primary network will be protected from less
secure networks and may require different installation considerations. For example, if a data collector
machine and the database machine are on the same network with sufficient security, you may choose
to have the data collector write directly to the database. If the collector is on an isolated building
network then you will likely need to use the ForwardHistorian to bridge the two networks.

Other Considerations

Physical location and maintenance of collector machines must be considered in all live deployments.
Although the number of data points may imply a heavy load on a data collection box, the physical constraints
may limit the practicality of having more than a single box. The other side of that discussion is deploying
many collector boxes may be simpler initially, but may create a maintenance challenge if you don’t
plan ahead on how you apply patches, etc.

Naming conventions should also be considered. The ability to trace data through the system and identify
the collector machine and device can be invaluable in debugging and analysis.

Deployment Options

There are several ways to deploy the VOLTTRON platform in a Linux environment. It is up to the user to determine which
is right for them. The following assumes that the platform has already been bootstrapped and is ready to run.

Simple Command Line

With the VOLTTRON environment activated the platform can be started simply by running VOLTTRON on the command
line.

$volttron -vv

This will start the platform in the current terminal with very verbose logging turned on. This
is most appropriate for testing Agents or testing a deployment for problems before switching to a
more long term solution. This will print all log messages to the console in real time.

This should not be used for long term deployment. As soon as an SSH session is terminated for whatever reason
the processes attached to that session will be killed. This also will not capture log message to a file.

Running VOLTTRON as a Background Process

A simple, more long term solution, is to run volttron in the background and disown it from the current terminal.

Warning

If you plan on running VOLTTRON in the background and detaching it from the
terminal with the disown command be sure to redirect stderr and stdout to /dev/null.
Even if logging to a file is used some libraries which VOLTTRON relies on output
directly to stdout and stderr. This will cause problems if those file descriptors
are not redirected to /dev/null.

$volttron -vv -l volttron.log > /dev/null 2>&1&

Alternatively:

``./start-volttron``

Note

If you are not in an activated environment, this script will start the platform running in the background in the
correct environment, however the environment will not be activated for you, you must activate it yourself.

If there are other jobs running in your terminal be sure to disown the correct one.

$jobs
[1]+ Running something else
[2]+ Running ./start-volttron

#Disown VOLTTRON
$disown %2

This will run the VOLTTRON platform in the background and turn it into a daemon. The log output will be directed
to a file called volttron.log in the current directory.

To keep the size of the log under control for more longer term deployments us the rotating log configuration file
examples/rotatinglog.py.

$volttron -vv --log-config examples/rotatinglog.py > /dev/null 2>&1&

This will start a rotate the log file at midnight and limit the total log data to seven days worth.

The main downside to this approach is that the VOLTTRON platform will not automatically
resume if the system is restarted. It will need to be restarted manually after reboot.

Setting up VOLTTRON as a System Service

Systemd

An example service file scripts/admin/volttron.service for systemd cas be used as a starting point
for setting up VOLTTRON as a service. Note that as this will redirect all the output that would
be going to stdout - to the syslog. This can be accessed using journalctl. For systems that run
all the time or have a high level of debugging turned on, we recommend checking the system’s
logrotate settings.

[Unit]
Description=VOLTTRON Platform Service
After=network.target

[Service]
Type=simple

#Change this to the user that VOLTTRON will run as.
User=volttron
Group=volttron

#Uncomment and change this to specify a different VOLTTRON_HOME
#Environment="VOLTTRON_HOME=/home/volttron/.volttron"

#Change these to settings to reflect the install location of VOLTTRON
WorkingDirectory=/var/lib/volttron
ExecStart=/var/lib/volttron/env/bin/volttron -vv
ExecStop=/var/lib/volttron/env/bin/volttron-ctl shutdown --platform

[Install]
WantedBy=multi-user.target

After the file has been modified to reflect the setup of the platform you can install it with the
following commands. These need to be run as root or with sudo as appropriate.

#Copy the service file into place
cp scripts/admin/volttron.service /etc/systemd/system/

#Set the correct permissions if needed
chmod 644 /etc/systemd/system/volttron.service

#Notify systemd that a new service file exists (this is crucial!)
systemctl daemon-reload

#Start the service
systemctl start volttron.service

Init.d

An example init script scripts/admin/volttron can be used as a starting point for
setting up VOLTTRON as a service on init.d based systems.

Minor changes may be needed for the file to work on the target system. Specifically
the USER, VLHOME, and VOLTTRON_HOME variables may need to be changed.

...
#Change this to the user VOLTTRON will run as.
USER=volttron
#Change this to the install location of VOLTTRON
VLHOME=/var/lib/volttron

...

#Uncomment and change this to specify a different VOLTTRON_HOME
#export VOLTTRON_HOME=/home/volttron/.volttron

The script can be installed with the following commands. These need to be run as root or with sudo as appropriate.

#Copy the script into place
cp scripts/admin/volttron /etc/init.d/

#Make the file executable
chmod 755 /etc/init.d/volttron

#Change the owner to root
chown root:root /etc/init.d/volttron

#These will set it to startup automatically at boot
update-rc.d volttron defaults

#Start the service
/etc/init.d/volttron start

Single Machine

The purpose of this demonstration is to show the process of setting up a simple VOLTTRON instance for use on a single
machine.

Note

The simple deployment example below considers only the ZeroMQ deployment scenario. For RabbitMQ deployments, read
and perform the RabbitMQ installation steps from the platform installation
instructions and configuration steps from VOLTTRON Config.

Install and Build VOLTTRON

First, install VOLTTRON:

For a quick reference for Ubuntu machines:

sudo apt-get update
sudo apt-get install build-essential libffi-dev python3-dev python3-venv openssl libssl-dev libevent-dev git
git clone https://github.com/VOLTTRON/volttron/
cd volttron
python3 bootstrap.py --drivers --databases

Note

For additional detail and more information on installing in other environments, please see the
platform install section. See the bootstrap process docs
for more information on its operation and available options.

Activate the Environment

After the build is complete, activate the VOLTTRON environment.

source env/bin/activate

Run VOLTTRON Config

The volttron-cfg or vcfg commands can be used to configure platform communication. For an example single machine
deployment, most values can be left at their default values. The following is a simple case example of running vcfg:

(volttron) user@volttron-pc:~/volttron$ vcfg

 Your VOLTTRON_HOME currently set to: /home/james/.volttron

 Is this the volttron you are attempting to setup? [Y]:
 What type of message bus (rmq/zmq)? [zmq]:
 What is the vip address? [tcp://127.0.0.1]:
 What is the port for the vip address? [22916]:
 Is this instance web enabled? [N]:
 Will this instance be controlled by volttron central? [Y]: N
 Would you like to install a platform historian? [N]:
 Would you like to install a master driver? [N]:
 Would you like to install a listener agent? [N]:
 Finished configuration!

 You can now start the volttron instance.

 If you need to change the instance configuration you can edit
 the config file is at /home/james/.volttron/config

To learn more, read the volttron-config section of the Platform Features docs.

Note

Steps below highlight manually installing some example agents. To skip manual install, supply y or Y for the
platform historian, master driver and listener agent installation options.

Start VOLTTRON

The most convenient way to start the platform is with the .start-volttron command (from the volttron root
directory).

./start-volttron

The output following the platform starting successfully will appear like this:

2020-10-27 11:34:33,593 () volttron.platform.agent.utils DEBUG: value from env None
2020-10-27 11:34:33,593 () volttron.platform.agent.utils DEBUG: value from config False
2020-10-27 11:34:35,656 () root DEBUG: Creating ZMQ Core config.store
2020-10-27 11:34:35,672 () volttron.platform.store INFO: Initializing configuration store service.
2020-10-27 11:34:35,717 () root DEBUG: Creating ZMQ Core platform.auth
2020-10-27 11:34:35,728 () volttron.platform.auth INFO: loading auth file /home/james/.volttron/auth.json
2020-10-27 11:34:35,731 () volttron.platform.auth INFO: auth file /home/james/.volttron/auth.json loaded
2020-10-27 11:34:35,732 () volttron.platform.agent.utils INFO: Adding file watch for /home/james/.volttron/auth.json dirname=/home/james/.volttron, filename=auth.json
2020-10-27 11:34:35,734 () volttron.platform.agent.utils INFO: Added file watch for /home/james/.volttron/auth.json
2020-10-27 11:34:35,734 () volttron.platform.agent.utils INFO: Adding file watch for /home/james/.volttron/protected_topics.json dirname=/home/james/.volttron, filename=protected_topics.json
2020-10-27 11:34:35,736 () volttron.platform.agent.utils INFO: Added file watch for /home/james/.volttron/protected_topics.json
2020-10-27 11:34:35,737 () volttron.platform.vip.pubsubservice INFO: protected-topics loaded
2020-10-27 11:34:35,739 () volttron.platform.vip.agent.core INFO: Connected to platform: router: fc054c9f-aa37-4842-a618-6e70d53530f0 version: 1.0 identity: config.store
2020-10-27 11:34:35,743 () volttron.platform.vip.agent.core INFO: Connected to platform: router: fc054c9f-aa37-4842-a618-6e70d53530f0 version: 1.0 identity: platform.auth
2020-10-27 11:34:35,746 () volttron.platform.vip.pubsubservice INFO: protected-topics loaded
2020-10-27 11:34:35,750 () volttron.platform.vip.agent.subsystems.configstore DEBUG: Processing callbacks for affected files: {}
2020-10-27 11:34:35,879 () root DEBUG: Creating ZMQ Core control
2020-10-27 11:34:35,908 () root DEBUG: Creating ZMQ Core keydiscovery
2020-10-27 11:34:35,913 () root DEBUG: Creating ZMQ Core pubsub
2020-10-27 11:34:35,924 () volttron.platform.auth INFO: loading auth file /home/james/.volttron/auth.json
2020-10-27 11:34:38,010 () volttron.platform.vip.agent.core INFO: Connected to platform: router: fc054c9f-aa37-4842-a618-6e70d53530f0 version: 1.0 identity: control
2020-10-27 11:34:38,066 () volttron.platform.vip.agent.core INFO: Connected to platform: router: fc054c9f-aa37-4842-a618-6e70d53530f0 version: 1.0 identity: pubsub
2020-10-27 11:34:38,069 () volttron.platform.vip.agent.core INFO: Connected to platform: router: fc054c9f-aa37-4842-a618-6e70d53530f0 version: 1.0 identity: keydiscovery
2020-10-27 11:34:38,429 () volttron.platform.auth WARNING: Attempt 1 to get peerlist failed with exception 0.5 seconds
2020-10-27 11:34:38,430 () volttron.platform.auth WARNING: Get list of peers from subsystem directly
2020-10-27 11:34:38,433 () volttron.platform.auth INFO: auth file /home/james/.volttron/auth.json loaded
2020-10-27 11:34:38,434 () volttron.platform.auth INFO: loading auth file /home/james/.volttron/auth.json
2020-10-27 11:34:40,961 () volttron.platform.auth WARNING: Attempt 1 to get peerlist failed with exception 0.5 seconds
2020-10-27 11:34:40,961 () volttron.platform.auth WARNING: Get list of peers from subsystem directly
2020-10-27 11:34:40,969 () volttron.platform.auth INFO: auth file /home/james/.volttron/auth.json loaded

Note

While running the platform with verbose logging enabled, the volttron.log file is useful for confirming successful
platform operations or debugging. It is commonly recommended to open a new terminal window and run the following
command to view the VOLTTRON logs as they are created:

tail -f volttron.log

Install Agents and Historian

Out of the box, VOLTTRON includes a number of agents which may be useful for single machine deployments:

	historians - Historians automatically record a data from a number of topics published to the bus. For more
information on the historian framework or one of the included concrete implementations, view the
docs

	Listener - This example agent can be useful for debugging drivers or other agents publishing to the bus.
docs

	Master Driver - The Master Driver is responsible for managing device communication on a platform instance.

	weather agents - weather agents can be used to collect weather data from sources like
Weather.gov

Note

The services/core, services/ops, and examples directories in the repository contain additional agents to
use to fit individual use cases.

For a simple setup example, a Master Driver, SQLite Historian, and Listener are installed using the following steps:

	Create a configuration file for the Master Driver and SQLite Historian (it is advised to create a configs directory
in volttron root to keep configs for a deployment). For information on how to create configurations for these
agents, view their docs:

	Master Driver

	SQLite Historian

	Listener

For a simple example, the configurations can be copied as-is to the configs directory:

cp services/core/MasterDriverAgent/master-driver.agent configs
cp services/core/SQLHistorian/config.sqlite configs
cp examples/ListenerAgent/config configs/listener.config

	Use the install-agent.py script to install the agent on the platform:

python scripts/install-agent.py -s services/core/SQLHistorian -c configs/config.sqlite --tag listener
python scripts/install-agent.py -s services/core/MasterDriverAgent -c configs/master-driver.agent --tag master_driver
python scripts/install-agent.py -s examples/ListenerAgent -c configs/listener.config --tag platform_historian

.. note::

 The `volttron.log` file will contain logging indicating that the agent has installed successfully.

 .. code-block:: console

 2020-10-27 11:42:08,882 () volttron.platform.auth INFO: AUTH: After authenticate user id: control.connection, b'c61dff8e-f362-4906-964f-63c32b99b6d5'
 2020-10-27 11:42:08,882 () volttron.platform.auth INFO: authentication success: userid=b'c61dff8e-f362-4906-964f-63c32b99b6d5' domain='vip', address='localhost:1000:1000:3249', mechanism='CURVE', credentials=['ZrDvPG4JNLE26GoPUrTP22rV0PV8uGCnrXThrNFk_Ec'], user='control.connection'
 2020-10-27 11:42:08,898 () volttron.platform.aip DEBUG: Using name template "listeneragent-3.3_{n}" to generate VIP ID
 2020-10-27 11:42:08,899 () volttron.platform.aip INFO: Agent b3e7053c-28e8-414f-b685-8522eb230c7a setup to use VIP ID listeneragent-3.3_1
 2020-10-27 11:42:08,899 () volttron.platform.agent.utils DEBUG: missing file /home/james/.volttron/agents/b3e7053c-28e8-414f-b685-8522eb230c7a/listeneragent-3.3/listeneragent-3.3.dist-info/keystore.json
 2020-10-27 11:42:08,899 () volttron.platform.agent.utils INFO: creating file /home/james/.volttron/agents/b3e7053c-28e8-414f-b685-8522eb230c7a/listeneragent-3.3/listeneragent-3.3.dist-info/keystore.json
 2020-10-27 11:42:08,899 () volttron.platform.keystore DEBUG: calling generate from keystore
 2020-10-27 11:42:08,909 () volttron.platform.auth INFO: loading auth file /home/james/.volttron/auth.json
 2020-10-27 11:42:11,415 () volttron.platform.auth WARNING: Attempt 1 to get peerlist failed with exception 0.5 seconds
 2020-10-27 11:42:11,415 () volttron.platform.auth WARNING: Get list of peers from subsystem directly
 2020-10-27 11:42:11,419 () volttron.platform.auth INFO: auth file /home/james/.volttron/auth.json loaded

	Use the vctl status command to ensure that the agents have been successfully installed:

vctl status

(volttron)user@volttron-pc:~/volttron$ vctl status
 AGENT IDENTITY TAG STATUS HEALTH
8 listeneragent-3.2 listeneragent-3.2_1 listener
0 master_driveragent-3.2 platform.driver master_driver
3 sqlhistorianagent-3.7.0 platform.historian platform_historian

Note

After installation, the STATUS and HEALTH columns of the vctl status command will be vacant, indicating that
the agent is not running. The –start option can be added to the install-agent.py script arguments to
automatically start agents after they have been installed.

Install a Fake Driver

The following are the simplest steps for installing a fake driver for example use. For more information on installing
concrete drivers such as the BACnet or Modbus drivers, view their respective documentation in the
Driver framework section.

Note

This section will assume the user has created a configs directory in the volttron root directory, activated
the Python virtual environment, and started the platform as noted above.

cp examples/configurations/drivers/fake.config <VOLTTRON root>/configs
cp examples/configurations/drivers/fake.csv <VOLTTRON root>/configs
vctl config store platform.driver devices/campus/building/fake configs/fake.config
vctl config store platform.driver fake.csv devices/fake.csv

Note

For more information on the fake driver, or the configurations used in the above example, view the
docs

Testing the Deployment

To test that the configuration was successful, start an instance of VOLTTRON in the background:

./start-volttron

Note

This command must be run from the root VOLTTRON directory.

Having following the examples above, the platform should be ready for demonstrating the example deployment. Start
the Listener, SQLite historian and Master Driver.

vctl start --tag listener platform_historian master_driver

The output should look similar to this:

(volttron)user@volttron-pc:~/volttron$ vctl status
 AGENT IDENTITY TAG STATUS HEALTH
8 listeneragent-3.2 listeneragent-3.2_1 listener running [2810] GOOD
0 master_driveragent-3.2 platform.driver master_driver running [2813] GOOD
3 sqlhistorianagent-3.7.0 platform.historian platform_historian running [2811] GOOD

Note

The STATUS column indicates whether the agent is running. The HEALTH column indicates whether the current state
of the agent is within intended parameters (if the Master Driver is publishing, the platform historian has not been
backlogged, etc.)

You can further verify that the agents are functioning correctly with tail -f volttron.log.

ListenerAgent:

2020-10-27 11:43:33,997 (listeneragent-3.3 3294) __main__ INFO: Peer: pubsub, Sender: listeneragent-3.3_1:, Bus: , Topic: heartbeat/listeneragent-3.3_1, Headers: {'TimeStamp': '2020-10-27T18:43:33.988561+00:00', 'min_compatible_version': '3.0', 'max_compatible_version': ''}, Message:
'GOOD'

Master Driver with Fake Driver:

2020-10-27 11:47:50,037 (listeneragent-3.3 3294) __main__ INFO: Peer: pubsub, Sender: platform.driver:, Bus: , Topic: devices/campus/building/fake/all, Headers: {'Date': '2020-10-27T18:47:50.005349+00:00', 'TimeStamp': '2020-10-27T18:47:50.005349+00:00', 'SynchronizedTimeStamp': '2020-10-27T18:47:50.000000+00:00', 'min_compatible_version': '3.0', 'max_compatible_version': ''}, Message:
 [{'EKG': -0.8660254037844386,
 'EKG_Cos': -0.8660254037844386,
 'EKG_Sin': -0.8660254037844386,
 'Heartbeat': True,
 'OutsideAirTemperature1': 50.0,
 'OutsideAirTemperature2': 50.0,
 'OutsideAirTemperature3': 50.0,
 'PowerState': 0,
 'SampleBool1': True,
 'SampleBool2': True,
 'SampleBool3': True,
 'SampleLong1': 50,
 ...

SQLite Historian:

2020-10-27 11:50:25,021 (master_driveragent-4.0 3535) master_driver.driver DEBUG: finish publishing: devices/campus/building/fake/all
2020-10-27 11:50:25,052 (sqlhistorianagent-3.7.0 3551) volttron.platform.dbutils.sqlitefuncts DEBUG: Managing store - timestamp limit: None GB size limit: None

Multi-Platform Connection

There are multiple ways to establish connection between external
VOLTTRON platforms. Given that VOLTTRON now supports ZeroMq and RabbitMQ
type of message bus with each using different type authentication mechanism,
the number of different ways that agents can connect to external
platforms has significantly increased. Various multi-platform deployment
scenarios will be covered in this section.

	Agents can directly connect to external platforms to send and receive messages.
Forward historian, Data Mover agents fall under this category. The deployment steps
for forward historian is described in Forward Historian Deployment
and data mover historian in DataMover Historian Deployment

	The platforms maintain the connection with other platforms and agents can send
to and receive messages from external platforms without having to establish
connection directly. The deployment steps
is described in Multi Platform Router Deployment

	RabbitMQ has ready made plugins such as shovel and federation to connect to
external brokers. This feature is leveraged to make connections to external platforms. This is described in
Multi Platform RabbitMQ Deployment

	A web based admin interface to authenticate multiple instances (ZeroMq or RabbitMQ)
wanting to connect to single central instance is now available. The deployment steps
is described in Multi Platform Multi-Bus Deployment

	VOLTTRON Central is a platform management web application that allows
platforms to communicate and to be managed from a centralized server. The deployment steps
is described in VOLTTRON Central Demo

Assumptions

	Data Collector is the deployment box that has the drivers and is collecting data from devices which will be
forwarded to a VOLTTRON Central.

	Volttron Central (VC) is the deployment box that has the historian which will save data from all Data Collectors to
the central database.

	VOLTTRON_HOME is assumed to the default on both boxes (/home/<user>/.volttron).

Note

VOLTTRON_HOME is the directory used by the platform for managing state and configuration of the platform and
agents installed locally on the platform. Auth keys, certificates, the configuration store, etc. are stored in
this directory by the platform.

	Forward Historian
	VOLTTRON instance 1 forwards data to VOLTTRON instance 2
	VOLTTRON instance 1

	For this documentation, the topics from the driver agent will be send to the instance 2

	VOLTTRON instance 2

	Listener Agent

	DataMover Historian
	VOLTTRON instance 1 sends data to platform historian on VOLTTRON instance 2
	VOLTTRON instance 1

	VOLTTRON instance 2

	DataMover Configuration

	Running DataMover Historian

	Check data in SQLite database

	Multi-Platform Between Routers
	Getting Started

	Multi-Platform Configuration

	Configuration and Authentication in Setup Mode

	Setup Configuration and Authentication Manually

	Start Master driver on VOLTTRON instance 1

	Start Listener agents on VOLTTRON instance 2 and 3

	Stopping All the Platforms
	Platform External Address Configuration

	Multi-platform RabbitMQ Deployment
	Using the Federation Plugin

	Multi-Platform RPC With Federation

	Multi-Platform PubSub With Federation

	Using the Shovel Plugin

	Multi-Platform PubSub With Shovel

	Multi-Platform RPC With Shovel
	Multi-Platform Communication With RabbitMQ SSL

	Multi-Platform Multi-Bus
	Node Setup

	Virtual Machine Setup

	Instance Setup

	Central Instance Setup

	Node-ZMQ Instance Setup

	Node-RMQ Instance Setup

	VOLTTRON Central Deployment
	Getting Started

	Remote Platform Configuration

	Starting the Demo

	VOLTTRON Admin

	Stopping the Demo

	Log In

	Log Out
	Platforms Tree

	Loading the Tree

	Health Status

	Filter the Tree
	Platforms Screen

	Platform View

	Add Charts

	Dashboard Charts

	Remove Charts
	VOLTTRON Central

Forward Historian

This guide describes a simple setup where one VOLTTRON instance collects data from a fake devices and sends to another
instance . Lets consider the following example.

We are going to create two VOLTTRON instances and send data from one VOLTTRON instance running a fake driver(subscribing
values from a fake device) and sending the values to the second VOLTTRON instance.

VOLTTRON instance 1 forwards data to VOLTTRON instance 2

VOLTTRON instance 1

	vctl shutdown –platform (if the platform is already working)

	vcfg (this helps in configuring the volttron instance
http://volttron.readthedocs.io/en/releases-4.1/core_services/control/VOLTTRON-Config.html

	Specify the IP of the machine: tcp://130.20.*.*:22916

	Specify the port you want to use

	Specify if you want to run VC(Volttron Central) here or this this instance would be controlled
by a VC and the IP and port of the VC

	Then install agents like Master Driver Agent with a fake driver for the instance.

	Install a listener agent so see the topics that are coming from the diver agent

	Then run the volttron instance by using the following command: ./start-volttron

	Volttron authentication: We need to add the IP of the instance 2 in the auth.config file of the VOLTTRON agent.
This is done as follows:

	vctl auth-add

	We specify the IP of the instance 2 and the credentials of the agent (read
Agent Authentication

	For specifying authentication for all the agents , we specify /.*/

	This should enable authentication for all the volttron-instance based on the IP you specify here

For this documentation, the topics from the driver agent will be send to the instance 2

	We use the existing agent called the Forward Historian for this purpose which is available in service/core in the
VOLTTRON directory.

	In the config file under the Forward Historian directory, we modify the following fields:

	Destination-vip: the IP of the volttron instance to which we have to forward the data to along with the port
number. Example : tcp://130.20.*.*:22916

	Destination-serverkey: The server key of the VOLTTRON instance to which we need to forward the data to.
This can be obtained at the VOLTTRON instance by typing vctl auth serverkey

	Service_topic_list: specify the topics you want to forward specifically instead of all the values.

	Once the above values are set, your forwarder is all set .

	You can create a script file for the same and execute the agent.

VOLTTRON instance 2

	vctl shutdown –platform (if the platform is already working)

	volttron-cfg (this helps in configuring the volttron instance)
http://volttron.readthedocs.io/en/releases-4.1/core_services/control/VOLTTRON-Config.html

	Specify the IP of the machine : tcp://130.20.*.*:22916

	Specify the port you want to use.

	Install the listener agent (this will show the connection from instance 1 if its successful
and then show all the topics from instance 1.

	Volttron authentication: We need to add the IP of the instance 1 in the auth.config file of the VOLTTRON agent . This
is done as follows:

	vctl auth-add

	We specify the IP of the instance 1 and the credentials of the agent

	For specifying authentication for all the agents , we specify /.*/

	This should enable authentication for all the volttron-instance based on the IP you specify here

Listener Agent

Run the listener agent on this instance to see the values being forwarded from instance 1. Once the above setup is
done, you should be able to see the values from instance 1 on the listener agent of instance 2.

DataMover Historian

This guide describes how a DataMover historian can be used to transfer data from one VOLTTRON instance to another. The
DataMover historian is different from Forward historian in the way it sends the data to the remote instance. It first
batches the data and makes a RPC call to a remote historian instead of publishing data on the remote message bus
instance. The remote historian then stores the data into it’s database.

The walk-through below demonstrates how to setup DataMover historian to send data from one VOLTTRON instance to another.

VOLTTRON instance 1 sends data to platform historian on VOLTTRON instance 2

As an example two VOLTTRON instances will be created and to send data from one VOLTTRON instance running a fake driver
(subscribing to publishes from a fake device) and sending the values to a remote historian running on the second
VOLTTRON instance.

VOLTTRON instance 1

	vctl shutdown –platform (if the platform is already working)

	volttron-cfg (this helps in configuring the volttron instance
http://volttron.readthedocs.io/en/releases-4.1/core_services/control/VOLTTRON-Config.html

	Specify the VIP address of the instance: tcp://127.0.0.1:22916

	Install Master Driver Agent with a fake driver for the instance.

	Install a listener agent so see the topics that are coming from the diver agent

	Then run the volttron instance by using the following command: ./start-volttron

VOLTTRON instance 2

	vctl shutdown –platform (if the platform is already working)

	volttron-cfg (this helps in configuring the volttron instance)
http://volttron.readthedocs.io/en/releases-4.1/core_services/control/VOLTTRON-Config.html

	Specify the VIP address of the instance : tcp://127.0.0.2:22916

	Install a platform historian. volttron-cfg installs a default SQL historian.

	Start the VOLTTRON instance by using following command: ./start-volttron

DataMover Configuration

An example config file is available in services/core/DataMover/config. We need to update the
destination-vip, destination-serverkey, and destination-historian-identity entries as per our setup.

Note

Here the topics from the driver on VOLTTRON instance 1 will be sent to instance 2.

	destination-vip: The VIP address of the volttron instance to which we need to send data. Example :
tcp://127.0.0.2:22916

	destination-serverkey: The server key of remote VOLTTRON instance
- Get the server key of VOLTTRON instance 2 and set destination-serverkey property with the server key

vctl auth serverkey

	destination-historian-identity: Identity of remote platform historian. Default is “platform.historian”

Running DataMover Historian

	Install the DataMover historian on the VOLTTRON instance 1

python scripts/install-agent.py -s services/core/DataMover -c services/core/DataMover/config -i datamover --start

	Add the public key of the DataMover historian on VOLTTRON instance 2 to enable authentication of the DataMover on
VOLTTRON instance 2.

	Get the public key of the DataMover. Run the below command on instance 1 terminal.

vctl auth publickey --name datamoveragent-0.1

	Add the credentials of the DataMover historian in VOLTTRON instance 2

vctl auth add --credentials <public key of data mover>

Check data in SQLite database

To check if data is transferred and stored in the database of remote platform historian, we need to check the
entries in the database. The default location of SQL database (if not explicitly specified in the config file) will be
in the data directory inside the platform historian’s installed directory within it’s $VOLTTRON_HOME.

	Get the uuid of the platform historian. This can be found by running the vctl status on the terminal of instance
2. The first column of the data mover historian entry in the status table gives the first alphabet/number of the
uuid.

	Go the data directory of platform historian’s install directory. For example,
/home/ubuntu/.platform2/agents/6292302c-32cf-4744-bd13-27e78e96184f/sqlhistorianagent-3.7.0/data

	
	Run the SQL command to see the data

	sqlite3 platform.historian.sqlite
select * from data;

	You will see similar entries

2020-10-27T15:07:55.006549+00:00|14|true
2020-10-27T15:07:55.006549+00:00|15|10.0
2020-10-27T15:07:55.006549+00:00|16|20
2020-10-27T15:07:55.006549+00:00|17|true
2020-10-27T15:07:55.006549+00:00|18|10.0
2020-10-27T15:07:55.006549+00:00|19|20
2020-10-27T15:07:55.006549+00:00|20|true
2020-10-27T15:07:55.006549+00:00|21|0
2020-10-27T15:07:55.006549+00:00|22|0

Multi-Platform Between Routers

Multi-Platform between routers alleviates the need for an agent in one platform to connect to another platform
directly in order for it to send/receive messages from the other platform. Instead with this new type of connection,
connections to external platforms will be maintained by the platforms itself and agents do not have the burden to manage
the connections directly. This guide will show how to connect three VOLTTRON instances with a fake driver running on
VOLTTRON instance 1 publishing to topic with prefix=”devices” and listener agents running on other 2 VOLTTRON instances
subscribed to topic “devices”.

	Getting Started

	Multi-Platform Configuration

	Configuration and Authentication in Setup Mode

	Setup Configuration and Authentication Manually

	Start Master driver on VOLTTRON instance 1

	Start Listener agents on VOLTTRON instance 2 and 3

	Stopping All the Platforms

Getting Started

Modify the subscribe annotate method parameters in the listener agent (examples/ListenerAgent/listener/agent.py in
the VOLTTRON root directory) to include all_platforms=True parameter
to receive messages from external platforms.

@PubSub.subscribe('pubsub', '')

to

@PubSub.subscribe('pubsub', 'devices', all_platforms=True)

or add below line in the onstart method

self.vip.pubsub.subscribe('pubsub', 'devices', self.on_match, all_platforms=True)

Note

If using the onstart method remove the @PubSub.subscribe(‘pubsub’, ‘’) from the top of the method.

After installing VOLTTRON, open three shells with the current directory the root of the
VOLTTRON repository. Then activate the VOLTTRON environment and export the VOLTTRON_HOME variable. The home
variable needs to be different for each instance.

$ source env/bin/activate
$ export VOLTTRON_HOME=~/.volttron1

Run vcfg in all the three shells. This command will ask how the instance
should be set up. Many of the options have defaults and that will be sufficient. Enter a different VIP address for each
platform. Configure fake master driver in the first shell and listener agent in second and third shell.

[image: Terminator Setup]

Multi-Platform Configuration

For each instance, specify the instance name in platform config file under it’s VOLTTRON_HOME directory.
If the platform supports web server, add the bind-web-address as well.

Here is an example,

Path of the config: $VOLTTRON_HOME/config

[volttron]
vip-address = tcp://127.0.0.1:22916
instance-name = "platform1"
bind-web-address = http://127.0.0.1:8080

Instance name and bind web address entries added into each VOLTTRON platform’s config file is shown below.

[image: Multi-Platform Config]

Next, each instance needs to know the VIP address, platform name and server keys of the remote platforms that it is
connecting to. In addition, each platform has to authenticate or accept the connecting instances’ public keys. We can
do this step either by running VOLTTRON in setup mode or configure the information manually.

Configuration and Authentication in Setup Mode

Note

It is necessary for each platform to have a web server if running in setup mode

Add list of web addresses of remote platforms in $VOLTTRON_HOME/external_address.json

[image: External Address Config]

Start VOLTTRON instances in setup mode in the three terminal windows. The “-l” option in the following command tells
VOLTTRON to log to a file. The file name should be different for each instance.

$./start-volttron --setup-mode

A new auth entry is added for each new platform connection. This can be checked with below command in each terminal
window.

$ vctl auth list

[image: Auth Entry]

After all the connections are authenticated, we can start the instances in normal mode.

$./stop-volttron
$./start-volttron

Setup Configuration and Authentication Manually

If you do not need web servers in your setup, then you will need to build the platform discovery config file manually.
The config file should contain an entry containing VIP address, instance name and serverkey of each remote platform
connection.

Name of the file: external_platform_discovery.json

Directory path: Each platform’s VOLTTRON_HOME directory.

For example, since VOLTTRON instance 1 is connecting to VOLTTRON instance 2 and 3, contents of
external_platform_discovery.json will be

{
 "platform2": {"vip-address":"tcp://127.0.0.2:22916",
 "instance-name":"platform2",
 "serverkey":"YFyIgXy2H7gIKC1x6uPMdDOB_i9lzfAPB1IgbxfXLGc"},
 "platform3": {"vip-address":"tcp://127.0.0.3:22916",
 "instance-name":"platform3",
 "serverkey":"hzU2bnlacAhZSaI0rI8a6XK_bqLSpA0JRK4jq8ttZxw"}
}

We can obtain the serverkey of each platform using below command in each terminal window:

$ vctl auth serverkey

Contents of external_platform_discovery.json of VOLTTRON instance 1, 2, 3 is shown below.

[image: Multi-Platform Discovery Config]

After this, you will need to add the server keys of the connecting platforms using the vctl utility. Type
vctl auth add command on the command prompt and simply hit Enter to select defaults on all fields
except credentials. Here, we can either add serverkey of connecting platform or type /.*/ to allow ALL
connections.

Warning

/.*/ allows ALL agent and platform connections without authentication.

$ vctl auth add
domain []:
address []:
user_id []:
capabilities (delimit multiple entries with comma) []:
roles (delimit multiple entries with comma) []:
groups (delimit multiple entries with comma) []:
mechanism [CURVE]:
credentials []: /.*/
comments []:
enabled [True]:
added entry domain=None, address=None, mechanism='CURVE', credentials=u'/.*/', user_id=None

For more information on authentication see authentication.

Once the initial configuration are setup, you can start all the VOLTTRON instances in normal mode.

$./start-volttron

Next step is to start agents in each platform to observe the multi-platform PubSub communication behavior.

Start Master driver on VOLTTRON instance 1

If master driver is not configured to auto start when the instance starts up, we can start it explicitly with this
command.

$ vctl start --tag master_driver

Start Listener agents on VOLTTRON instance 2 and 3

If the listener agent is not configured to auto start when the instance starts up, we can start it explicitly with this
command.

$ vctl start --tag listener

We should start seeing messages with prefix=”devices” in the logs of VOLTTRON instances 2 and 3.

[image: Multi-Platform PubSub]

Stopping All the Platforms

We can stop all the VOLTTRON instances by executing below command in each terminal window.

$ vctl shutdown --platform

Platform External Address Configuration

In the configuration file located in $VOLTTRON_HOME/config add vip-address=tcp://ip:port for each address you want
to listen on:

Example
vip-address=tcp://127.0.0.102:8182
vip-address=tcp://127.0.0.103:8083
vip-address=tcp://127.0.0.103:8183

Note

The config file is generated after running the vcfg command. The VIP-address is for the local platform, NOT the
remote platform.

Multi-platform RabbitMQ Deployment

With ZeroMQ based VOLTTRON, multi-platform communication was accomplished in three different ways:

	Direct connection to remote instance - Write an agent that would connect to a remote instance directly.

	Special agents - Use special agents such as forward historian/data puller agents that would forward/receive messages
to/from remote instances. In RabbitMQ-VOLTTRON, we make use of the shovel plugin to achieve this behavior. Please
refer to Shovel Plugin to get an overview of shovels.

	Multi-Platform RPC and PubSub - Configure VIP address of all remote instances that an instance has to connect to in
it’s $VOLTTRON_HOME/external_discovery.json and let the router module in each instance manage the connection and
take care of the message routing for us. In RabbitMQ-VOLTTRON, we make use of the federation plugin to achieve
this behavior. Please refer to Federation Plugin get an overview of federation.

Using the Federation Plugin

We can connect multiple VOLTTRON instances using the federation plugin. Before setting up federation links, we need to
first identify the upstream server and downstream server. The upstream server is the node that is publishing some
message of interest and downstream server is the node that wants to receive messages from the upstream server. A
federation link needs to be established from the downstream VOLTTRON instance to the upstream VOLTTRON instance. To
setup a federation link, we will need to add upstream server information in a RabbitMQ federation configuration file:

Path: $VOLTTRON_HOME/rabbitmq_federation_config.yml

Mandatory parameters for federation setup
federation-upstream:
 rabbit-4:
 port: '5671'
 virtual-host: volttron4
 rabbit-5:
 port: '5671'
 virtual-host: volttron5

To configure the VOLTTRON instance to setup federation, run the following command:

vcfg --rabbitmq federation [optional path to rabbitmq_federation_config.yml]

This will setup federation links to upstream servers and sets policy to make the VOLTTRON exchange federated. Once a
federation link is established to remote instance, the messages published on the remote instance become available to
local instance as if it were published on the local instance.

For detailed instructions to setup federation, please refer to the
platform installation docs.

Multi-Platform RPC With Federation

For multi-platform RPC communication, federation links need to be established on both the VOLTTRON
nodes. Once the federation links are established, RPC communication becomes fairly simple.

[image: ../../_images/multiplatform_rpc.png]
Consider Agent A on VOLTTRON instance “volttron1” on host “host_A” wants to make RPC call to Agent B
on VOLTTRON instance “volttron2” on host “host_B”.

	Agent A makes RPC call.

kwargs = {"external_platform": self.destination_instance_name}
agent_a.vip.rpc.call("agent_b", set_point, "point_name", 2.5, **kwargs)

	The message is transferred over federation link to VOLTTRON instance “volttron2” as both the exchanges are made
federated.

	The RPC subsystem of Agent B calls the actual RPC method and gets the result. It encapsulates the message result
into a VIP message object and sends it back to Agent A on VOLTTRON instance “volttron1”.

	The RPC subsystem on Agent A receives the message result and gives it to the Agent A application.

Multi-Platform PubSub With Federation

For multi-platform PubSub communication, it is sufficient to have federation link from the downstream server
to the upstream server. In case of bi-directional data flow, links have to established in both the directions.

[image: ../../_images/multiplatform_pubsub.png]
Consider Agent B on VOLTTRON instance “volttron2” on host “host_B” which wants to subscribe to messages from
VOLTTRON instance “volttron2” on host “host_B”. First, a federation link needs to be established from
“volttron2” to “volttron1”.

	Agent B makes a subscribe call:

agent_b.vip.subscribe.call("pubsub", prefix="devices", all_platforms=True)

	The PubSub subsystem converts the prefix to __pubsub__.*.devices.#. Here, “*” indicates that agent is subscribing
to the “devices” topic from all VOLTTRON platforms.

	A new queue is created and bound to VOLTTRON exchange with the above binding key. Since the VOLTTRON exchange is a
federated exchange, any subscribed message on the upstream server becomes available on the federated exchange and
Agent B will be able to receive it.

	Agent A publishes message to topic devices/pnnl/isb1/hvac1

	The PubSub subsystem publishes this message on it’s VOLTTRON exchange.

	Due to the federation link, message is received by the Pubsub subsystem of Agent A.

Using the Shovel Plugin

Shovels act as well written client applications which move messages from a source to a destination broker.
The below configuration shows how to setup a shovel to forward PubSub messages or perform multi-platform RPC
communication from local to a remote instance. It expects hostname, port and virtual host configuration values
for the remote instance.

Path: $VOLTTRON_HOME/rabbitmq_shovel_config.yml

Mandatory parameters for shovel setup
shovel:
 rabbit-2:
 port: '5671'
 virtual-host: volttron
 # Configuration to forward pubsub topics
 pubsub:
 # Identity of agent that is publishing the topic
 platform.driver:
 - devices
 # Configuration to make remote RPC calls
 rpc:
 # Remote instance name
 volttron2:
 # List of pair of agent identities (local caller, remote callee)
 - [scheduler, platform.actuator]

To forward PubSub messages, the topic and agent identity of the publisher agent is needed. To perform RPC, the instance
name of the remote instance and agent identities of the local agent and remote agent are needed.

To configure the VOLTTRON instance to setup shovel, run the following command.

vcfg --rabbitmq shovel [optional path to rabbitmq_shovel_config.yml]

This setups up a shovel that forwards messages (either PubSub or RPC) from local exchange to remote exchange.

Multi-Platform PubSub With Shovel

After the shovel link is established for Pubsub, the below figure shows how the communication happens.

Note

For bi-directional pubsub communication, shovel links need to be created on both the nodes. The “blue” arrows show
the shovel binding key. The pubsub topic configuration in $VOLTTRON_HOME/rabbitmq_shovel_config.yml gets
internally converted to the shovel binding key: “__pubsub__.<local instance name>.<actual topic>”.

[image: ../../_images/multiplatform_shovel_pubsub.png]
Now consider a case where shovels are setup in both the directions for forwarding “devices” topic.

	Agent B makes a subscribe call to receive messages with topic “devices” from all connected platforms.

agent_b.vip.subscribe.call("pubsub", prefix="devices", all_platforms=True)

	The PubSub subsystem converts the prefix to __pubsub__.*.devices.# “*” indicates that agent is subscribing to
the “devices” topic from all the VOLTTRON platforms.

	A new queue is created and bound to VOLTTRON exchange with above binding key.

	Agent A publishes message to topic devices/pnnl/isb1/hvac1

	PubSub subsystem publishes this message on it’s VOLTTRON exchange.

	Due to a shovel link from VOLTTRON instance “volttron1” to “volttron2”, the message is forwarded from VOLTTRON
exchange “volttron1” to “volttron2” and is picked up by Agent A on “volttron2”.

Multi-Platform RPC With Shovel

After the shovel link is established for multi-platform RPC, the below figure shows how the RPC communication happens.

Note

It is mandatory to have shovel links on both directions as it is request-response type of communication. We will
need to set the agent identities for caller and callee in the $VOLTTRON_HOME/rabbitmq_shovel_config.yml. The
“blue” arrows show the resulting the shovel binding key.

[image: ../../_images/multiplatform_shovel_rpc.png]
Consider Agent A on VOLTTRON instance “volttron1” on host “host_A” wants to make RPC call on Agent B
on VOLTTRON instance “volttron2” on host “host_B”.

	Agent A makes RPC call:

kwargs = {"external_platform": self.destination_instance_name}
agent_a.vip.rpc.call("agent_b", set_point, "point_name", 2.5, **kwargs)

	The message is transferred over shovel link to VOLTTRON instance “volttron2”.

	The RPC subsystem of Agent B calls the actual RPC method and gets the result. It encapsulates the message result
into a VIP message object and sends it back to Agent A on VOLTTRON instance “volttron1”.

	The RPC subsystem on Agent A receives the message result and gives it to Agent A’s application.

Multi-Platform Communication With RabbitMQ SSL

For multi-platform communication over federation and shovel, we need the connecting instances to trust each other.

[image: ../../_images/multiplatform_ssl.png]
Suppose there are two VMs (VOLTTRON1 and VOLTTRON2) running single instances of RabbitMQ, and VOLTTRON1 and VOLTTRON2
want to talk to each other via either the federation or shovel plugins. In order for VOLTTRON1 to talk to VOLTTRON2,
VOLTTRON1’s root certificate must be appended to VOLTTRON’s trusted CA certificate, so that when VOLTTRON1 presents it’s
root certificate during connection, VOLTTRON2’s RabbitMQ server can trust the connection. VOLTTRON2’s root CA must be
appended to VOLTTRON1’s root CA and it must in turn present its root certificate during connection, so that VOLTTRON1
will know it is safe to talk to VOLTTRON2.

Agents trying to connect to remote instance directly need to have a public certificate signed by the remote instance for
authenticated SSL based connection. To facilitate this process, the VOLTTRON platform exposes a web based server API
for requesting, listing, approving and denying certificate requests. For more detailed description, refer to
Agent communication to Remote RabbitMQ instance

Multi-Platform Multi-Bus

This guide describes the setup process for a multi-platform connection that has a combination of ZeroMQ and RabbitMQ
instances. For this example, we want to use the Forwarder to pass device data from two VOLTTRON instance to
a single “central” instance for storage. It will also have a Volttron Central agent running on the “central”
instance and Volttron Central Platform agents on all 3 instances and connected to “central” instance to provide
operational status of it’s instance to the “central” instance. For this document “node” will be used interchangeably
with VOLTTRON instance.

Node Setup

For this example we will have two types of nodes; a data collector and a central node. Each of the data collectors will
have different message buses (VOLTTRON supports both RabbitMQ and ZeroMQ). The nodes will be configured as in the
following table.

Node Configuration

	
	Central

	Node-ZMQ

	Node-RMQ

	Node Type

	Central

	Data Collector

	Data Collector

	Master Driver

	
	yes

	yes

	Forwarder

	
	yes

	yes

	SQL Historian

	yes

	
	

	Volttron Central

	yes

	
	

	Volttron Central Platform

	yes

	yes

	yes

	Exposes RMQ Port

	yes

	
	

	Exposes ZMQ Port

	yes

	
	

	Exposes HTTPS Port

	yes

	
	

The goal of this is to be able to see the data from Node-ZMQ and Node-RMQ in the Central SQL Historian and on
the trending charts of Volttron Central.

Virtual Machine Setup

The first step in creating a VOLTTRON instance is to make sure the machine is ready for VOLTTRON. Each machine
should have its hostname setup. For this walk-through, the hostnames “central”, “node-zmq” and “node-rmq” will be used.

For Central and Node-RMQ follow the instructions platform installation steps for RMQ. For
Node-ZMQ use Platform Installation steps for ZeroMQ.

Instance Setup

The following conventions/assumptions are made for the rest of this document:

	Commands should be run from the VOLTTRON root

	Default values are used for VOLTTRON_HOME($HOME/.volttron), VIP port (22916), HTTPS port (8443), rabbitmq ports
(5671 for AMQPs and 15671 for RabbitMQ management interface). If using different VOLTTRON_HOME or ports, please
replace accordingly.

	Replace central, node-zmq and node-rmq with your own hostnames.

	user will represent your current user.

The following will use vcfg (volttron-cfg) to configure the individual platforms.

Central Instance Setup

Note

This instance must have been bootstrapped using --rabbitmq see
RabbitMq installation instructions.

Next step would be to configure the instance to have a web interface to accept/deny incoming certificate signing
requests from other instances. Additionally, we will need to install a Volttron Central agent, Volttron Central
Platform agent, SQL historian agent and a Listener agent. The following shows an example command output for this setup.

(volttron)user@central:~/volttron$ vcfg

Your VOLTTRON_HOME currently set to: /home/user/.volttron

Is this the volttron you are attempting to setup? [Y]:
What type of message bus (rmq/zmq)? [zmq]: rmq
Name of this volttron instance: [volttron1]: central
RabbitMQ server home: [/home/user/rabbitmq_server/rabbitmq_server-3.7.7]:
Fully qualified domain name of the system: [central]:
Would you like to create a new self signed root CAcertificate for this instance: [Y]:

Please enter the following details for root CA certificate
 Country: [US]:
 State: WA
 Location: Richland
 Organization: PNNL
 Organization Unit: volttron
Do you want to use default values for RabbitMQ home, ports, and virtual host: [Y]:
2020-04-13 13:29:36,347 rmq_setup.py INFO: Starting RabbitMQ server
2020-04-13 13:29:46,528 rmq_setup.py INFO: Rmq server at /home/user/rabbitmq_server/rabbitmq_server-3.7.7 is running at
2020-04-13 13:29:46,554 volttron.utils.rmq_mgmt DEBUG: Creating new VIRTUAL HOST: volttron
2020-04-13 13:29:46,582 volttron.utils.rmq_mgmt DEBUG: Create READ, WRITE and CONFIGURE permissions for the user: central-admin
Create new exchange: volttron, {'durable': True, 'type': 'topic', 'arguments': {'alternate-exchange': 'undeliverable'}}
Create new exchange: undeliverable, {'durable': True, 'type': 'fanout'}
2020-04-13 13:29:46,600 rmq_setup.py INFO:
Checking for CA certificate

2020-04-13 13:29:46,601 rmq_setup.py INFO:
 Creating root ca for volttron instance: /home/user/.volttron/certificates/certs/central-root-ca.crt
2020-04-13 13:29:46,601 rmq_setup.py INFO: Creating root ca with the following info: {'C': 'US', 'ST': 'WA', 'L': 'Richland', 'O': 'PNNL', 'OU': 'VOLTTRON', 'CN': 'central-root-ca'}
Created CA cert
2020-04-13 13:29:49,668 rmq_setup.py INFO: **Stopped rmq server
2020-04-13 13:30:00,556 rmq_setup.py INFO: Rmq server at /home/user/rabbitmq_server/rabbitmq_server-3.7.7 is running at
2020-04-13 13:30:00,557 rmq_setup.py INFO:

#######################

Setup complete for volttron home /home/user/.volttron with instance name=central
Notes:
 - On production environments, restrict write access to /home/user/.volttron/certificates/certs/central-root-ca.crt to only admin user. For example: sudo chown root /home/user/.volttron/certificates/certs/central-root-ca.crt and /home/user/.volttron/certificates/certs/central-trusted-cas.crt
 - A new admin user was created with user name: central-admin and password=default_passwd.
 You could change this user's password by logging into https://central:15671/ Please update /home/user/.volttron/rabbitmq_config.yml if you change password

#######################

The rmq message bus has a backward compatibility
layer with current zmq instances. What is the
zmq bus's vip address? [tcp://127.0.0.1]: tcp://192.168.56.101
What is the port for the vip address? [22916]:
Is this instance web enabled? [N]: y
Web address set to: https://central
What is the port for this instance? [8443]:
Is this an instance of volttron central? [N]: y
Configuring /home/user/volttron/services/core/VolttronCentral.
Installing volttron central.
['volttron', '-vv', '-l', '/home/user/.volttron/volttron.cfg.log']
Should the agent autostart? [N]: y
VC admin and password are set up using the admin web interface.
After starting VOLTTRON, please go to https://central:8443/admin/login.html to complete the setup.
Will this instance be controlled by volttron central? [Y]:
Configuring /home/user/volttron/services/core/VolttronCentralPlatform.
What is the name of this instance? [central]:
Volttron central address set to https://central:8443
['volttron', '-vv', '-l', '/home/user/.volttron/volttron.cfg.log']
Should the agent autostart? [N]:
Would you like to install a platform historian? [N]: y
Configuring /home/user/volttron/services/core/SQLHistorian.
['volttron', '-vv', '-l', '/home/user/.volttron/volttron.cfg.log']
Should the agent autostart? [N]: y
Would you like to install a master driver? [N]:
Would you like to install a listener agent? [N]: y
Configuring examples/ListenerAgent.
['volttron', '-vv', '-l', '/home/user/.volttron/volttron.cfg.log']
Should the agent autostart? [N]: y
Finished configuration!

You can now start the volttron instance.

If you need to change the instance configuration you can edit
the config file is at /home/user/.volttron/config

Start VOLTTRON instance and check if the agents are installed.

./start-volttron
vctl status

Open browser and go to master admin authentication page https://central:8443/index.html to accept/reject incoming certificate signing request (CSR) from other platforms.

Note

Replace “central” with the proper hostname of VC instance in the admin page URL. If opening the admin page from a
different system, then please make that the hostname is resolvable in that machine.

Click on “Login To Admistration Area”.

[image: ../../_images/csr-initial-state.png]
Set the master admin username and password. This can be later used to login into master admin authentication page.
This username and password will also be used to log in to Volttron Central.

[image: ../../_images/csr-set-admin.png]
Login into the Master Admin page.

[image: ../../_images/csr-login-page.png]
After logging in, you will see no CSR requests initially.

[image: ../../_images/central_no_pending.png]
Go back to the terminal and start Volttron Central Platform agent on the “central” instance. The agent will send a CSR
request to the web interface.

vctl start --tag vcp

Now go to master admin page to check if there is a new pending CSR request. You will see a “PENDING” request from
“central.central.platform.agent”

[image: ../../_images/central_pending.png]
Approve the CSR request to allow authenticated SSL based connection to the “central” instance.

Go back to the terminal and check the status of Volttron Central Platform agent. It should be set to “GOOD”.

Node-ZMQ Instance Setup

On the “node-zmq” VM, setup a ZeroMQ based VOLTTRON instance. Using “vcfg” command, install Volttron Central Platform agent,
a master driver agent with a fake driver.

Note

This instance will use old ZeroMQ based authentication mechanism using CURVE keys.

(volttron)user@node-zmq:~/volttron$ vcfg

Your VOLTTRON_HOME currently set to: /home/user/.volttron

Is this the volttron you are attempting to setup? [Y]:
What type of message bus (rmq/zmq)? [zmq]:
What is the vip address? [tcp://127.0.0.1]:
What is the port for the vip address? [22916]:
Is this instance web enabled? [N]:
Will this instance be controlled by volttron central? [Y]:
Configuring /home/user/volttron/services/core/VolttronCentralPlatform.
What is the name of this instance? [volttron1]: collector1
What is the hostname for volttron central? [http://node-zmq]: https://central
What is the port for volttron central? [8080]: 8443
['volttron', '-vv', '-l', '/home/user/.volttron/volttron.cfg.log']
Should the agent autostart? [N]:
Would you like to install a platform historian? [N]:
Would you like to install a master driver? [N]: y
Configuring /home/user/volttron/services/core/MasterDriverAgent.
['volttron', '-vv', '-l', '/home/user/.volttron/volttron.cfg.log']
Would you like to install a fake device on the master driver? [N]: y
Should the agent autostart? [N]: y
Would you like to install a listener agent? [N]:
Finished configuration!

You can now start the volttron instance.

If you need to change the instance configuration you can edit
the config file is at /home/user/.volttron/config

Please note the Volttron Central web-address should point to that of the “central” instance.

Start VOLTTRON instance and check if the agents are installed.

./start-volttron
vctl status

Start Volttron Central Platform on this platform manually.

vctl start --tag vcp

Check the VOLTTRON log in the “central” instance, you will see “authentication failure” entry from the incoming
connection. You will need to add the public key of VCP agent on the “central” instance.

[image: ../../_images/vc-auth-failure.png]
At this point, you can either accept the connection through the admin page or the command line.

Using the admin page:

Navigate back to the master admin authentication page. You should see a pending request under the ZMQ Keys Pending Authorization header.

[image: ../../_images/zmq_pending_credential_1.png]
Accept the credential in the same method as a CSR.

Using the command line:

On the “node-zmq” box execute this command and grab the public key of the VCP agent.

vctl auth publickey

Add auth entry corresponding to VCP agent on “central” instance using the below command. Replace the user id value and credentials value appropriately before running

vctl auth add --user_id <any unique user id. for example zmq_node_vcp> --credentials <public key of vcp on zmq node>

Complete similar steps to start a forwarder agent that connects to “central” instance. Modify the configuration in
services/core/ForwardHistorian/rmq_config.yml to have a destination VIP address pointing to VIP address of the
“central” instance and server key of the “central” instance.

destination-vip: tcp://<ip>:22916
destination-serverkey: <serverkey>

Note

Replace <ip> with public facing IP-address of “central” instance and <serverkey> with serverkey of “central”
instance.
Use the command vctl auth serverkey on the “central” instance to get the server key of the instance

Install and start forwarder agent.

python scripts/install-agent.py -s services/core/ForwardHistorian -c services/core/ForwardHistorian/rmq_config.yml --start

To accept the credential using the admin page:

Navigate back to the master admin authentication page. You should see another pending request under the ZMQ Keys Pending Authorization header.

[image: ../../_images/zmq_pending_credential_2.png]
Accept this credential in the same method as before.

To accept the credential using the command line:

Grab the public key of the forwarder agent.

vctl auth publickey

Add auth entry corresponding to VCP agent on central instance.

vctl auth add --user_id <any unique user id. for example zmq_node_forwarder> --credentials <public key of forwarder on zmq node>

In either case, you should start seeing messages from “collector1” instance on the “central” instance’s VOLTTRON log now.

[image: ../../_images/vc-collector1-forwarder.png]

Node-RMQ Instance Setup

Note

This instance must have been bootstrapped using –rabbitmq see
RabbitMq installation instructions.

Using “vcfg” command, install Volttron Central Platform agent, a master driver agent with fake driver. The instance
name is set to “collector2”.

(volttron)user@node-rmq:~/volttron$ vcfg

Your VOLTTRON_HOME currently set to: /home/user/.volttron

Is this the volttron you are attempting to setup? [Y]:
What type of message bus (rmq/zmq)? [zmq]: rmq
Name of this volttron instance: [volttron1]: collector2
RabbitMQ server home: [/home/user/rabbitmq_server/rabbitmq_server-3.7.7]:
Fully qualified domain name of the system: [node-rmq]:
Would you like to create a new self signed root CA certificate for this instance: [Y]:

Please enter the following details for root CA certificate
 Country: [US]:
 State: WA
 Location: Richland
 Organization: PNNL
 Organization Unit: volttron
Do you want to use default values for RabbitMQ home, ports, and virtual host: [Y]:
2020-04-13 13:29:36,347 rmq_setup.py INFO: Starting RabbitMQ server
2020-04-13 13:29:46,528 rmq_setup.py INFO: Rmq server at /home/user/rabbitmq_server/rabbitmq_server-3.7.7 is running at
2020-04-13 13:29:46,554 volttron.utils.rmq_mgmt DEBUG: Creating new VIRTUAL HOST: volttron
2020-04-13 13:29:46,582 volttron.utils.rmq_mgmt DEBUG: Create READ, WRITE and CONFIGURE permissions for the user: collector2-admin
Create new exchange: volttron, {'durable': True, 'type': 'topic', 'arguments': {'alternate-exchange': 'undeliverable'}}
Create new exchange: undeliverable, {'durable': True, 'type': 'fanout'}
2020-04-13 13:29:46,600 rmq_setup.py INFO:
Checking for CA certificate

2020-04-13 13:29:46,601 rmq_setup.py INFO:
 Creating root ca for volttron instance: /home/user/.volttron/certificates/certs/collector2-root-ca.crt
2020-04-13 13:29:46,601 rmq_setup.py INFO: Creating root ca with the following info: {'C': 'US', 'ST': 'WA', 'L': 'Richland', 'O': 'PNNL', 'OU': 'VOLTTRON', 'CN': 'collector2-root-ca'}
Created CA cert
2020-04-13 13:29:49,668 rmq_setup.py INFO: **Stopped rmq server
2020-04-13 13:30:00,556 rmq_setup.py INFO: Rmq server at /home/user/rabbitmq_server/rabbitmq_server-3.7.7 is running at
2020-04-13 13:30:00,557 rmq_setup.py INFO:

#######################

Setup complete for volttron home /home/user/.volttron with instance name=collector2
Notes:
 - On production environments, restrict write access to /home/user/.volttron/certificates/certs/collector2-root-ca.crt to only admin user. For example: sudo chown root /home/user/.volttron/certificates/certs/collector2-root-ca.crt and /home/user/.volttron/certificates/certs/collector2-trusted-cas.crt
 - A new admin user was created with user name: collector2-admin and password=default_passwd.
 You could change this user's password by logging into https://node-rmq:15671/ Please update /home/user/.volttron/rabbitmq_config.yml if you change password

#######################

The rmq message bus has a backward compatibility
layer with current zmq instances. What is the
zmq bus's vip address? [tcp://127.0.0.1]:
What is the port for the vip address? [22916]:
Is this instance web enabled? [N]:
Will this instance be controlled by volttron central? [Y]:
Configuring /home/user/volttron/services/core/VolttronCentralPlatform.
What is the name of this instance? [collector2]:
What is the hostname for volttron central? [http://node-rmq]: https://central
What is the port for volttron central? [8443]:
['volttron', '-vv', '-l', '/home/user/.volttron/volttron.cfg.log']
Should the agent autostart? [N]:
Would you like to install a platform historian? [N]:
Would you like to install a master driver? [N]: y
Configuring /home/user/volttron/services/core/MasterDriverAgent.
['volttron', '-vv', '-l', '/home/user/.volttron/volttron.cfg.log']
Would you like to install a fake device on the master driver? [N]: y
Should the agent autostart? [N]: y
Would you like to install a listener agent? [N]:
Finished configuration!

You can now start the volttron instance.

If you need to change the instance configuration you can edit
the config file is at /home/user/.volttron/config

Note

The Volttron Central web-address should point to that of the “central” instance.

Start VOLTTRON instance and check if the agents are installed.

./start-volttron
vctl status

Start Volttron Central Platform on this platform manually.

vctl start --tag vcp

Go the master admin authentication page and check if there is a new pending CSR request from VCP agent of “collector2”
instance.

[image: ../../_images/remote_rmq_pending.png]
Approve the CSR request to allow authenticated SSL based connection to the “central” instance.

Now go back to the terminal and check the status of Volttron Central Platform agent. It should be set to “GOOD”.

Let’s now install a forwarder agent on this instance to forward local messages matching “devices” topic to external
“central” instance. Modify the configuration in services/core/ForwardHistorian/rmq_config.yml to have a destination
address pointing to web address of the “central” instance.

destination-address: https://central:8443

Start forwarder agent.

python scripts/install-agent.py -s services/core/ForwardHistorian -c services/core/ForwardHistorian/rmq_config.yml --start

Go the master admin authentication page and check if there is a new pending CSR request from forwarder agent of “collector2”
instance.

[image: ../../_images/rmq_remote_forwarder_pending.png]
Approve the CSR request to allow authenticated SSL based connection to the “central” instance.

[image: ../../_images/rmq_remote_forwarder_accepted.png]
Now go back to the terminal and check the status of forwarder agent. It should be set to “GOOD”.

Check the VOLTTRON log of “central” instance. You should see messages with “devices” topic coming from “collector2”
instance.

[image: ../../_images/vc-collector2-forwarder.png]
To confirm that VolttronCentral is monitoring the status of all the 3 platforms, open a browser and type this URL
https://central:8443/vc/index.html. Login using credentials (username and password) earlier set during the VC
configuration step (using vcfg command in “central” instance). Click on “platforms” tab in the far right corner. You
should see all three platforms listed in that page. Click on each of the platforms and check the status of the agents.

[image: ../../_images/vc_platforms.png]

VOLTTRON Central Deployment

VOLTTRON Central is a platform management web application that allows
platforms to communicate and to be managed from a centralized server.
This agent alleviates the need to ssh into independent nodes in order
to manage them. The demo will start up three different instances of
VOLTTRON with three historians and different agents on each host. The
following entries will help to navigate around the VOLTTRON Central
interface.

	Getting Started

	Remote Platform Configuration

	Starting the Demo

	Stopping the Demo

	Log In

	Log Out

	Platforms Tree

	Loading the Tree

	Health Status

	Filter the Tree

	Platforms Screen

	Register New Platform

	Deregister Platform

	Platform View

	Add Charts

	Dashboard Charts

	Remove Charts

Getting Started

After installing VOLTTRON, open three shells
with the current directory the root of the VOLTTRON repository. Then activate
the VOLTTRON environment and export the VOLTTRON_HOME variable. The home
variable needs to be different for each instance.

If you are using Terminator you can right click and select “Split Vertically”.
This helps us keep from losing terminal windows or duplicating work.

$ source env/bin/activate
$ export VOLTTRON_HOME=~/.volttron1

[image: Terminator Setup]

One of our instances will have a VOLTTRON Central agent. We will install a
platform agent and a historian on all three platforms. Please note, for this demo
all the instances run on ZeroMQ messages. For multi-platform, multi-bus deployment
setup please follow the steps described in Multi Platform Multi-Bus Deployment.

Run vcfg in the first shell. This command will ask how the instance
should be set up. Many of the options have defaults that will be sufficient.
When asked if this instance is a VOLTTRON Central enter y. Read through the
options and use the enter key to accept default options. There are no default
credentials for VOLTTRON Central. You can have it install the agents
at this time. Below is an example configuration. In this case, username is user
and localhost is volttron-pc.

(volttron)user@volttron-pc:~/volttron$ vcfg

Your VOLTTRON_HOME currently set to: /home/user/.volttron1

Is this the volttron you are attempting to setup? [Y]:
What type of message bus (rmq/zmq)? [zmq]:
What is the vip address? [tcp://127.0.0.1]:
What is the port for the vip address? [22916]:
Is this instance web enabled? [N]: y
What is the protocol for this instance? [https]:
Web address set to: https://volttron-pc
What is the port for this instance? [8443]:
Would you like to generate a new web certificate? [Y]:
WARNING! CA certificate does not exist.
Create new root CA? [Y]:

Please enter the following details for web server certificate:
 Country: [US]:
 State: WA
 Location: Richland
 Organization: PNNL
 Organization Unit: VOLTTRON
Created CA cert
Creating new web server certificate.
Is this an instance of volttron central? [N]: y
Configuring /home/user/volttron/services/core/VolttronCentral.
Installing volttron central.
Should the agent autostart? [N]: y
VC admin and password are set up using the admin web interface.
After starting VOLTTRON, please go to https://volttron-pc:8443/admin/login.html to complete the setup.
Will this instance be controlled by volttron central? [Y]: y
Configuring /home/user/volttron/services/core/VolttronCentralPlatform.
What is the name of this instance? [volttron1]:
Volttron central address set to https://volttron-pc:8443
Should the agent autostart? [N]: y
Would you like to install a platform historian? [N]: y
Configuring /home/user/volttron/services/core/SQLHistorian.
Should the agent autostart? [N]: y
Would you like to install a master driver? [N]: y
Configuring /home/user/volttron/services/core/MasterDriverAgent.
Would you like to install a fake device on the master driver? [N]: y
Should the agent autostart? [N]: y
Would you like to install a listener agent? [N]: y
Configuring examples/ListenerAgent.
Should the agent autostart? [N]: y
Finished configuration!

You can now start the volttron instance.

If you need to change the instance configuration you can edit
the config file is at /home/user/.volttron1/config

(volttron)user@volttron-pc:~/volttron$

VOLTTRON Central needs to accept the connecting instances’
public keys. For this example we’ll allow any CURVE credentials to be accepted.
After starting, the command vctl auth add will prompt the user for
information about how the credentials should be used. We can simply hit Enter
to select defaults on all fields except credentials, where we will type
/.*/

$ vctl auth add --credentials "/.*/"
added entry domain=None, address=None, mechanism='CURVE', credentials=u'/.*/', user_id='63b126a7-2941-4ebe-8588-711d1e6c70d1'

For more information on authorization see authentication.

Remote Platform Configuration

The next step is to configure the instances that will connect to VOLTTRON
Central. In the second and third terminal windows run vcfg. Like
the VOLTTRON_HOME variable, these instances need to have unique VIP addresses and unique instance names.

Install a platform agent and a historian as before. Since we used the default
options when configuring VOLTTRON Central, we can use the default options when
configuring these platform agents as well. The configuration will be a little
different. The example below is for the second volttron instance. Note the unique VIP address and instance name.
Please ensure the web-address of the volttron central is configured correctly.

(volttron)user@volttron-pc:~/volttron$ vcfg

Your VOLTTRON_HOME currently set to: /home/user/.volttron2

Is this the volttron you are attempting to setup? [Y]:
What type of message bus (rmq/zmq)? [zmq]:
What is the vip address? [tcp://127.0.0.1]: tcp://127.0.0.2
What is the port for the vip address? [22916]:
Is this instance web enabled? [N]:
Will this instance be controlled by volttron central? [Y]:
Configuring /home/user/volttron/services/core/VolttronCentralPlatform.
What is the name of this instance? [volttron1]: volttron2
What is the hostname for volttron central? [https://volttron-pc]:
What is the port for volttron central? [8443]:
Should the agent autostart? [N]: y
Would you like to install a platform historian? [N]: y
Configuring /home/user/volttron/services/core/SQLHistorian.
Should the agent autostart? [N]: y
Would you like to install a master driver? [N]:
Would you like to install a listener agent? [N]:
Finished configuration!

You can now start the volttron instance.

If you need to change the instance configuration you can edit
the config file is at /home/user/.volttron2/config

(volttron)user@volttron-pc:~/volttron$

Starting the Demo

Start each Volttron instance after configuration. You have two options.

Option 1: The following command starts the volttron process in the background. The “-l” option tells volttron to log
to a file. The file name should be different for each instance.

$ volttron -vv -l volttron.log&

Option 2: Use the utility script start-volttron.

$./start-volttron

Note

If you choose to not start your agents with their platforms they will need to be started by hand.

List the installed agents with

$ vctl status

A portion of each agent’s uuid makes up the leftmost column of the status
output. This is all that is needed to start or stop the agent. If any
installed agents share a common prefix then more of the uuid will be needed
to identify it.

$ vctl start uuid

or

$ vctl start --tag tag

Note

In each of the above examples one could use * suffix to match more
than one agent.

VOLTTRON Admin

The admin page is used to set the master username and password for both admin page and VOLTTRON Central page. Admin page
can then be used to manage RMQ and ZMQ certificates and credentials.

Open a web browser and navigate to https://volttron-pc:8443/admin/login.html

There may be a message warning about a potential security risk. Check to see if the certificate
that was created in vcfg is being used. The process below is for firefox.

[image: vc-cert-warning-1]

[image: vc-cert-warning-2]

[image: vc-cert-warning-3]

[image: vc-cert-warning-4]

When the admin page is accessed for the first time, the user will be prompted to set up a master
username and password.

[image: admin-page-login]

Open your browser to the web address that you specified for the VOLTTRON Central agent that you configured for the
first instance. In the above examples, the configuration file would be located at ~/.volttron1/config and the
VOLTTRON Central address would be defined in the “volttron-central-address” field. The VOLTTRON Central address takes the
pattern: https://<localhost>:8443/vc/index.html, where localhost is the hostname of your machine.
In the above examples, our hostname is volttron-pc; thus our VC interface would be https://volttron-pc:8443/vc/index.html.

You will need to provide the username and password set earlier through admin web page.

Stopping the Demo

Once you have completed your walk through of the different elements of
the VOLTTRON Central demo you can stop the demos by executing the following
command in each terminal window.

$./stop-volttron

Once the demo is complete you may wish to see the
VOLTTRON Central Management Agent page for more
details on how to configure the agent for your specific use case.

Log In

To log in to VOLTTRON Central, open a browser and login to the Volttron web interface, which takes the form
https://localhost:8443/vc/index.html where localhost is the hostname of your machine. In the above example, we open the
following URL in which our localhost is “volttron-pc”: https://volttron-pc:8443/vc/index.html and enter the user name
and password on the login screen.

[image: Login Screen]

Log Out

To log out of VOLTTRON Central, click the link at the top right
of the screen.

[image: Logout Button]

Platforms Tree

The side panel on the left of the screen can be extended to
reveal the tree view of registered platforms.

[image: Platforms Panel]

[image: Platforms Tree]

Top-level nodes in the tree are platforms. Platforms can be expanded
in the tree to reveal installed agents, devices on buildings, and
performance statistics about the platform instances.

Loading the Tree

The initial state of the tree is not loaded. The first time a top-level
node is expanded is when the items for that platform are loaded.

[image: Load Tree]

After a platform has been loaded in the tree, all the items under a node
can be quickly expanded by double-clicking on the node.

Health Status

The health status of an item in the tree is indicated by the color
and shape next to it. A green triangle means healthy, a red circle
means there’s a problem, and a gray rectangle means the status can’t
be determined.

Information about the health status also may be found by hovering the
cursor over the item.

[image: Status Tooltips]

Filter the Tree

The tree can be filtered by typing in the search field at the top or
clicking on a status button next to the search field.

[image: Filter Name]

[image: Filter Button]

Meta terms such as “status” can also be used as filter keys. Type the
keyword “status” followed by a colon, and then the word “good,” “bad,”
or “unknown.”

[image: Filter Status]

Platforms Screen

This screen lists the registered VOLTTRON platforms and allows new
platforms to be registered by clicking the Register Platform button.
Each platform is listed with its unique ID and the number and status
of its agents. The platform’s name is a link that can be clicked on
to go to the platform management view.

[image: Platforms]

Platform View

From the platforms screen, click on the name link of a platform to
manage it. Managing a platform includes installing, starting, stopping,
and removing its agents.

[image: Platform Screen]

To install a new agent, all you need is the agent’s wheel file. Click on
the button and choose the file to upload it and install the agent.

To start, stop, or remove an agent, click on the button next to the agent
in the list. Buttons may be disabled if the user lacks the correct
permission to perform the action or if the action can’t be performed
on a specific type of agent. For instance, platform agents and VOLTTRON
Central agents can’t be removed or stopped, but they can be restarted
if they’ve been interrupted.

Add Charts

Performance statistics and device points can be added to charts either
from the Charts page or from the platforms tree in the side panel.

Click the Charts link at the top-right corner of the screen to go to
the Charts page.

[image: Charts Page]

From the Charts page, click the Add Chart button to open the Add Chart
window.

[image: Charts Button]

[image: Charts Window]

Click in the topics input field to make the list of available chart
topics appear.

[image: Chart Topics]

Scroll and select from the list, or type in the field to filter the
list, and then select.

[image: Filter Select]

Select a chart type and click the Load Chart button to close the
window and load the chart.

[image: Load Chart]

To add charts from the side panel, check boxes next to items in the
tree.

[image: Tree Charts]

Choose points with the same name from multiple platforms or devices
to plot more than one line in a chart.

[image: Multiple Lines]

Move the cursor arrow over the chart to inspect the graphs.

[image: Inspect Chart]

To change the chart’s type, click on the Chart Type button and choose
a different option.

[image: Chart Type]

Dashboard Charts

To pin a chart to the Dashboard, click the Pin Chart button to toggle
it. When the pin image is black and upright, the chart is pinned; when
the pin image is gray and diagonal, the chart is not pinned and won’t
appear on the Dashboard.

[image: Pin Chart]

Charts that have been pinned to the Dashboard are saved to the database
and will automatically load when the user logs in to VOLTTRON Central.
Different users can save their own configurations of dashboard charts.

Remove Charts

To remove a chart, uncheck the box next to the item in the tree or click
the X button next to the chart on the Charts page. Removing a chart
removes it from the Charts page and the Dashboard.

VOLTTRON Central

Navigate to https://volttron-pc:8443/vc/index.html

Log in using the username and password you set up on the admin web page.

[image: vc-login]

Once you have logged in, click on the Platforms tab in the upper right corner of the window.

[image: vc-dashboard]

Once in the Platforms screen, click on the name of the platform.

[image: vc-platform]

You will now see a list of agents. They should all be running.

[image: vc-agents]

For more information on VOLTTRON Central, please see:

	VOLTTRON Central Management

	VOLTTRON Central Demo

Linux System Hardening

Introduction

VOLTTRON is built with modern security principles in mind [security-wp] and implements many security features for hosted
agents. However, VOLTTRON is built on top of Linux and the underlying Linux platform also needs to be secured in order
to declare the resulting control system as “secure.”

Any system is only as secure as its weakest link. This document is dedicated to making recommendations for hardening of
the underlying Linux platform that VOLTTRON is deployed to.

Warning

No system can be 100% secure and the cyber security strategy that is recommended in this document is based on risk
management. For the following guidance, it is intended that the user consider the risk, impact of risks, and perform
the appropriate corresponding mitigation techniques.

Recommendations

Here are the non-exhaustive recommendations for Linux hardening from the VOLTTRON team:

	Physical Security: Keep the system in locked cabinets or a locked room. Limit physical access to systems and to the
networks to which they are attached. The goal should be to avoid physical access by untrusted personnel. This could
be extended to blocking or locking USB ports, removable media drives, etc.

Drive encryption could be used to avoid access via alternate-media booting (off USB stick or DVD) if physical access
can’t be guaranteed. The downside of drive encryption would be needing to enter a passphrase to start system.
Alternately, the Trusted Platform Module (TPM) may be used, but the drive might still be accessible to those with
physical access. Enable chassis intrusion detection and reporting if supported. If available, use a physical tamper
seal along with or in place of an interior switch.

	Low level device Security: Keep firmware of all devices (including BIOS) up-to-date. Password-protect the BIOS.
Disable unneeded/unnecessary devices:

	serial

	parallel

	USB (Leaving a USB port enabled may be helpful if a breach occurs to allow saving forensic data to an external
drive.)

	Firewire, etc.

	ports

	optical drives

	wireless devices, such as Wi-Fi and Bluetooth

	Boot security:

	Disable auto-mounting of external devices

	Restrict the boot device:

	Disable PXE and other network boot options (unless that is the primary boot method)

	Disable booting from USB and other removable drives

	Secure the boot loader:

	Require an administrator password to do anything but start the default kernel

	Do not allow editing of kernel parameters

	Disable, remove, or password-protect emergency/recovery boot entries

	Security Updates: First and foremost, configure the system to automatically download security updates. Most security
updates can be installed without rebooting the system, but some updated (e.g. shared libraries, kernel, etc) require
the system to be rebooted. If possible, configure the system to install the security updates automatically and
reboot at a particular time. We also recommend reserving the reboot time (e.g. 1:30AM on a Saturday morning) using
the Actuator Agent so that no control actions can happen during that time.

	System Access only via Secured Protocols:

	Disallow all clear text access to VOLTTRON systems

	No telnet, no rsh, no ftp and no exceptions!

	Use ssh to gain console access, and scp/sftp to get files in and out of the system

	Disconnect excessively idle SSH Sessions

	Disable remote login for “root” users. Do not allow a user to directly access the system as the “root” user from a
remote network location. Root access to privileged operations can be accomplished using sudo. This adds an
extra level of security by restricting access to privileged operations and tracking those operations through the
system log.

	Manage users and usernames, limit the number of user accounts, use complex usernames rather than first names.

	Authentication: If possible, use two factor authentication to allow access to the system. Informally, two factor
authentication uses a combination of “something you know” and “something you have” to allow access to the system.
RSA SecurID tokens are commonly used for two factor authentication but other tools are available. When not using
two-factor authentication, use strong passwords and do not share accounts.

	Scan for weak passwords. Use password cracking tools such as John the Ripper [http://www.openwall.com/john/] or
Nmap [http://nmap.org] with password cracking modules to look for weak passwords.

	Utilize Pluggable Authentication Modules (PAM) to strengthen passwords and the login process. We recommend:

	pam_abl: Automated blacklisting on repeated failed authentication attempts

	pam_captcha: A visual text-based CAPTCHA challenge module for PAM

	pam_passwdqc: A password strength checking module for PAM-aware password changing programs

	pam_cracklib: PAM module to check the password against dictionary words

	pam_pwhistory: PAM module to remember last passwords

	Disable unwanted services. Most desktop and server Linux distributions come with many unnecessary services enabled.
Disable all unnecessary services. Refer to your distribution’s documentation to discover how to check and disable
these services.

	Just as scanning for weak passwords is a step to more secure systems; regular network scans using
Nmap [http://nmap.org] to find what network services are being offered is another step towards a more secure
system.

Warning

use Nmap or similar tools very carefully on BACnet and modbus environments. These scanning tools are known to
crash/reset BACnet and modbus devices.

	Control incoming and outgoing network traffic. Use the built-in host-based firewall to control who/what can connect
to this system. Many iptables frontends offer a set of predefined rules that provide a default deny policy for
incoming connections and provide rules to prevent or limit other well known attacks (i.e. rules that limit certain
responses that might amplify a DDoS attack). ufw (uncomplicated firewall) is a good example.

Examples:

	If the system administrators for the VOLTTRON device are all located in 10.10.10.0/24 subnetwork, then allow
SSH and SCP logins from only that IP address range.

	If the VOLTTRON system exports data to a historian at 10.20.20.1 using TCP over port 443, allow outgoing
traffic to that port on that server.

The idea here is to limit the attack surface of the system. The smaller the surface, the better we can analyze the
communication patterns of the system and detect anomalies.

Note

While some system administrators disable network-based diagnostic tools such as ICMP ECHO responses, the VOLTTRON
team believes that this hampers usability. As an example, monitoring which incoming and outgoing firewall rules
are triggering can be accomplished with this command:

watch --interval=5 'iptables -nvL | grep -v "0 0"'

	Rate limit incoming connections to discourage brute force hacking attempts. Use a tool such as
fail2ban [http://www.fail2ban.org/wiki/index.php/Main_Page] to dynamically manage firewall rules to rate limit
incoming connections and discourage brute force hacking attempts. sshguard [http://www.sshguard.net/] is similar
to fail2ban but only used for ssh connections. Further rate limiting can be accomplished at the firewall level.
As an example, you can restrict the number of connections used by a single IP address to your server using iptables.
Only allow 4 ssh connections per client system:

iptables -A INPUT -p tcp --syn --dport 22 -m connlimit --connlimit-above 4 –j DROP

You can limit the number of connections per minute. The following example will drop incoming connections if an IP
address makes more than 10 connection attempts to port 22 within 60 seconds:

iptables -A INPUT -p tcp –dport 22 -i eth0 -m state --state NEW -m recent --set
iptables -A INPUT -p tcp –dport 22 -i eth0 -m state --state NEW -m recent --update –-seconds 60 -–hitcount 10 –j DROP

	Use a file system integrity tool to monitor for unexpected file changes. Tools such as tripwire [http://sourceforge.net/projects/tripwire/] monitor filesystems for changed files. Another file integrity checking
tool to consider is AIDE (Advanced Intrusion Detect Environment) [http://aide.sourceforge.net/].

	Use filesystem scanning tools periodically to check for exploits. Available tools such as checkrootkit [http://www.chkrootkit.org], rkhunter [http://rkhunter.sourceforge.net] and others should be used
to check for known exploits on a periodic basis and report their results.

	VOLTTRON does not use Apache or require it. If Apache is being used, we recommend using the mod_security and
mod_evasive modules.

Raspberry Pi

System hardening recommendations for Raspberry Pi closely match those for other Linux operating systems such as Ubuntu.
VOLTTRON has only been officially tested with Raspbian, and there is one important consideration, which is noted in
the Raspbian documentation as well:

Warning

The Raspbian operating system includes only the default pi user on install, which uses a well-known default
password. For any operational deployment, it is recommended to create a new user with a complex password (this user
must have sudoers permissions.

Summarizing the process of creating a new user alice from the Raspberry Pi documentation:

sudo adduser alice
sudo usermod -a -G adm,dialout,cdrom,sudo,audio,video,plugdev,games,users,input,netdev,gpio,i2c,spi alice
sudo su - alice
sudo visudo /etc/sudoers.d/010_pi-nopasswd

When the editor opens for the sudoer’s file, add an entry for alice:

alice ALL=(ALL) PASSWD: ALL

Also, update the default pi user’s default password:

pi@raspberrypi:~/volttron$ passwd
Changing password for pi.
(current) UNIX password:
Enter new UNIX password:
Retype new UNIX password:
passwd: password updated successfully

Note

The Raspberry Pi documentation states that ideally one would remove the pi user from the system, however this
is not currently recommended as some aspects of the Raspberry Pi OS are tied to the pi user. This will be
changed in the future.

For more information, please visit the
Raspberry Pi security site [https://www.raspberrypi.org/documentation/configuration/security.md].

System Monitoring

	Monitor system state and resources. Use a monitoring tool such as Xymon [http://xymon.sourceforge.net] or
Big Brother [http://www.bb4.org/features.html] to remotely monitor the system resources and state. Set the
monitoring tools to alert the system administrators if anomalous use of resources (e.g. connections, memory, etc) are
detected. An administrator can also use Unix commands such as netstat to look for open connections periodically.

	Watch system logs and get logs off the system. Use a utility such as logwatch [http://sourceforge.net/projects/logwatch/files/] or logcheck [http://logcheck.org] to get a daily summary of
system activity via email. For Linux distributions that use systemd (such as Ubuntu), use journalwatch [http://git.the-compiler.org/journalwatch/] to accomplish the same task.

Additionally, use a remote syslog server to collect logs from all VOLTTRON systems in the field at a centralized
location for analysis. A tool such as Splunk is ideal for this task and comes with many built-in analysis
applications. Another benefit of sending logs remotely off the platform is the ability to inspect the logs even when
the platform may be compromised.

	An active intrusion sensor such as PSAD [http://cipherdyne.org/psad/] can be used to look for intrusions as well.

Security Testing

Every security control discussed in the previous sections must be tested to determine correct operation and impact.
For example, if we inserted a firewall rule to ban connections from an IP address such as 10.10.10.2, then we need to
test that the connections actually fail.

In addition to functional correctness testing, common security testing tools such as Nessus [http://www.tenable.com/products/nessus] and Nmap [http://nmap.org] should be used to perform cyber security
testing.

Conclusion

No system is 100% secure unless it is disconnected from the network and is in a physically secure location. The
VOLTTRON team recommends a risk-based cyber security approach that considers each risk, and the impact of an exploit.
Mitigating technologies can then be used to mitigate the most impactful risks first. VOLTTRON is built with security
in mind from the ground up, but it is only as secure as the operating system that it runs on top of. This document is
intended to help VOLTTRON users to secure the underlying Linux operating system to further improve the robustness of the
VOLTTRON platform. Any security questions should be directed to volttron@pnnl.gov.

Agents Overview

Agents in VOLTTRON can be loosely defined as software modules communicating on the platform which perform some function
on behalf of the user. Agents may perform a huge variety of tasks, but common use cases involve data collection,
control of ICS and IOT devices, and various platform management tasks. Agents implemented using the VOLTTRON agent
framework inherit a number of capabilities, including message bus connectivity and agent lifecycle.

Agents deployed on VOLTTRON can perform one or more roles which can be broadly classified into the following groups:

	Platform Agents: Agents which are part of the platform and provide a service to other agents. Examples are the
Actuator and Master Driver agents which serve as interfaces between control agents and drivers.

	Control Agents: These agents implement algorithms to control the devices of interest and interact with other
resources to achieve some goal.

	Service Agents: These agents perform various data collection or platform management services. Agents in this
category include weather service agents which collect weather data from remote sources or operations agents which
help users maintain situational awareness of their deployment.

	Cloud Agents: These agents represent a remote application which needs access to the messages and data on the
platform. This agent would subscribe to topics of interest to the remote application and would also allow it publish
data to the platform.

The platform includes some valuable services which can be leveraged by agents:

	Message Bus: All agents and services publish and subscribe to topics on the message bus. This provides a single
interface that abstracts the details of devices and agents from each other. Components in the platform basically
produce and consume events.

	Configuration Store: Using the configuration store, agent operations can be altered ad-hoc without significant
disruption or downtime.

	Historian Framework: Historian agents automatically collect data from a subset of topics on the message bus and store
them in a data store of choice. Currently SQL, MongoDB, CrateDB and other historians exist, and more can be
developed to fit the needs of a deployment by inheriting from the base historian. The base historian has been
developed to be fast and reliable, and to handle many common pitfalls of data collection over a network.

	Weather Information: These agents periodically retrieve data from the a remote weather API then format the
response and publish it to the platform message bus on a weather topic.

	Device interfaces: Drivers publish device data onto the message bus and send control signals issued from control
agents to the corresponding device. Drivers are capable of handling the locking of devices to prevent multiple
conflicting directives.

	Application Scheduling: This service allows the scheduling of agents’ access to devices in order to prevent conflicts.

	Logging service: Agents can publish arbitrary strings to a logging topic and this service will push them to a
historian for later analysis.

Core Services

Agents in the services/core directory support the most common use cases of the platform. For details on each, please
refer to the corresponding documents.

	Master Driver Agent

	Market Service Agent

	DNP3 Agent

	Mesa Agent

	External Data Publisher Agent

	IEEE 2030.5 DER Agent

	Obix History Agent

	OpenADR 2.0b VEN Agent

	VOLTTRON Central Management Agent

Master Driver Agent

The Master Driver Agent manages all device communication. To communicate with devices you must setup and deploy the
Master Driver Agent. For more information on the Master Driver Agent’s operations, read about the
Master Driver in the driver framework docs.

Configuring the Master Driver

Configuration for each device consists of 3 parts:

	Master Driver Agent configuration file - lists all driver configuration files to load

	Driver configuration file - contains the general driver configuration and device settings

	Device Register configuration file - contains the settings for each individual data point on the device

For each device, you must create a driver configuration file, device register configuration file, and an entry in the
Master Driver Agent configuration file.

Once configured, the Master Driver Agent is configured and deployed in a manner similar to any other agent:

python scripts/install-agent.py -s services/core/MasterDriverAgent -c <master driver config file>

Requirements

VOLTTRON drivers operated by the master driver may have additional requirements for installation.
Required libraries:

BACnet driver - bacpypes
Modbus driver - pymodbus
Modbus_TK driver - modbus-tk
DNP3 and IEEE 2030.5 drivers - pydnp3

The easiest way to install the requirements for drivers included in the VOLTTRON repository is to use bootstrap.py
(see platform installation for more detail)

Master Driver Agent Configuration

The Master Driver Agent configuration consists of general settings for all devices. The default values of the Master
Driver should be sufficient for most users. The user may optionally change the interval between device scrapes with the
driver_scrape_interval.

The following example sets the driver_scrape_interval to 0.05 seconds or 20 devices per second:

{
 "driver_scrape_interval": 0.05,
 "publish_breadth_first_all": false,
 "publish_depth_first": false,
 "publish_breadth_first": false,
 "publish_depth_first_all": true,
 "group_offset_interval": 0.0
}

	driver_scrape_interval - Sets the interval between devices scrapes. Defaults to 0.02 or 50 devices per second.
Useful for when the platform scrapes too many devices at once resulting in failed scrapes.

	group_offset_interval - Sets the interval between when groups of devices are scraped. Has no effect if all devices
are in the same group.

In order to improve the scalability of the platform unneeded device state publishes for all devices can be turned off.
All of the following setting are optional and default to True.

	publish_depth_first_all - Enable “depth first” publish of all points to a single topic for all devices.

	publish_breadth_first_all - Enable “breadth first” publish of all points to a single topic for all devices.

	publish_depth_first - Enable “depth first” device state publishes for each register on the device for all devices.

	publish_breadth_first - Enable “breadth first” device state publishes for each register on the device for all
devices.

An example master driver configuration file can be found in the VOLTTRON repository in
services/core/MasterDriverAgent/master-driver.agent.

Driver Configuration File

Note

The terms register and point are used interchangeably in the documentation and in the configuration setting
names. They have the same meaning in the context of VOLTTRON drivers.

Each device configuration has the following form:

{
 "driver_config": {"device_address": "10.1.1.5",
 "device_id": 500},
 "driver_type": "bacnet",
 "registry_config":"config://registry_configs/vav.csv",
 "interval": 60,
 "heart_beat_point": "heartbeat",
 "group": 0
}

The following settings are required for all device configurations:

	driver_config - Driver specific setting go here. See below for driver specific settings.

	driver_type - Type of driver to use for this device: bacnet, modbus, fake, etc.

	registry_config - Reference to a configuration file in the configuration store for registers
on the device. See the Registry-Configuration-File section below or
and the Adding Device Configurations to the Configuration Store section in
the driver framework docs.

These settings are optional:

	interval - Period which to scrape the device and publish the results in seconds. Defaults to 60 seconds.

	heart_beat_point - A Point which to toggle to indicate a heartbeat to the device. A point with this Volttron
Point Name must exist in the registry. If this setting is missing the driver will not send a heart beat signal
to the device. Heart beats are triggered by the Actuator Agent which must be running to
use this feature.

	group - Group this device belongs to. Defaults to 0

These settings are used to create the topic that this device will be referenced by following the VOLTTRON convention of
{campus}/{building}/{unit}. This will also be the topic published on, when the device is periodically scraped for
it’s current state.

The topic used to reference the device is derived from the name of the device configuration in the store. See the
Adding Device Configurations to the Configuration Store section of the driver
framework docs.

Device Grouping

Devices may be placed into groups to separate them logically when they are scraped. This is done by setting the group
in the device configuration. group is a number greater than or equal to 0. Only number of devices in the same group
and the group_offset_interval are considered when determining when to scrape a device.

This is useful in two cases:

	If you need to ensure that certain devices are scraped in close proximity to each other you can put them in their own
group. If this causes devices to be scraped too quickly the groups can be separated out time wise using the
group_offset_interval setting.

	You may scrape devices on different networks in parallel for performance. For instance BACnet devices behind a single
MSTP router need to be scraped slowly and serially, but devices behind different routers may be scraped in parallel.
Grouping devices by router will do this automatically.

The group_offset_interval is applied by multiplying it by the group number. If you intend to use
group_offset_interval only use consecutive group values that start with 0.

Registry Configuration File

Registry configuration files setup each individual point on a device. Typically this file will be in CSV format, but the
exact format is driver specific. See the section for a particular driver for the registry configuration format.

The following is a simple example of a Modbus registry configuration file:

Catalyst 371

	Reference Point Name

	Volttron Point Name

	Units

	Units Details

	Modbus Register

	Writable

	Point Address

	Default Value

	Notes

	CO2Sensor

	ReturnAirCO2

	PPM

	0.00-2000.00

	>f

	FALSE

	1001

	
	CO2 Reading 0.00-2000.0 ppm

	CO2Stpt

	ReturnAirCO2Stpt

	PPM

	1000.00 (default)

	>f

	TRUE

	1011

	1000

	Setpoint to enable demand control ventilation

	HeatCall2

	HeatCall2

	On / Off

	on/off

	BOOL

	FALSE

	1114

	
	Status indicator of heating stage 2 need

Device State Publishes

By default, the value of each register on a device is published 4 different ways when the device state is published.
Consider the following settings in a driver configuration stored under the name devices/pnnl/isb1/vav1:

{
 "driver_config": {"device_address": "10.1.1.5",
 "device_id": 500},

 "driver_type": "bacnet",
 "registry_config":"config://registry_configs/vav.csv",
}

In the vav.csv file is a register with the name temperature. For these examples the current value of the
register on the device happens to be 75.2 and the meta data is

{"units": "F"}

When the driver publishes the device state the following 2 things will be published for this register:

A “depth first” publish to the topic devices/pnnl/isb1/vav1/temperature with the following message:

[75.2, {"units": "F"}]

A “breadth first” publish to the topic devices/temperature/vav1/isb1/pnnl with the following message:

[75.2, {"units": "F"}]

These publishes can be turned off by setting publish_depth_first and publish_breadth_first to false
respectively.

Also these two publishes happen once for all registers:

A “depth first” publish to the topic devices/pnnl/isb1/vav1/all with the following message:

[{"temperature": 75.2, ...}, {"temperature":{"units": "F"}, ...}]

A “breadth first” publish to the topic devices/all/vav1/isb1/pnnl with the following message:

[{"temperature": 75.2, ...}, {"temperature":{"units": "F"}, ...}]

These publishes can be turned off by setting publish_depth_first_all and publish_breadth_first_all to
false respectively.

Device Scalability Settings

In order to improve the scalability of the platform unneeded device state publishes for a device can be turned off.
All of the following setting are optional and will override the value set in the main master driver configuration.

	publish_depth_first_all - Enable “depth first” publish of all points to a single topic.

	publish_breadth_first_all - Enable “breadth first” publish of all points to a single topic.

	publish_depth_first - Enable “depth first” device state publishes for each register on the device.

	publish_breadth_first - Enable “breadth first” device state publishes for each register on the device.

It is common practice to set publish_breadth_first_all, publish_depth_first, and
publish_breadth_first to False unless they are specifically needed by an agent running on
the platform.

Note

All Historian Agents require publish_depth_first_all to be set to True in order to capture data.

Master Driver Override

By default, every user is allowed write access to the devices by the master driver. The override feature will allow the
user (for example, building administrator) to override this default behavior and enable the user to lock the write
access on the devices for a specified duration of time or indefinitely.

Set Override On

The Master Driver’s set_override_on RPC method can be used to set the override condition for all drivers with topic
matching the provided pattern. This can be specific devices, groups of devices, or even all configured devices. The
pattern matching is based on bash style filename matching semantics.

Parameters:

	
	pattern: Override pattern to be applied. For example,

	
	If the pattern is campus/building1/* the override condition is applied for all the devices under
campus/building1/.

	If the pattern is campus/building1/ahu1 the override condition is applied for only the
campus/building1/ahu1 device. The pattern matching is based on bash style filename matching semantics.

	duration: Time duration for the override in seconds. If duration <= 0.0, it implies an indefinite duration.

	failsafe_revert: Flag to indicate if all the devices falling under the override condition has to be set to its
default state/value immediately.

	staggered_revert: If this flag is set, reverting of devices will be staggered.

Example set_override_on RPC call:

self.vip.rpc.call(PLATFORM_DRIVER, "set_override_on", <override pattern>, <override duration>)

Set Override Off

The override condition can also be toggled off based on a provided pattern using the Master Driver’s
set_override_off RPC call.

Parameters:

	
	pattern: Override pattern to be applied. For example,

	
	If the pattern is campus/building1/* the override condition is removed for all the devices under
campus/building1/.

	If the pattern is campus/building1/ahu1 the override condition is removed for only for the
campus/building1/ahu1 device. The pattern matching is based on bash style filename matching semantics.

Example set_override_off RPC call:

self.vip.rpc.call(PLATFORM_DRIVER, "set_override_off", <override pattern>)

Get Override Devices

A list of all overridden devices can be obtained with the Master Driver’s get_override_devices RPC call.

This method call has no additional parameters.

Example get_override_devices RPC call:

self.vip.rpc.call(PLATFORM_DRIVER, "get_override_devices")

Get Override Patterns

A list of all patterns which have been requested for override can be obtained with the Master Driver’s
get_override_patterns RPC call.

This method call has no additional parameters

Example “get_override_patterns” RPC call:

self.vip.rpc.call(PLATFORM_DRIVER, "get_override_patterns")

Clear Overrides

All overrides set by RPC calls described above can be toggled off at using a single clear_overrides RPC call.

This method call has no additional parameters

Example “clear_overrides” RPC call:

self.vip.rpc.call(PLATFORM_DRIVER, "clear_overrides")

For more information, view the Global Override Specification

	Global Override Specification
	Functional Capabilities
	Driver RPC Methods

Global Override Specification

This document describes the specification for the global override feature. By default, every user is allowed write
access to the devices by the master driver. The override feature will allow the user (for example, a building
administrator) to override this default behavior and enable the user to lock the write access on the devices for a
specified duration of time or indefinitely.

Functional Capabilities

	User shall be able to specify the following when turning on the override behavior on the devices.

	Override pattern examples:

	If pattern is campus/building1/* - Override condition is turned on for all the devices under
campus/building1/.

	If pattern is campus/building1/ahu1 - Override condition is turned on for only campus/building1/ahu1

	The pattern matching shall use bash style filename matching semantics.

	Time duration over which override behavior is applicable - If the time duration is negative, then the override
condition is applied indefinitely.

	Optional revert-to-fail-safe-state flag - If the flag is set, the master driver shall set all the set points
falling under the override condition to its default state/value immediately. This is to ensure that the devices
are in fail-safe state when the override/lock feature is removed. If the flag is not set, the device state/value
is untouched.

	Optional staggered revert flag - If this flag is set, reverting of devices will be staggered.

	User shall be able to disable/turn off the override behavior on devices by specifying:

	Pattern on which the override/lock feature has be disabled. (example: campus/building/*)

	User shall be able to get a list of all the devices with the override condition set.

	User shall be able to get a list of all the override patterns that are currently active.

	User shall be able to clear all the overrides.

	Any changes to override patterns list shall be stored in the config store. On startup, list of override patterns and
corresponding end times are retrieved from the config store. If the end time is indefinite or greater than current
time for any pattern, then override is set on the matching devices for remaining duration of time.

	Whenever a device is newly configured, a check is made to see if it is part of the overridden patterns. If yes, it
is added to list of overridden devices.

	When a device is being removed, a check is made to see if it is part of the overridden devices. If yes, it is
removed from the list of overridden devices.

Driver RPC Methods

	set_override_on(pattern, duration=0.0, failsafe_revert=True, staggered_revert=True) - Turn on override condition on all the devices matching the pattern. Time duration for the override condition has to be in seconds. For indefinite duration, the time duration has to be <= 0.0.

	set_override_off(pattern) - Turn off override condition on all the devices matching the pattern. The specified
pattern will be removed from the override patterns list. All the devices falling under the given pattern will be
removed from the list of overridden devices.

	get_override_devices() - Get a list of all the devices with override condition.

	get_override_patterns() - Get a list of override patterns that are currently active.

	clear_overrides() - Clear all the overrides.

Market Service Agent

Introduction

The Market Service Agent implements a variation of a double-blind auction, in which each market participant bids
to buy or sell a commodity for a given price.

In contrast to other common implementations, participants do not bid single price-quantity pairs. Instead, they bid a
price-quantity curve, or “flexibility curve” into their respective markets. Market participants may be both buyers in
one market and sellers in another.

Settling of the market is a “single shot” process that begins with bidding that progresses from the bottom up
and concludes with a clearing of the markets from the top down. This is termed “single shot” because there is no
iteration required to find the clearing price or quantity at any level of the market structure.

Once the market has cleared, the process begins again for the next market interval, and new bids are submitted based on
the updated states of the agents.

Requirements

The Market Service Agent requires the Transitions (version 0.6.9) and NumPy (version 1.15.4) packages. These
packages can be installed in an activated environment with:

pip install transitions==0.6.9
pip install numpy==1.15.4

Market Timing

The MarketServiceAgent is driven by the Director. The Director drives the MarketServiceAgent through a timed loop. The
Director has just a few parameters that are configured by default with adequate values. They are:

	The market_period with a default value of 5 minutes

	The reservation_delay with a default value of 0 minutes

	The offer_delay with a default value of 2 minutes

The timing loop works as follows:

	The market period begins.

	A request for reservations is published after the reservation delay.

	A request for offers/bids is published after the offer delay.

	The aggregate demand curve is published as soon all the buy offers are completed for the market.

	The aggregate supply curve is published as soon all the sell offers are completed for the market.

	The cleared price is published as soon as all bids have been received.

	Error messages are published when discovered and usually occur at the end of one of the delays.

	The cycle repeats.

How to Use the MarketServiceAgent

A given agent participates in one or more markets by inheriting from the
base MarketAgent. The base MarketAgent handles all of the communication between the
agent and the MarketServiceAgent. The agent only needs to join each market with the
join_market
method and then respond to the appropriate callback methods. The callback methods are described at the
base MarketAgent.

DNP3 Agent

DNP3 [https://en.wikipedia.org/wiki/DNP3] (Distributed Network Protocol) is a set of communications protocols that
are widely used by utilities such as electric power companies, primarily for
SCADA [https://en.wikipedia.org/wiki/SCADA] purposes. It was adopted in 2010 as
IEEE Std 1815-2010 [http://ieeexplore.ieee.org/document/5518537/?reload=true],
later updated to 1815-2012 [https://standards.ieee.org/findstds/standard/1815-2012.html].

VOLTTRON’s DNP3 Agent is an implementation of a DNP3 Outstation as specified in IEEE Std 1815-2012. It engages in
bidirectional network communications with a DNP3 Master, which might be located at a power utility.

Like some other VOLTTRON protocol agents (e.g. IEEE2030_5Agent), the DNP3 Agent can optionally be front-ended by a DNP3
device driver running under VOLTTRON’s MasterDriverAgent. This allows a DNP3 Master to be treated like any other device
in VOLTTRON’s ecosystem.

The VOLTTRON DNP3 Agent implementation of an Outstation is built on PyDNP3, an open-source library from Kisensum
containing Python language bindings for Automatak’s C++ opendnp3 [https://www.automatak.com/opendnp3/] library, the
de facto reference implementation of DNP3.

The DNP3 Agent exposes DNP3 application-layer functionality, creating an extensible base from which specific custom
behavior can be designed and supported. By default, the DNP3 Agent acts as a simple transfer agent, publishing data
received from the Master on the VOLTTRON Message Bus, and responding to RPCs from other VOLTTRON agents by sending data
to the Master.

Requirements

PyDNP3 can be installed in an activated environment with:

pip install pydnp3

RPC Calls

The DNP3 Agent exposes the following VOLTTRON RPC calls:

def get_point(self, point_name):
 """
 Look up the most-recently-received value for a given output point.

 @param point_name: The point name of a DNP3 PointDefinition.
 @return: The (unwrapped) value of a received point.
 """

def get_point_by_index(self, group, index):
 """
 Look up the most-recently-received value for a given point.

 @param group: The group number of a DNP3 point.
 @param index: The index of a DNP3 point.
 @return: The (unwrapped) value of a received point.
 """

def get_points(self):
 """
 Look up the most-recently-received value of each configured output point.

 @return: A dictionary of point values, indexed by their VOLTTRON point names.
 """

def set_point(self, point_name, value):
 """
 Set the value of a given input point.

 @param point_name: The point name of a DNP3 PointDefinition.
 @param value: The value to set. The value's data type must match the one in the DNP3 PointDefinition.
 """

def set_points(self, point_list):
 """
 Set point values for a dictionary of points.

 @param point_list: A dictionary of {point_name: value} for a list of DNP3 points to set.
 """

def config_points(self, point_map):
 """
 For each of the agent's points, map its VOLTTRON point name to its DNP3 group and index.

 @param point_map: A dictionary that maps a point's VOLTTRON point name to its DNP3 group and index.
 """

def get_point_definitions(self, point_name_list):
 """
 For each DNP3 point name in point_name_list, return a dictionary with each of the point definitions.

 The returned dictionary looks like this:

 {
 "point_name1": {
 "property1": "property1_value",
 "property2": "property2_value",
 ...
 },
 "point_name2": {
 "property1": "property1_value",
 "property2": "property2_value",
 ...
 }
 }

 If a definition cannot be found for a point name, it is omitted from the returned dictionary.

 :param point_name_list: A list of point names.
 :return: A dictionary of point definitions.
 """

Pub/Sub Calls

The DNP3 Agent uses two topics when publishing data to the VOLTTRON message bus:

	Point Values (default topic: `dnp3/point`): As the DNP3 Agent communicates with the Master,
it publishes received point values on the VOLTTRON message bus.

	Outstation status (default topic: dnp3/status): If the status of the DNP3 Agent outstation
changes, for example if it is restarted, it publishes its new status on the VOLTTRON message bus.

Data Dictionary of Point Definitions

The DNP3 Agent loads and uses a data dictionary of point definitions, which are maintained by agreement between the
(DNP3 Agent) Outstation and the DNP3 Master. The data dictionary is stored in the agent’s registry.

Current Point Values

The DNP3 Agent tracks the most-recently-received value for each point definition in its data dictionary, regardless of
whether the point value’s source is a VOLTTRON RPC call or a message from the DNP3 Master.

Agent Configuration

The DNP3Agent configuration file specifies the following fields:

	local_ip: (string) Outstation’s host address (DNS resolved). Default: 0.0.0.0.

	port: (integer) Outstation’s port number - the port that the remote endpoint (Master) is listening on. Default:
20000.

	point_topic: (string) VOLTTRON message bus topic to use when publishing DNP3 point values. Default:
dnp3/point.

	outstation_status_topic: (string) Message bus topic to use when publishing outstation status. Default:
dnp3/outstation_status.

	outstation_config: (dictionary) Outstation configuration parameters. All are optional. Parameters include:

	database_sizes: (integer) Size of each outstation database buffer. Default: 10.

	event_buffers: (integer) Size of the database event buffers. Default: 10.

	allow_unsolicited: (boolean) Whether to allow unsolicited requests. Default: True.

	link_local_addr: (integer) Link layer local address. Default: 10.

	link_remote_addr: (integer) Link layer remote address. Default: 1.

	log_levels: (list) List of bit field names (OR’d together) that filter what gets logged by DNP3. Default:
NORMAL. Possible values: ALL, ALL_APP_COMMS, ALL_COMMS, NORMAL, NOTHING.

	threads_to_allocate: (integer) Threads to allocate in the manager’s thread pool. Default: 1.

A sample DNP3 Agent configuration file is available in services/core/DNP3Agent/dnp3agent.config.

VOLTTRON DNP3 Device Driver

VOLTTRON’s DNP3 device driver exposes get_point/set_point RPC calls and scrapes for DNP3 points.

The driver periodically issues DNP3Agent RPC calls to refresh its cached representation of DNP3 data. It issues RPC
calls to the DNP3 Agent as needed when responding to get_point, set_point and scrape_all calls.

For information about the DNP3 driver, see DNP3 Driver.

Installing the DNP3 Agent

To install DNP3Agent, please consult the installation advice in services/core/DNP3Agent/README.md. README.md
specifies a default agent configuration, which can be overridden as needed.

An agent installation script is available:

$ export VOLTTRON_ROOT=<volttron github install directory>
$ cd $VOLTTRON_ROOT
$ source services/core/DNP3Agent/install_dnp3_agent.sh

When installing the Mesa Agent, please note that the agent’s point definitions must be loaded into the agent’s config
store. See install_dnp3_agent.sh for an example of how to load them.

Mesa Agent

The Mesa Agent is a VOLTTRON agent that handles MESA-ESS DNP3 outstation communications. It subclasses and extends the
functionality of VOLTTRON’s DNP3 Agent. Like the DNP3 Agent, the Mesa Agent models a DNP3 outstation, communicating
with a DNP3 master.

For a description of DNP3 and the VOLTTRON DNP3 agent, please refer to the DNP3 Agent documentation.

VOLTTRON’s Mesa Agent and DNP3 Agent are implementations of a DNP3 Outstation as specified in IEEE Std 1815-2012. They
engage in bidirectional network communications with a DNP3 Master, which might be located at a power utility.

MESA-ESS is an extension and enhancement to DNP3. It builds on the basic DNP3 communications protocol, adding support
for more complex structures, including functions, arrays, curves and schedules. The draft specification for MESA-ESS,
as well as a spreadsheet of point definitions, can be found at http://mesastandards.org/mesa-standards/.

VOLTTRON’s DNP3 Agent and Mesa Agent implementations of an Outstation are built on pydnp3, an open-source library from
Kisensum containing Python language bindings for Automatak’s C++ opendnp3 [https://www.automatak.com/opendnp3/]
library, the de-facto reference implementation of DNP3.

MesaAgent exposes DNP3 application-layer functionality, creating an extensible base from which specific custom behavior
can be designed and supported, including support for MESA functions, arrays and selector blocks. By default, the Mesa
Agent acts as a simple transfer agent, publishing data received from the Master on the VOLTTRON Message Bus, and
responding to RPCs from other VOLTTRON agents by sending data to the Master. Properties of the point and function
definitions also enable the use of more complex controls for point data capture and publication.

The Mesa Agent was developed by Kisensum for use by 8minutenergy, which provided generous financial support for the
open-source contribution to the VOLTTRON platform, along with valuable feedback based on experience with the agent in a
production context.

RPC Calls

The Mesa Agent exposes the following VOLTTRON RPC calls:

def get_point(self, point_name):
 """
 Look up the most-recently-received value for a given output point.

 @param point_name: The point name of a DNP3 PointDefinition.
 @return: The (unwrapped) value of a received point.
 """

def get_point_by_index(self, data_type, index):
 """
 Look up the most-recently-received value for a given point.

 @param data_type: The data_type of a DNP3 point.
 @param index: The index of a DNP3 point.
 @return: The (unwrapped) value of a received point.
 """

def get_points(self):
 """
 Look up the most-recently-received value of each configured output point.

 @return: A dictionary of point values, indexed by their point names.
 """

def get_configured_points(self):
 """
 Look up the most-recently-received value of each configured point.

 @return: A dictionary of point values, indexed by their point names.
 """

def set_point(self, point_name, value):
 """
 Set the value of a given input point.

 @param point_name: The point name of a DNP3 PointDefinition.
 @param value: The value to set. The value's data type must match the one in the DNP3 PointDefinition.
 """

def set_points(self, point_dict):
 """
 Set point values for a dictionary of points.

 @param point_dict: A dictionary of {point_name: value} for a list of DNP3 points to set.
 """

def config_points(self, point_map):
 """
 For each of the agent's points, map its VOLTTRON point name to its DNP3 group and index.

 @param point_map: A dictionary that maps a point's VOLTTRON point name to its DNP3 group and index.
 """

def get_point_definitions(self, point_name_list):
 """
 For each DNP3 point name in point_name_list, return a dictionary with each of the point definitions.

 The returned dictionary looks like this:

 {
 "point_name1": {
 "property1": "property1_value",
 "property2": "property2_value",
 ...
 },
 "point_name2": {
 "property1": "property1_value",
 "property2": "property2_value",
 ...
 }
 }

 If a definition cannot be found for a point name, it is omitted from the returned dictionary.

 :param point_name_list: A list of point names.
 :return: A dictionary of point definitions.
 """

def get_selector_block(self, point_name, edit_selector):
 """
 Return a dictionary of point values for a given selector block.

 :param point_name: Name of the first point in the selector block.
 :param edit_selector: The index (edit selector) of the block.
 :return: A dictionary of point values.
 """

def reset(self):
 """
 Reset the agent's internal state, emptying point value caches. Used during iterative testing.
 """

Pub/Sub Calls

MesaAgent uses three topics when publishing data to the VOLTTRON message bus:

	Point Values (default topic: dnp3/point): As the Mesa Agent communicates with the Master, it publishes received
point values on the VOLTTRON message bus.

	Functions (default topic: mesa/function): When the Mesa Agent receives a function step with a “publish” action
value, it publishes the current state of the function (all steps received to date) on the VOLTTRON message bus.

	Outstation status (default topic: mesa/status): If the status of the Mesa Agent outstation
changes, for example if it is restarted, it publishes its new status on the VOLTTRON message bus.

Data Dictionaries of Point and Function Definitions

The Mesa Agent loads and uses data dictionaries of point and function definitions, which are maintained by agreement
between the (Mesa Agent) Outstation and the DNP3 Master. The data dictionaries are stored in the agent’s registry.

Current Point Values

The Mesa Agent tracks the most-recently-received value for each point definition in its data dictionary, regardless of
whether the point value’s source is a VOLTTRON RPC call or a message from the DNP3 Master.

Agent Configuration

The Mesa Agent configuration specifies the following fields:

	local_ip: (string) Outstation’s host address (DNS resolved). Default: 0.0.0.0.

	port: (integer) Outstation’s port number - the port that the remote endpoint (Master) is listening on.
Default: 20000.

	point_topic: (string) VOLTTRON message bus topic to use when publishing DNP3 point values. Default:
dnp3/point.

	function_topic: (string) Message bus topic to use when publishing MESA-ESS functions. Default:
mesa/function.

	outstation_status_topic: (string) Message bus topic to use when publishing outstation status. Default:
mesa/outstation_status.

	all_functions_supported_by_default: (boolean) When deciding whether to reject points for unsupported functions,
ignore the values of their ‘supported’ points: simply treat all functions as supported. Used primarily during
testing. Default: False.

	function_validation: (boolean) When deciding whether to support sending single points to the Mesa Agent. If
function_validation is True, the Mesa Agent will raise an exception when receiving any invalid point in
current function. If function_validation is False, Mesa Agent will reset current function to None instead of
raising the exception. Default: False.

	outstation_config: (dictionary) Outstation configuration parameters. All are optional. Parameters include:

	database_sizes: (integer) Size of each outstation database buffer. Default: 10.

	event_buffers: (integer) Size of the database event buffers. Default: 10.

	allow_unsolicited: (boolean) Whether to allow unsolicited requests. Default: True.

	link_local_addr: (integer) Link layer local address. Default: 10.

	link_remote_addr: (integer) Link layer remote address. Default: 1.

	log_levels: (list) List of bit field names (OR’d together) that filter what gets logged by DNP3.
Default: [NORMAL]. Possible values: ALL, ALL_APP_COMMS, ALL_COMMS, NORMAL, NOTHING.

	threads_to_allocate: (integer) Threads to allocate in the manager’s thread pool. Default: 1.

A sample Mesa Agent configuration file is available in services/core/DNP3Agent/mesaagent.config.

Installing the Mesa Agent

To install the Mesa Agent, please consult the installation advice in services/core/DNP3Agent/README.md,
which includes advice on installing pydnp3, a library upon which the DNP3 Agent depends.

After installing libraries as described in the Mesa Agent README.md file, the agent can be installed from a
command-line shell as follows:

$ export VOLTTRON_ROOT=<volttron github install directory>
$ cd $VOLTTRON_ROOT
$ source services/core/DNP3Agent/install_mesa_agent.sh

README.md specifies a default agent configuration, which can be overridden as needed.

Here are some things to note when installing the Mesa Agent:

	The Mesa Agent source code resides in, and is installed from, a DNP3 subdirectory, thus allowing it to be
implemented as a subclass of the base DNP3 agent class. When installing the Mesa Agent, inform the install script
that it should build from the mesa subdirectory by exporting the following environment variable:

$ export AGENT_MODULE=dnp3.mesa.agent

	The agent’s point and function definitions must be loaded into the agent’s config store. See the
install_mesa_agent.sh script for an example of how to load them.

External Data Publisher Agent

The External Data Publisher agent (ExternalData) was created to fetch data from remote APIs
based on configured values and publish the remote data on the VOLTTRON message bus. The agent
is primarily an agent wrapper around the requests library that sends the request then
broadcast it via VIP pub/sub publish.

Configuration Options

The following JSON configuration file shows all the options currently supported by the
ExternalData agent. Configuration values specify the interval between remote data polling
requests, default authentication for remote API calls, VOLTTRON message bus publish topics,
and for defining the remote API request behavior. Below is an example configuration file
with additional parameter documentation.

{
 #Interval at which to scrape the sources.
 "interval":300,

 #Global topic prefix for all publishes.
 "global_topic_prefix": "record",

 #Default user name and password if all sources require the same
 #credentials. Can be overridden in individual sources.
 #"default_user":"my_user_name",
 #"default_password" : "my_password",

 "sources":
 [
 {
 #Valid types are "csv", "json", and "raw"
 #Defaults to "raw"
 "type": "csv",
 #Source URL for CSV data.
 "url": "https://example.com/example",

 #URL parameters for data query (optional).
 # See https://en.wikipedia.org/wiki/Query_string
 "params": {"period": "currentinterval",
 "format": "csv"},

 #Topic to publish on.
 "topic": "example/examplecsvdata1",

 #Column used to break rows in CSV out into separate publishes.
 #The key will be removed from the row data and appended to the end
 # of the publish topic.
 # If this option is missing the entire CSV will be published as a list
 # of objects.
 #If the column does not exist nothing will be published.
 "key": "Key Column",

 #Attempt to parse these columns in the data into numeric types.
 #Currently columns are parsed with ast.literal_eval()
 #Values that fail to parse are left as strings unless the
 # values is an empty string. Empty strings are changed to None.
 "parse": ["Col1", "Col2"],

 #Source specific authentication.
 "user":"username",
 "password" : "password"
 },
 {
 #Valid types are "csv", "json", and "raw"
 #Defaults to "raw"
 "type": "csv",
 #Source URL for CSV data.
 "url": "https://example.com/example_flat",

 #URL parameters for data query (optional).
 # See https://en.wikipedia.org/wiki/Query_string
 "params": {"format": "csv"},

 #Topic to publish on. (optional)
 "topic": "example/examplecsvdata1",

 #If the rows in a csv represent key/value pairs use this
 #setting to reduce this format to a single object for publishing.
 "flatten": true,

 #Attempt to parse these columns in the data into numeric types.
 #Currently columns are parsed with ast.literal_eval()
 #Values that fail to parse are left as strings unless the
 # values is an empty string. Empty strings are changed to None.
 "parse": ["Col1", "Col2"]
 },
 {
 #Valid types are "csv", "json", and "raw"
 #Defaults to "raw"
 "type": "json",
 #Source URL for JSON data.
 "url": "https://example.com/api/example1",

 #URL parameters for data query (optional)
 # See https://en.wikipedia.org/wiki/Query_string
 "params": {"format": "json"},

 #Topic to publish on. (optional)
 "topic": "example/exampledata1",

 #Path to desired data withing the JSON. Optional.
 #Elements in a path may be either a string or an integer.
 #Useful for peeling off unneeded layers around the wanted data.
 "path": ["parentobject", "0"],

 #After resolving the path above if the resulting data is a list
 # the key is the path to a value in a list item. Each item in the list
 # is published separately with the key appended to the end of the topic.
 # Elements in a key may be a string or an integer. (optional)
 "key": ["Location", "$"],

 #Source specific authentication.
 "user":"username",
 "password" : "password"
 }
]
}

IEEE 2030.5 DER Agent

The IEEE 2030.5 Agent (IEEE2030_5 in the VOLTTRON repository) implements a IEEE 2030.5 server that receives HTTP
POST/PUT requests from IEEE 2030.5 devices. The requests are routed to the IEEE 2030.5 Agent over the VOLTTRON
message bus by VOLTTRON’s Master Web Service. The IEEE 2030.5 Agent returns an appropriate HTTP response. In some
cases (e.g., DERControl requests), this response includes a data payload.

The IEEE 2030.5 Agent maps IEEE 2030.5 resource data to a VOLTTRON IEEE 2030.5 data model based on SunSpec, using block
numbers and point names as defined in the SunSpec Information Model, which in turn is harmonized with 61850. The data
model is given in detail below.

Each device’s data is stored by the IEEE 2030.5 Agent in an EndDevice memory structure. This structure is not
persisted to a database. Each EndDevice retains only the most recently received value for each field.

The IEEE2030_5 Agent exposes RPC calls for getting and setting EndDevice data.

VOLTTRON IEEE 2030.5 Device Driver

The IEEE 2030.5 device driver is a new addition to VOLTTRON Master Driver Agent’s
family of standard device drivers. It exposes get_point/set_point calls for IEEE 2030.5 EndDevice fields.

The IEEE 2030.5 device driver periodically issues IEEE2030_5 Agent RPC calls to refresh its cached representation of
EndDevice data. It issues RPC calls to IEEE2030_5Agent as needed when responding to get_point, set_point and
scrape_all calls.

Field Definitions

These field IDs correspond to the ones in the IEEE 2030.5 device driver’s configuration file, ieee2030_5.csv.
They have been used in that file’s “Volttron Point Name” column and also in its “Point Name” column.

	Field ID

	IEEE 2030.5 Resource/Property

	Description

	Units

	Type

	b1_Md

	
	device_information

	mfModel

	Model (32 char lim).

	
	string

	b1_Opt

	
	device_information

	lfdi

	Long-form device identifier (32 char lim).

	
	string

	b1_SN

	
	abstract_device

	sfdi

	Short-form device identifier (32 char lim).

	
	string

	b1_Vr

	
	device_information

	mfHwVer

	Version (16 char lim).

	
	string

	b113_A

	
	mirror_meter_reading

	PhaseCurrentAvg

	AC current.

	A

	float

	b113_DCA

	
	mirror_meter_reading

	InstantPackCurrent

	DC current.

	A

	float

	b113_DCV

	
	mirror_meter_reading

	LineVoltageAvg

	DC voltage.

	V

	float

	b113_DCW

	
	mirror_meter_reading

	PhasePowerAvg

	DC power.

	W

	float

	b113_PF

	
	mirror_meter_reading

	PhasePFA

	AC power factor.

	%

	float

	b113_WH

	
	mirror_meter_reading

	EnergyIMP

	AC energy.

	Wh

	float

	b120_AhrRtg

	
	der_capability

	rtgAh

	Usable capacity of the battery.
Maximum charge minus minimum charge.

	Ah

	float

	b120_ARtg

	
	der_capability

	rtgA

	Maximum RMS AC current level capability of the
inverter.

	A

	float

	b120_MaxChaRte

	
	der_capability

	rtgMaxChargeRate

	Maximum rate of energy transfer into the device.

	W

	float

	b120_MaxDisChaRte

	
	der_capability

	rtgMaxDischargeRate

	Maximum rate of energy transfer out of the device.

	W

	float

	b120_WHRtg

	
	der_capability

	rtgWh

	Nominal energy rating of the storage device.

	Wh

	float

	b120_WRtg

	
	der_capability

	rtgW

	Continuous power output capability of the inverter.

	W

	float

	b121_WMax

	
	der_settings

	setMaxChargeRate

	Maximum power output. Default to WRtg.

	W

	float

	b122_ActWh

	
	mirror_meter_reading

	EnergyEXP

	AC lifetime active (real) energy output.

	Wh

	float

	b122_StorConn

	
	der_status

	storConnectStatus

	CONNECTED=0, AVAILABLE=1, OPERATING=2, TEST=3.

	
	enum

	b124_WChaMax

	
	der_control

	opModFixedFlow

	Setpoint for maximum charge. This is the only
field that is writable with a set_point call.

	W

	float

	b403_Tmp

	
	mirror_meter_reading

	InstantPackTemp

	Pack temperature.

	C

	float

	b404_DCW

	
	PEVInfo

	chargingPowerNow

	Power flow in or out of the inverter.

	W

	float

	b404_DCWh

	
	der_availability

	availabilityDuration

	Output energy (absolute SOC).
Calculated as (availabilityDuration / 3600) * WMax.

	Wh

	float

	b802_LocRemCtl

	
	der_status

	localControlModeStatus

	Control Mode: REMOTE=0, LOCAL=1.

	
	enum

	b802_SoC

	
	der_status

	stateOfChargeStatus

	State of Charge %.

	% WHRtg

	float

	b802_State

	
	der_status

	inverterStatus

	DISCONNECTED=1, INITIALIZING=2, CONNECTED=3,
STANDBY=4, SOC PROTECTION=5, FAULT=99.

	
	enum

Revising and Expanding the Field Definitions

The IEEE 2030.5-to-SunSpec field mappings in this implementation are a relatively thin subset of all possible
field definitions. Developers are encouraged to expand the definitions.

The procedure for expanding the field mappings requires you to make changes in two places:

	Update the driver’s point definitions in services/core/MasterDriverAgent/master_driver/ieee2030_5.csv

	Update the IEEE 2030.5-to-SunSpec field mappings in services/core/IEEE2030_5Agent/ieee2030_5/end_device.py and
__init__.py

When updating VOLTTRON’s IEEE 2030.5 data model, please use field IDs that conform to the SunSpec
block-number-and-field-name model outlined in the SunSpec Information Model Reference (see the link below).

View the IEEE 2030.5 agent specification document to learn more about IEEE 2030.5 and
the IEEE 2030.5 agent and driver.

	IEEE 2030.5 DER Support
	Function Sets
	Distributed Energy Resources (DERs)

	Design Details
	VOLTTRON IEEE 2030.5 Device Driver

	Field Definitions

	Revising and Expanding the Field Definitions

	For Further Information

IEEE 2030.5 DER Support

Version 1.0

Smart Energy Profile 2.0 (SEP 2.0, IEEE 2030.5) specifies a REST architecture built around the core HTTP verbs: GET,
HEAD, PUT, POST and DELETE. A specification for the IEEE 2030.5 protocol can be found
here [https://standards.ieee.org/content/dam/ieee-standards/standards/web/documents/presentations/smart_energy_slides.pdf].

IEEE 2030.5 EndDevices (clients) POST XML resources representing their state, and GET XML resources containing command
and control information from the server. The server never reaches out to the client unless a “subscription” is
registered and supported for a particular resource type. This implementation does not use IEEE 2030.5 registered
subscriptions.

The IEEE 2030.5 specification requires HTTP headers, and it explicitly requires RESTful response codes, for example:

	201 - “Created”

	204 - “No Content”

	301 - “Moved Permanently”

	etc.

IEEE 2030.5 message encoding may be either XML or EXI. Only XML is supported in this implementation.

IEEE 2030.5 requires HTTPS/TLS version 1.2 along with support for the cipher suite TLS_ECDHE_ECDSA_WITH_AES_128_CCM_8.
Production installation requires a certificate issued by a IEEE 2030.5 CA. The encryption requirement can be met by
using a web server such as Apache to proxy the HTTPs traffic.

IEEE 2030.5 discovery, if supported, must be implemented by an xmDNS server. Avahi can be modified to perform this
function.

Function Sets

IEEE 2030.5 groups XML resources into “Function Sets.” Some of these function sets provide a core set of functionality
used across higher-level function sets. This implementation implements resources from the following function sets:

	Time

	Device Information

	Device Capabilities

	End Device

	Function Set Assignments

	Power Status

	Distributed Energy Resources

Distributed Energy Resources (DERs)

Distributed energy resources (DERs) are devices that generate energy, e.g., solar inverters, or store energy, e.g.,
battery storage systems, electric vehicle supply equipment (EVSEs). These devices are managed by a IEEE 2030.5 DER
server using DERPrograms which are described by the IEEE 2030.5 specification as follows:

Servers host one or more DERPrograms, which in turn expose DERControl events to DER clients.
DERControl instances contain attributes that allow DER clients to respond to events
that are targeted to their device type. A DERControl instance also includes scheduling
attributes that allow DER clients to store and process future events. These attributes
include start time and duration, as well an indication of the need for randomization of
the start and / or duration of the event. The IEEE 2030.5 DER client model is based on the
SunSpec Alliance Inverter Control Model [SunSpec] which is derived from
IEC 61850-90-7 [61850] and [EPRI].

EndDevices post multiple IEEE 2030.5 resources describing their status. The following is an
example of a Power Status resource that might be posted by an EVSE (vehicle charging station):

<PowerStatus xmlns="http://zigbee.org/sep" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" href="/sep2/edev/96/ps">
 <batteryStatus>4</batteryStatus>
 <changedTime>1487812095</changedTime>
 <currentPowerSource>1</currentPowerSource>
 <estimatedChargeRemaining>9300</estimatedChargeRemaining>
 <PEVInfo>
 <chargingPowerNow>
 <multiplier>3</multiplier>
 <value>-5</value>
 </chargingPowerNow>
 <energyRequestNow>
 <multiplier>3</multiplier>
 <value>22</value>
 </energyRequestNow>
 <maxForwardPower>
 <multiplier>3</multiplier>
 <value>7</value>
 </maxForwardPower>
 <minimumChargingDuration>11280</minimumChargingDuration>
 <targetStateOfCharge>10000</targetStateOfCharge>
 <timeChargeIsNeeded>9223372036854775807</timeChargeIsNeeded>
 <timeChargingStatusPEV>1487812095</timeChargingStatusPEV>
 </PEVInfo>
</PowerStatus>

Design Details

[image: ../../../_images/volttron_ieee2030_5.jpg]
VOLTTRON’s IEEE 2030.5 implementation includes a IEEE 2030.5 Agent and a IEEE 2030.5 device driver, as described below.

VOLTTRON IEEE 2030.5 Device Driver

The IEEE 2030.5 device driver is a new addition to VOLTTRON Master Driver Agent’s family of standard device drivers. It
exposes get_point/set_point calls for IEEE 2030.5 EndDevice fields.

The IEEE 2030.5 device driver periodically issues the IEEE 2030.5 Agent RPC calls to refresh its cached representation
of EndDevice data. It issues RPC calls to the IEEE 2030.5 Agent as needed when responding to get_point, set_point
and scrape_all calls.

Field Definitions

These field IDs correspond to the ones in the IEEE 2030.5 device driver’s configuration file, ieee2030_5.csv.
They have been used in that file’s Volttron Point Name column and also in its Point Name column.

	Field ID

	IEEE 2030.5 Resource/Property

	Description

	Units

	Type

	b1_Md

	
	device_information

	mfModel

	Model (32 char lim).

	
	string

	b1_Opt

	
	device_information

	lfdi

	Long-form device identifier (32 char lim).

	
	string

	b1_SN

	
	abstract_device

	sfdi

	Short-form device identifier (32 char lim).

	
	string

	b1_Vr

	
	device_information

	mfHwVer

	Version (16 char lim).

	
	string

	b113_A

	
	mirror_meter_reading

	PhaseCurrentAvg

	AC current.

	A

	float

	b113_DCA

	
	mirror_meter_reading

	InstantPackCurrent

	DC current.

	A

	float

	b113_DCV

	
	mirror_meter_reading

	LineVoltageAvg

	DC voltage.

	V

	float

	b113_DCW

	
	mirror_meter_reading

	PhasePowerAvg

	DC power.

	W

	float

	b113_PF

	
	mirror_meter_reading

	PhasePFA

	AC power factor.

	%

	float

	b113_WH

	
	mirror_meter_reading

	EnergyIMP

	AC energy.

	Wh

	float

	b120_AhrRtg

	
	der_capability

	rtgAh

	Usable capacity of the battery.
Maximum charge minus minimum charge.

	Ah

	float

	b120_ARtg

	
	der_capability

	rtgA

	Maximum RMS AC current level capability of the
inverter.

	A

	float

	b120_MaxChaRte

	
	der_capability

	rtgMaxChargeRate

	Maximum rate of energy transfer into the device.

	W

	float

	b120_MaxDisChaRte

	
	der_capability

	rtgMaxDischargeRate

	Maximum rate of energy transfer out of the device.

	W

	float

	b120_WHRtg

	
	der_capability

	rtgWh

	Nominal energy rating of the storage device.

	Wh

	float

	b120_WRtg

	
	der_capability

	rtgW

	Continuous power output capability of the inverter.

	W

	float

	b121_WMax

	
	der_settings

	setMaxChargeRate

	Maximum power output. Default to WRtg.

	W

	float

	b122_ActWh

	
	mirror_meter_reading

	EnergyEXP

	AC lifetime active (real) energy output.

	Wh

	float

	b122_StorConn

	
	der_status

	storConnectStatus

	CONNECTED=0, AVAILABLE=1, OPERATING=2, TEST=3.

	
	enum

	b124_WChaMax

	
	der_control

	opModFixedFlow

	Setpoint for maximum charge. This is the only
field that is writable with a set_point call.

	W

	float

	b403_Tmp

	
	mirror_meter_reading

	InstantPackTemp

	Pack temperature.

	C

	float

	b404_DCW

	
	PEVInfo

	chargingPowerNow

	Power flow in or out of the inverter.

	W

	float

	b404_DCWh

	
	der_availability

	availabilityDuration

	Output energy (absolute SOC).
Calculated as (availabilityDuration / 3600) * WMax.

	Wh

	float

	b802_LocRemCtl

	
	der_status

	localControlModeStatus

	Control Mode: REMOTE=0, LOCAL=1.

	
	enum

	b802_SoC

	
	der_status

	stateOfChargeStatus

	State of Charge %.

	% WHRtg

	float

	b802_State

	
	der_status

	inverterStatus

	DISCONNECTED=1, INITIALIZING=2, CONNECTED=3,
STANDBY=4, SOC PROTECTION=5, FAULT=99.

	
	enum

Revising and Expanding the Field Definitions

The IEEE 2030.5-to-SunSpec field mappings in this implementation are a relatively thin subset of all possible
field definitions. Developers are encouraged to expand the definitions.

The procedure for expanding the field mappings requires you to make changes in two places:

	Update the driver’s point definitions in services/core/MasterDriverAgent/master_driver/ieee2030_5.csv

	Update the IEEE 2030.5-to-SunSpec field mappings in services/core/IEEE2030_5Agent/ieee2030_5/end_device.py and
__init__.py

When updating VOLTTRON’s IEEE 2030.5 data model, please use field IDs that conform to the SunSpec
block-number-and-field-name model outlined in the SunSpec Information Model Reference (see the link below).

For Further Information

SunSpec References:

	Information model specification: http://sunspec.org/wp-content/uploads/2015/06/SunSpec-Information-Models-12041.pdf

	Information model reference spreadsheet: http://sunspec.org/wp-content/uploads/2015/06/SunSpec-Information-Model-Reference.xlsx

	Inverter models: http://sunspec.org/wp-content/uploads/2015/06/SunSpec-Inverter-Models-12020.pdf

	Energy storage models: http://sunspec.org/wp-content/uploads/2015/06/SunSpec-Energy-Storage-Models-12032.pdf

Questions? Please contact:

	Rob Calvert (rob@kisensum.com) or James Sheridan (james@kisensum.com)

Obix History Agent

The Obix History Agent captures data history data from an Obix RESTful interface and publishes it to the message bus
like a driver for capture by agents and historians. The Agent will setup its queries to ensure that data is only
publishes once. For points queried for the first time it will go back in time and publish old data as configured.

The data will be collated into device all publishes automatically and will use a timestamp in the header based on the
timestamps reported by the Obix interface. The publishes will be made in chronological order.

Units data is automatically read from the device.

For sending commands to devices see Obix Driver Configuration.

Agent Configuration

There are three arguments for the driver_config section of the device configuration file:

	url - URL of the interface.

	username - User name for site..

	password - Password for username.

	check_interval - How often to check for new data on each point.

	path_prefix - Path prefix for all publishes.

	register_config - Registry configuration file.

	default_last_read - Time, in hours, to go back and retrieve data for a point for the first time.

Here is an example device configuration file:

{
 "url": "http://example.com/obix/histories/EXAMPLE/",
 "username": "username",
 "password": "password",
 # Interval to query interface for updates in minutes.
 # History points are only published if new data is available
 # config points are gathered and published at this interval.
 "check_interval": 15,
 # Path prefix for all publishes
 "path_prefix": "devices/obix/history/",
 "register_config": "config://registry_config.csv",
 "default_last_read": 12
}

A sample Obix configuration file can be found in the VOLTTRON repository in services/core/ObixHistoryPublish/config

Registry Configuration File

Similar to a driver the Obix History Agent requires a registry file to select the points to publish.

The registry configuration file is a CSV [https://en.wikipedia.org/wiki/Comma-separated_values] file. Each row
configures a point on the device.

The following columns are required for each row:

	Device Name - Name of the device to associate with this point.

	Volttron Point Name - The VOLTTRON Point name to use when publishing this value.

	Obix Name - Name of the point on the Obix interface. Escaping of spaces and dashes for use with the interface
is handled internally.

Any additional columns will be ignored. It is common practice to include a Notes or Unit Details for additional
information about a point.

The following is an example of a Obix History Agent registry configuration file:

Obix

	Device Name

	Volttron Point Name

	Obix Name

	device1

	Local Outside Dry Bulb

	Local Outside Dry Bulb

	device2

	CG-1 Gas Flow F-2

	CG-1 Gas Flow F-2

	device2

	Cog Plant Gas Flow F-1

	Cog Plant Gas Flow F-1

	device2

	Boiler Plant Hourly Gas Usage

	Boiler Plant Hourly Gas Usage

	device3

	CG-1 Water Flow H-1

	CG-1 Water Flow H-1

A sample Obix History Agent configuration can be found in the VOLTTRON repository in
services/core/ObixHistoryPublish/registry_config.csv

Automatic Obix Configuration File Creation

A script that will automatically create both a device and register configuration file for a site is located in the
repository at scripts/obix/get_obix_history_config.py.

The utility is invoked with the command:

python get_obix_history_config.py <url> <registry_file> <driver_file> -u <username> -p <password> -d <device name>

If either the registry_file or driver_file is omitted the script will output those files to stdout.

If either the username or password options are left out the script will ask for them on the command line before
proceeding.

The device name option specifies a default device for every point in the configuration.

The registry file produced by this script assumes that the Volttron Point Name and the Obix Name have the same
value. Also, it is assumed that all points should be read only. Users are expected to fix this as appropriate.

OpenADR 2.0b VEN Agent

OpenADR (Automated Demand Response) is a standard for alerting and responding to the need to adjust electric power
consumption in response to fluctuations in grid demand.

OpenADR communications are conducted between Virtual Top Nodes (VTNs) and Virtual End Nodes (VENs). In this
implementation a VOLTTRON agent, the VEN agent, acts as a VEN, communicating with its VTN by means of EIEvent and
EIReport services in conformance with a subset of the OpenADR 2.0b specification. This document’s
VOLTTRON Interface section defines how the VEN agent relays information to,
and receives data from, other VOLTTRON agents.

The OpenADR 2.0b specification (http://www.openadr.org/specification) is available from the OpenADR Alliance. This
implementation also generally follows the DR program characteristics of the Capacity Program described in Section 9.2
of the OpenADR Program Guide (http://www.openadr.org/assets/openadr_drprogramguide_v1.0.pdf).

DR Capacity Bidding and Events

The OpenADR Capacity Bidding program relies on a pre-committed agreement about the VEN’s load shed capacity. This
agreement is reached in a bidding process transacted outside of the OpenADR interaction, typically with a long-term
scope, perhaps a month or longer. The VTN can “call an event,” indicating that a load-shed event should occur
in conformance with this agreement. The VTN indicates the level of load shedding desired, when the event should occur,
and for how long. The VEN responds with an optIn acknowledgment. (It can also optOut, but since it has been
pre-committed, an optOut may incur penalties.)

Reporting

The VEN agent reports device status and usage telemetry to the VTN, relying on information received periodically from
other VOLTTRON agents.

General Approach

Events:

	The VEN agent maintains a persistent record of DR events.

	Event updates (including creation) trigger publication of event JSON on the VOLTTRON message bus.

	Other VOLTTRON agents can also call a get_events() RPC to retrieve the current status of
particular events, or of all active events.

Reporting:

	The VEN agent configuration defines telemetry values (data points) that can be reported to the VTN.

	The VEN agent maintains a persistent record of telemetry values over time.

	Other VOLTTRON agents are expected to call report_telemetry() to supply the VEN agent
with a regular stream of telemetry values for reporting.

	Other VOLTTRON agents can receive notification of changes in telemetry reporting
requirements by subscribing to publication of telemetry parameters.

VEN Agent VOLTTRON Interface

The VEN agent implements the following VOLTTRON PubSub and RPC calls.

PubSub: event update

def publish_event(self, an_event):
 """
 Publish an event.

 When an event is created/updated, it is published to the VOLTTRON bus
 with a topic that includes 'openadr/event_update'.

 Event JSON structure:
 {
 "event_id" : String,
 "creation_time" : DateTime,
 "start_time" : DateTime,
 "end_time" : DateTime or None,
 "signals" : String, # Values: json string describing one or more signals.
 "status" : String, # Values: unresponded, far, near, active,
 # completed, canceled.
 "opt_type" : String # Values: optIn, optOut, none.
 }

 If an event status is 'unresponded', the VEN agent is awaiting a decision on
 whether to optIn or optOut. The downstream agent that subscribes to this PubSub
 message should communicate that choice to the VEN agent by calling respond_to_event()
 (see below). The VEN agent then relays the choice to the VTN.

 @param an_event: an EiEvent.
 """

PubSub: telemetry parameters update

def publish_telemetry_parameters_for_report(self, report):
 """
 Publish telemetry parameters.

 When the VEN agent telemetry reporting parameters have been updated (by the VTN),
 they are published with a topic that includes 'openadr/telemetry_parameters'.
 If a particular report has been updated, the reported parameters are for that report.

 Telemetry parameters JSON example:
 {
 "telemetry": {
 "baseline_power_kw": {
 "r_id": "baseline_power",
 "frequency": "30",
 "report_type": "baseline",
 "reading_type": "Mean",
 "method_name": "get_baseline_power"
 }
 "current_power_kw": {
 "r_id": "actual_power",
 "frequency": "30",
 "report_type": "reading",
 "reading_type": "Mean",
 "method_name": "get_current_power"
 }
 "manual_override": "False",
 "report_status": "active",
 "online": "False",
 }
 }

 The above example indicates that, for reporting purposes, telemetry values
 for baseline_power and actual_power should be updated -- via report_telemetry() -- at
 least once every 30 seconds.

 Telemetry value definitions such as baseline_power and actual_power come from the
 agent configuration.

 @param report: (EiReport) The report whose parameters should be published.
 """

RPC calls:

@RPC.export
def respond_to_event(self, event_id, opt_in_choice=None):
 """
 Respond to an event, opting in or opting out.

 If an event's status=unresponded, it is awaiting this call.
 When this RPC is received, the VENAgent sends an eventResponse to
 the VTN, indicating whether optIn or optOut has been chosen.
 If an event remains unresponded for a set period of time,
 it times out and automatically optsIn to the event.

 Since this call causes a change in the event's status, it triggers
 a PubSub call for the event update, as described above.

 @param event_id: (String) ID of an event.
 @param opt_in_choice: (String) 'OptIn' to opt into the event, anything else is treated as 'OptOut'.
 """

@RPC.export
def get_events(self, event_id=None, in_progress_only=True, started_after=None, end_time_before=None):
 """
 Return a list of events as a JSON string.

 Sample request:
 self.get_events(started_after=utils.get_aware_utc_now() - timedelta(hours=1),
 end_time_before=utils.get_aware_utc_now())

 Return a list of events.

 By default, return only event requests with status=active or status=unresponded.

 If an event's status=active, a DR event is currently in progress.

 @param event_id: (String) Default None.
 @param in_progress_only: (Boolean) Default True.
 @param started_after: (DateTime) Default None.
 @param end_time_before: (DateTime) Default None.
 @return: (JSON) A list of events -- see 'PubSub: event update'.
 """

@RPC.export
def get_telemetry_parameters(self):
 """
 Return the VEN agent's current set of telemetry parameters.

 @return: (JSON) Current telemetry parameters -- see 'PubSub: telemetry parameters update'.
 """

@RPC.export
def set_telemetry_status(self, online, manual_override):
 """
 Update the VEN agent's reporting status.

 Set these properties to either 'TRUE' or 'FALSE'.

 @param online: (Boolean) Whether the VEN agent's resource is online.
 @param manual_override: (Boolean) Whether resource control has been overridden.
 """

@RPC.export
def report_telemetry(self, telemetry):
 """
 Receive an update of the VENAgent's report metrics, and store them in the agent's database.

 Examples of telemetry are:
 {
 'baseline_power_kw': '15.2',
 'current_power_kw': '371.1',
 'start_time': '2017-11-21T23:41:46.051405',
 'end_time': '2017-11-21T23:42:45.951405'
 }

 @param telemetry_values: (JSON) Current value of each report metric, with reporting-interval start/end.
 """

PubSub: Event Update

When an event is created/updated, the event is published with a topic that includes openadr/event/{ven_id}.

Event JSON structure:

{
 "event_id" : String,
 "creation_time" : DateTime - UTC,
 "start_time" : DateTime - UTC,
 "end_time" : DateTime - UTC,
 "priority" : Integer, # Values: 0, 1, 2, 3. Usually expected to be 1.
 "signals" : String, # Values: json string describing one or more signals.
 "status" : String, # Values: unresponded, far, near, active, completed, canceled.
 "opt_type" : String # Values: optIn, optOut, none.
}

If an event status is ‘unresponded’, the VEN is awaiting a decision on whether to optIn or optOut. The downstream
agent that subscribes to this PubSub message should communicate that choice to the VEN by calling respond_to_event()
(see below). The VEN then relays the choice to the VTN.

PubSub: Telemetry Parameters Update

When the VEN telemetry reporting parameters have been updated (by the VTN), they are published with a topic that
includes openadr/status/{ven_id}.

These parameters include state information about the current report.

Telemetry parameters structure:

{
 'telemetry': '{
 "baseline_power_kw": {
 "r_id" : "baseline_power", # ID of the reporting metric
 "report_type" : "baseline", # Type of reporting metric, e.g. baseline or reading
 "reading_type" : "Direct Read", # (per OpenADR telemetry_usage report requirements)
 "units" : "powerReal", # (per OpenADR telemetry_usage reoprt requirements)
 "method_name" : "get_baseline_power", # Name of the VEN agent method that gets the metric
 "min_frequency" : (Integer), # Data capture frequency in seconds (minimum)
 "max_frequency" : (Integer) # Data capture frequency in seconds (maximum)
 },
 "current_power_kw": {
 "r_id" : "actual_power", # ID of the reporting metric
 "report_type" : "reading", # Type of reporting metric, e.g. baseline or reading
 "reading_type" : "Direct Read", # (per OpenADR telemetry_usage report requirements)
 "units" : "powerReal", # (per OpenADR telemetry_usage report requirements)
 "method_name" : "get_current_power", # Name of the VEN agent method that gets the metric
 "min_frequency" : (Integer), # Data capture frequency in seconds (minimum)
 "max_frequency" : (Integer) # Data capture frequency in seconds (maximum)
 }
 }'
 'report parameters': '{
 "status" : (String), # active, inactive, completed, or cancelled
 "report_specifier_id" : "telemetry", # ID of the report definition
 "report_request_id" : (String), # ID of the report request; supplied by the VTN
 "request_id" : (String), # Request ID of the most recent VTN report modification
 "interval_secs" : (Integer), # How often a report update is sent to the VTN
 "granularity_secs" : (Integer), # How often a report update is sent to the VTN
 "start_time" : (DateTime - UTC), # When the report started
 "end_time" : (DateTime - UTC), # When the report is scheduled to end
 "last_report" : (DateTime - UTC), # When a report update was last sent
 "created_on" : (DateTime - UTC) # When this set of information was recorded in the VEN db
 }',
 'manual_override' : (Boolean) # VEN manual override status, as supplied by Control Agent
 'online' : (Boolean) # VEN online status, as supplied by Control Agent
}

Telemetry value definitions such as baseline_power_kw and current_power_kw come from the VEN agent config.

OpenADR VEN Agent: Installation and Configuration

The VEN agent can be configured, built and launched using the VOLTTRON agent installation process described in
http://volttron.readthedocs.io/en/develop/devguides/agent_development/Agent-Development.html#agent-development.

The VEN agent depends on some third-party libraries that are not in the standard VOLTTRON installation. They should be
installed in the VOLTTRON virtual environment prior to building the agent:

(volttron) $ cd $VOLTTRON_ROOT/services/core/OpenADRVenAgent
(volttron) $ pip install -r requirements.txt

where $VOLTTRON_ROOT is the base directory of the cloned VOLTTRON code repository.

The VEN agent is designed to work in tandem with a “control agent,” another VOLTTRON agent that uses VOLTTRON RPC calls
to manage events and supply report data. A sample control agent has been provided in the test/ControlAgentSim
subdirectory under OpenADRVenAgent.

The VEN agent maintains a persistent store of event and report data in $VOLTTRON_HOME/data/openadr.sqlite. Some
care should be taken in managing the disk consumption of this data store. If no events or reports are active, it is
safe to take down the VEN agent and delete the file; the persistent store will be reinitialized automatically on agent
startup.

Configuration Parameters

The VEN agent’s configuration file contains JSON that includes several parameters for configuring VTN server
communications and other behavior. A sample configuration file, openadrven.config, has been provided in the agent
directory.

The VEN agent supports the following configuration parameters:

	Parameter

	Example

	Description

	db_path

	“$VOLTTRON_HOME/data/
openadr.sqlite”

	Pathname of the agent’s sqlite database. Shell
variables will be expanded if they are present
in the pathname.

	ven_id

	“0”

	The OpenADR ID of this virtual end node. Identifies
this VEN to the VTN. If automated VEN registration
is used, the ID is assigned by the VTN at that
time. If the VEN is registered manually with the
VTN (i.e., via configuration file settings), then
a common VEN ID should be entered in this config
file and in the VTN’s site definition.

	ven_name

	“ven01”

	Name of this virtual end node. This name is used
during automated registration only, identiying
the VEN before its VEN ID is known.

	vtn_id

	“vtn01”

	OpenADR ID of the VTN with which this VEN
communicates.

	vtn_address

	“http://openadr-vtn.
ki-evi.com:8000”

	URL and port number of the VTN.

	send_registration

	“False”

	(“True” or ”False”) If “True”, the VEN sends
a one-time automated registration request to
the VTN to obtain the VEN ID. If automated
registration will be used, the VEN should be run
in this mode initially, then shut down and run
with this parameter set to “False” thereafter.

	security_level

	“standard”

	If ‘high’, the VTN and VEN use a third-party
signing authority to sign and authenticate each
request. The default setting is “standard”: the
XML payloads do not contain Signature elements.

	poll_interval_secs

	30

	(integer) How often the VEN should send an OadrPoll
request to the VTN. The poll interval cannot be
more frequent than the VEN’s 5-second process
loop frequency.

	log_xml

	“False”

	(“True” or “False”) Whether to write each
inbound/outbound request’s XML data to the
agent’s log.

	opt_in_timeout_secs

	1800

	(integer) How long to wait before making a
default optIn/optOut decision.

	opt_in_default_decision

	“optOut”

	(“True” or “False”) Which optIn/optOut choice
to make by default.

	request_events_on_startup

	“False”

	(“True” or “False”) Whether to ask the VTN for a
list of current events during VEN startup.

	report_parameters

	(see below)

	A dictionary of definitions of reporting/telemetry
parameters.

Reporting Configuration

The VEN’s reporting configuration, specified as a dictionary in the agent configuration, defines each telemetry element
(metric) that the VEN can report to the VTN, if requested. By default, it defines reports named “telemetry” and
“telemetry_status”, with a report configuration dictionary containing the following parameters:

	“telemetry” report: parameters

	Example

	Description

	report_name

	“TELEMETRY_USAGE”

	Friendly name of the report.

	report_name_metadata

	“METADATA_TELEMETRY_USAGE”

	Friendly name of the report’s metadata, when sent
by the VEN’s oadrRegisterReport request.

	report_specifier_id

	“telemetry”

	Uniquely identifies the report’s data set.

	report_interval_secs_default

	“300”

	How often to send a reporting update to the VTN.

	telemetry_parameters (baseline_power_kw): r_id

	“baseline_power”

	(baseline_power) Unique ID of the metric.

	telemetry_parameters (baseline_power_kw): report_type

	“baseline”

	(baseline_power) The type of metric being reported.

	telemetry_parameters (baseline_power_kw): reading_type

	“Direct Read”

	(baseline_power) How the metric was calculated.

	telemetry_parameters (baseline_power_kw): units

	“powerReal”

	(baseline_power) The reading’s data type.

	telemetry_parameters (baseline_power_kw): method_name

	“get_baseline_power”

	(baseline_power) The VEN method to use when
extracting the data for reporting.

	telemetry_parameters (baseline_power_kw): min_frequency

	30

	(baseline_power) The metric’s minimum sampling
frequency.

	telemetry_parameters (baseline_power_kw): max_frequency

	60

	(baseline_power) The metric’s maximum sampling
frequency.

	telemetry_parameters (current_power_kw): r_id

	“actual_power”

	(current_power) Unique ID of the metric.

	telemetry_parameters (current_power_kw): report_type

	“reading”

	(current_power) The type of metric being reported.

	telemetry_parameters (current_power_kw): reading_type

	“Direct Read”

	(current_power) How the metric was calculated.

	telemetry_parameters (current_power_kw): units

	“powerReal”

	(baseline_power) The reading’s data type.

	telemetry_parameters (current_power_kw): method_name

	“get_current_power”

	(current_power) The VEN method to use when
extracting the data for reporting.

	telemetry_parameters (current_power_kw): min_frequency

	30

	(current_power) The metric’s minimum sampling
frequency.

	telemetry_parameters (current_power_kw): max_frequency

	60

	(current_power) The metric’s maximum sampling
frequency.

	“telemetry_status” report: parameters

	Example

	Description

	report_name

	“TELEMETRY_STATUS”

	Friendly name of the report.

	report_name_metadata

	“METADATA_TELEMETRY_STATUS”

	Friendly name of the report’s metadata, when sent
by the VEN’s oadrRegisterReport request.

	report_specifier_id

	“telemetry_status”

	Uniquely identifies the report’s data set.

	report_interval_secs_default

	“300”

	How often to send a reporting update to the VTN.

	telemetry_parameters (Status): r_id

	“Status”

	Unique ID of the metric.

	telemetry_parameters (Status): report_type

	“x-resourceStatus”

	The type of metric being reported.

	telemetry_parameters (Status): reading_type

	“x-notApplicable”

	How the metric was calculated.

	telemetry_parameters (Status): units

	“”

	The reading’s data type.

	telemetry_parameters (Status): method_name

	“”

	The VEN method to use when extracting the data
for reporting.

	telemetry_parameters (Status): min_frequency

	60

	The metric’s minimum sampling frequency.

	telemetry_parameters (Status): max_frequency

	120

	The metric’s maximum sampling frequency.

VOLTTRON Central Management Agent

Agent Introduction

The VOLTTRON Central Agent (VCM) is responsible for controlling multiple VOLTTRON instances through a single interfaces.
The VOLTTRON instances can be either local or remote. VCM leverages an internal VOLTTRON web server providing a
interface to our JSON-RPC based web API. Both the web api and the interface are served through the VCM agent.
There is a VOLTTRON Central Demo that will allow you to quickly setup
and see the current offerings of the interface. VOLTTRON Central will allow you to:

	See a list of platforms being managed.

	Add and remove platforms.

	Install, start and stop agents to the registered platforms.

	Create dynamic graphs from the historians based upon points.

	Execute functions on remote platforms.

Note

see VCM JSON-RPC web API for how the web interface works.

Instance Configuration

In order for any web agent to be enabled, there must be a port configured to serve the content. The easiest way to do
this is to create a config file in the root of your VOLTTRON_HOME directory (to do this automatically see
VOLTTRON Config.)

The following is an example of the configuration file

[volttron]
vip-addres=tcp://127.0.0.1:22916
bind-web-address=http://127.0.0.1:8080/vc/

Verify that the instance is serving properly by pointing your web browser to http://127.0.0.1:8080/discovery/

This is the required information for a VolttronCentralPlatform to be able to be managed.

VOLTTRON Central Manager Configuration

The following is the default configuration file for VOLTTRON Central:

{
 # The agentid is used during display on the VOLTTRON central platform
 # it does not need to be unique.
 "agentid": "volttron central",

 # Authentication for users is handled through a naive password algorithm
 # Note in the following example the user and password are both admin.

 # DO NOT USE IN PRODUCTION ENVIRONMENT!

 # import hashlib
 # hashlib.sha512(password).hexdigest() where password is the plain text password.
 "users" : {
 "reader" : {
 "password" : "2d7349c51a3914cd6f5dc28e23c417ace074400d7c3e176bcf5da72fdbeb6ce7ed767ca00c6c1fb754b8df5114fc0b903960e7f3befe3a338d4a640c05dfaf2d",
 "groups" : [
 "reader"
]
 },
 "writer" : {
 "password" : "f7c31a682a838bbe0957cfa0bb060daff83c488fa5646eb541d334f241418af3611ff621b5a1b0d327f1ee80da25e04099376d3bc533a72d2280964b4fab2a32",
 "groups" : [
 "writer"
]
 },
 "admin" : {
 "password" : "c7ad44cbad762a5da0a452f9e854fdc1e0e7a52a38015f23f3eab1d80b931dd472634dfac71cd34ebc35d16ab7fb8a90c81f975113d6c7538dc69dd8de9077ec",
 "groups" : [
 "admin"
]
 },
 "dorothy" : {
 "password" : "cf1b67402d648f51ef6ff8805736d588ca07cbf018a5fba404d28532d839a1c046bfcd31558dff658678b3112502f4da9494f7a655c3bdc0e4b0db3a5577b298",
 "groups" : [
 "reader, writer"
]
 }
 }
}

Agent Execution

To start VOLTTRON Central first make sure the VOLTTRON instance is running. Next
create/choose the config file to use. Finally from an activated shell in the root of the VOLTTRON repository execute:

Arguments are package to execute, config file to use, tag to use as reference
./scripts/core/pack_install.sh services/core/VolttronCentral services/core/VolttronCentral/config vc

Start the agent
vctl start --tag vc

	Device Configuration in VOLTTRON Central
	Launching Device Configuration

	Scanning for Devices

	Scanning for Points
	Registry Configuration File

	Additional Attributes

	Quick Edit Features

	Keyboard Commands

	Registry Preview

	Registry Configuration Options

	Reloading Device Points
	Device Configuration Form

	Configuring Sub-devices
	Reconfiguring Devices

	Exporting Registry Configuration Files

	VOLTTRON Central Platform Agent
	Configuration

	VOLTTRON Central Web Services Api Documentation
	Why JSON-RPC

	How the API is Implemented
	JSON-RPC Request Payload

	JSON-RPC Response Payload

	JSON-RPC Data Objects

	JSON-RPC API Methods

	Messages

Device Configuration in VOLTTRON Central

Devices in your network can be detected and configured through the VOLTTRON Central UI. The current version of VOLTTRON
enables device detection and configuration for BACnet devices. The following sections describe the processes involved
with performing scans to detect physical devices and get their points, and configuring them as virtual devices installed
on VOLTTRON instances.

	Launching Device Configuration

	Scanning for Devices

	Scanning for Points

	Registry Configuration File

	Additional Attributes

	Quick Edit Features

	Keyboard Commands

	Registry Preview

	Registry Configuration Options

	Reloading Device Points

	Device Configuration Form

	Configuring Sub-devices

	Reconfiguring Devices

	Exporting Registry Configuration Files

Launching Device Configuration

To begin device configuration in VOLTTRON Central, extend the side panel on the left and find the cogs button next to
the platform instance you want to add a device to. Click the cogs button to launch the device configuration feature.

[image: Add Devices]

[image: Install Devices]

Currently the only method of adding devices is to conduct a scan to detect BACnet devices. A BACnet Proxy Agent must be
running in order to do the scan. If more than one BACnet Proxy is installed on the platform, choose the one that will
be used for the scan.

The scan can be conducted using default settings that will search for all physical devices on the network. However,
optional settings can be used to focus on specific devices or change the duration of the scan. Entering a range of
device IDs will limit the scan to return only devices with IDs in that range. Advanced options include the ability to
specify the IP address of a device to detect as well as the ability to change the duration of the scan from the default
of five seconds.

Scanning for Devices

To start the scan, click the large cog button to the right of the scan settings.

[image: Start Scan]

Devices that are detected will appear in the space below the scan settings. Scanning can be repeated at any time by
clicking the large cog button again.

[image: Devices Found]

Scanning for Points

Another scan can be performed on each physical device to retrieve its available points. This scan is initiated by
clicking the triangle next to the device in the list. The first time the arrow is clicked, it initiates the scan.
After the points are retrieved, the arrow becomes a hide-and-show toggle button and won’t re-initiate scanning the
device.

[image: Get Device Points]

After the points have been retrieved once, the only way to scan the same device for points again is to relaunch the
device configuration process from the start by clicking on the small cogs button next to the platform instance in the
panel tree.

Registry Configuration File

The registry configuration determines which points on the physical device will be associated with the virtual device
that uses that particular registry configuration. The registry configuration determines which points’ data will be
published to the message bus and recorded by the historian, and it determines how the data will be presented.

When all the points on the device have been retrieved, the points are loaded into the registry configuration editor.
There, the points can be modified and selected to go into the registry configuration file for a device.

Each row in the registry configuration editor represents a point, and each cell in the row represents an attribute of
the point.

Only points that have been selected will be included in the registry configuration file. To select a point, check the
box next to the point in the editor.

[image: Select Point Before]

[image: Select Point During]

[image: Select Point After]

Type directly in a cell to change an attribute value for a point.

[image: Edit Points]

Additional Attributes

The editor’s default view shows the attributes that are most likely to be changed during configuration: the VOLTTRON
point name, the writable setting, and the units. Other attributes are present but not shown in the default view. To
see the entire set of attributes for a point, click the Edit Point button (the three dots) at the end of the point
row.

[image: Edit Point Button]

In the window that opens, point attributes can be changed by typing in the fields and clicking the Apply button.

[image: Edit Point Dialog]

Checking or unchecking the Show in Table box for an attribute will add or remove it as a column in the registry
configuration editor.

Quick Edit Features

Several quick-edit features are available in the registry configuration editor.

The list of points can be filtered based on values in the first column by clicking the filter button in the first
column’s header and entering a filter term.

[image: Filter Points Button]

[image: Filter Set]

The filter feature allows points to be edited, selected, or deselected more quickly by narrowing down potentially large
lists of points. However, the filter doesn’t select points, and if the registry configuration is saved while a filter
is applied, any selected points not included in the filter will still be included in the registry file.

To clear the filter, click on the Clear Filter button in the filter popup.

[image: Clear Filter]

To add a new point to the points listed in the registry configuration editor, click on the Add Point button in the
header of the first column.

[image: Add New Point]

[image: Add Point Dialog]

Provide attribute values, and click the Apply button to add the new point, which will be appended to the bottom of the
list.

To remove points from the list, select the points and click the Remove Points button in the header of the first
column.

[image: Remove Points]

[image: Confirm Remove Points]

Each column has an Edit Column button in its header.

[image: Edit Columns]

Click on the button to display a popup menu of operations to perform on the column. The options include inserting a
blank new column, duplicating an existing column, removing a column, or searching for a value within a column.

[image: Edit Column Menu]

A duplicate or new column has to be given a unique name.

[image: Name Column]

[image: Duplicated Column]

To search for values in a column, choose the Find and Replace option in the popup menu.

[image: Find in Column]

Type the term to search for, and click the Find Next button to highlight all the matched fields in the column.

[image: Find Next]

Click the Find Next button again to advance the focus down the list of matched terms.

To quickly replace the matched term in the cell with focus, type a replacement term, and click on the Replace button.

[image: Replace in Column]

To replace all the matched terms in the column, click on the Replace All button. Click the Clear Search button to
end the search.

Keyboard Commands

Some keyboard commands are available to expedite the selection or de-selection of points. To initiate use of the
keyboard commands, strike the Control key on the keyboard. For keyboard commands to be activated, the registry
configuration editor has to have focus, which comes from interacting with it. But the commands won’t be activated if
the cursor is in a type-able field.

If the keyboard commands have been successfully activated, a faint highlight will appear over the first row in the
registry configuration editor.

[image: Start Keyboard Commands]

Keyboard commands are deactivated when the mouse cursor moves over the configuration editor. If unintentional
deactivation occurs, strike the Control key again to reactivate the commands.

With keyboard commands activated, the highlighted row can be advanced up or down by striking the up or down arrow on
the keyboard. A group of rows can be highlighted by striking the up or down arrow while holding down the Shift key.

[image: Keyboard Highlight]

To select the highlighted rows, strike the Enter key.

[image: Keyboard Select]

Striking the Enter key with rows highlighted will also deselect any rows that were already selected.

Click on the Keyboard Shortcuts button to show a popup list of the available keyboard commands.

[image: Keyboard Shortcuts Button]

[image: Keyboard Shortcuts]

Registry Preview

To save the registry configuration, click the Save button at the bottom of the registry configuration editor.

[image: Save Registry Button]

A preview will appear to let you confirm that the configuration is what you intended.

[image: Registry Preview Table]

The configuration also can be inspected in the comma-separated format of the actual registry configuration file.

[image: Registry Preview CSV]

Provide a name for the registry configuration file, and click the Save button to save the file.

[image: Name Registry File]

[image: Registry Saved]

Registry Configuration Options

Different subsets of configured points can be saved from the same physical device and used to create separate registry
files for multiple virtual devices and sub-devices. Likewise, a single registry file can be reused by multiple virtual
devices and sub-devices.

To reuse a previously saved registry file, click on the Select Registry File (CSV) button at the end of the physical
device’s listing.

[image: Select Saved Registry File]

The Previously Configured Registry Files window will appear, and a file can be selected to load it into the registry
configuration editor.

[image: Saved Registry Selector]

Another option is to import a registry configuration file from the computer running the VOLTTRON Central web
application, if one has been saved to local storage connected to the computer. To import a registry configuration file
from local storage, click on the Import Registry File (CSV) button at the end of the physical device’s listing, and
use the file selector window to locate and load the file.

[image: File Import Button]

Reloading Device Points

Once a physical device has been scanned, the original points from the scan can be reloaded at any point during device
configuration by clicking on the Reload Points From Device button at the end of the device’s listing.

[image: Reload Points]

Device Configuration Form

After the registry configuration file has been saved, the device configuration form appears. Creating the device
configuration results in the virtual device being installed in the platform and determines the device’s position in the
side panel tree. It also contains some settings that determine how data is collected from the device.

[image: Configure Device Dialog]

After the device configuration settings have been entered, click the Save button to save the configuration and add the
device to the platform.

[image: Save Device Config]

[image: Device Added]

Configuring Sub-devices

After a device has been configured, sub-devices can be configured by pointing to their position in the Path
attribute of the device configuration form. But a sub-device can’t be configured until its parent device has been
configured first.

[image: Sub-device Path]

[image: Sub-device 2]

As devices are configured, they’re inserted into position in the side panel tree, along with their configured points.

[image: Device Added to Tree]

Reconfiguring Devices

A device that’s been added to a VOLTTRON instance can be reconfigured by changing its registry configuration or its
device configuration. To launch reconfiguration, click on the wrench button next to the device in the side panel tree.

[image: Reconfigure Device Button]

Reconfiguration reloads the registry configuration editor and the device configuration form for the virtual device. The
editor and the form work the same way in reconfiguration as during initial device configuration.

[image: Reconfiguring Device]

The reconfiguration view shows the name, address, and ID of the physical device that the virtual device was configured
from. It also shows the name of the registry configuration file associated with the virtual device as well as its
configured path.

A different registry configuration file can be associated with the device by clicking on the Select Registry File
(CSV) button or the Import Registry File (CSV) button.

The registry configuration can be edited by making changes to the configuration in the editor and clicking the Save
button.

To make changes to the device configuration form, click on the File to Edit selector and choose Device Config.

[image: Reconfigure Option Selector]

[image: Reconfigure Device Config]

Exporting Registry Configuration Files

The registry configuration file associated with a virtual device can be exported from the web browser to the computer’s
local storage by clicking on the File Export Button in the device reconfiguration view.

[image: File Export Button]

VOLTTRON Central Platform Agent

The Platform Agent allows communication from a VOLTTRON Central instance. Each VOLTTRON instance that is to be
controlled through the VOLTTRON Central agent should have one and only one Platform Agent. The Platform Agent must have
the VIP identity of platform.agent which is specified by default by VOLTTRON
known identities.

Configuration

The minimal configuration (and most likely the only used) for a Platform Agent is as follows:

{
 # Agent id is used in the display on volttron central.
 "agentid": "Platform 1",
}

VOLTTRON Central Web Services Api Documentation

VOLTTRON Central (VC) is meant to be the hub of communication within a cluster of VOLTTRON instances. VC exposes a
JSON-RPC 2.0 [http://www.jsonrpc.org/specification] based API that allows a user to control multiple instances of
VOLTTRON.

Why JSON-RPC

SOAP messaging is unfriendly to many developers, especially those wanting to make calls in a browser from AJAX
environment. We have therefore have implemented a JSON-RPC API capability to VC, as a more JSON/JavaScript friendly
mechanism.

How the API is Implemented

	All calls are made through a POST to /vc/jsonrpc

	All calls (not including the call to authenticate) will include an authorization token (a json-rpc extension).

JSON-RPC Request Payload

All posted JSON payloads will look like the following block:

{
 "jsonrpc": "2.0",
 "method": "method_to_invoke",
 "params": {
 "param1name": "param1value",
 "param2name": "param2value"
 },
 "id": "unique_message_id",
 "authorization": "server_authorization_token"
}

As an alternative, the params can be an array as illustrated by the following:

{
 "jsonrpc": "2.0",
 "method": "method_to_invoke",
 "params": [
 "param1value",
 "param2value"
],
 "id": "unique_message_id",
 "authorization": "server_authorization_token"
}

For full documentation of the Request object please see section 4 of the
JSON-RPC 2.0 [http://www.jsonrpc.org/specification] specification.

JSON-RPC Response Payload

All responses shall have either an either an error response or a result response. The result key shown below can be a
single instance of a JSON type, an array or a JSON object.

A result response will have the following format:

{
 "jsonrpc": "2.0",
 "result": "method_results",
 "id": "sent_in_unique_message_id"
}

An error response will have the following format:

{
 "jsonrpc": "2.0",
 "error": {
 "code": "standard_code_or_extended_code",
 "message": "error message"
 }
 "id": "sent_in_unique_message_id_or_null"
}

For full documentation of the Response object please see section 5 of the
JSON-RPC 2.0 [http://www.jsonrpc.org/specification] specification.

JSON-RPC Data Objects

Platform

	Key

	Type

	Value

	uuid

	string

	A unique identifier for the platform.

	name

	string

	A user defined string for the platform.

	status

	Status

	A status object for the platform.

PlatformDetails

	Key

	Type

	Value

	uuid

	string

	A unique identifier for the platform.

	name

	string

	A user defined string for the platform.

	status

	Status

	A status object for the platform.

Agent

	Key

	Type

	Value

	uuid

	string

	A unique identifier for the agent.

	name

	string

	Defaults to the agentid of the installed agent

	tag

	string

	A shortcut that can be used for referencing the agent

	priority

	int

	If this is set the agent will autostart on the instance.

	process_id

	int

	The process id or null if not running.

	status

	string

	A status string made by the status rpc call, on an agent.

DiscoveryRegistryEntry

	Key

	Type

	Value

	name

	
	

	discovery_address

	
	

AdvancedRegistratyEntry_TODO

	Key

	Type

	Value

	name

	
	

	vip_address

	
	

Agent_TODO

	Key

	Type

	Value

	uuid

	string

	A unique identifier for the platform.

	name

	string

	A user defined string for the platform.

	status

	Status

	A status object for the platform.

Building_TODO

	Key

	Type

	Value

	uuid

	string

	A unique identifier for the platform.

	name

	string

	A user defined string for the platform.

	status

	Status

	A status object for the platform.

Device_TODO

	Key

	Type

	Value

	uuid

	string

	A unique identifier for the platform.

	name

	string

	A user defined string for the platform.

	status

	Status

	A status object for the platform.

Status

	Key

	Type

	Value

	status

	string

	A value of GOOD, BAD, UNKNOWN, SUCCESS, FAIL

	context

	string

	Provides context about what the status means (optional)

JSON-RPC API Methods

Methods

	method

	parameters

	returns

	get_authentication

	(username, password)

	authentication token

Messages

	Retrieve Authorization Token

	# POST /vc/jsonrpc
{
 "jsonrpc": "2.0",
 "method": "get_authorization",
 "params": {
 "username": "dorothy",
 "password": "toto123"
 },
 "id": "someID"
}

	Response Success

	# 200 OK
{
 "jsonrpc": "2.0",
 "result": "somAuthorizationToken",
 "id": "someID"
}

Failure

HTTP Status Code 401

	Register a VOLTTRON Platform Instance (Using Discovery)

	# POST /vc/jsonrpc
{
 "jsonrpc": "2.0",
 "method": "register_instance",
 "params": {
 "discovery_address": "http://127.0.0.2:8080",
 "display_name": "foo" # Optional
 }
 "authorization": "someAuthorizationToken",
 "id": "someID"
}

	Success

	# 200 OK
{
 "jsonrpc": "2.0",
 "result": {
 "status": {
 "code": "SUCCESS"
 "context": "Registered instance foo" # or the uri if not specified.
 }
 },
 "id": "someID"
}

	TODO: Request Registration of an External Platform

	# POST /vc/jsonrpc
{
 "jsonrpc": "2.0",
 "method": "register_platform",
 "params": {
 "uri": "127.0.0.2:8080?serverkey=...&publickey=...&secretkey=..."
 }
 "authorization": "someAuthorizationToken",
 "id": #
}

	Unregister a Volttron Platform Instance

	# POST /vc/jsonrpc
{
 "jsonrpc": "2.0",
 "method": "unregister_platform",
 "params": {
 "platform_uuid": "somePlatformUuid",
 }
 "authorization": "someAuthorizationToken",
 "id": "someID"
}

	Retrieve Managed Instances

	#POST /vc/jsonrpc
{
 "jsonrpc": "2.0",
 "method": "list_platforms",
 "authorization": "someAuthorizationToken",
 "id": #
}

	Response Success

	200 OK
{
 "jsonrpc": "2.0",
 "result": [
 {
 "name": "platform1",
 "uuid": "abcd1234-ef56-ab78-cd90-efabcd123456",
 "health": {
 "status": "GOOD",
 "context": null,
 "last_updated": "2016-04-27T19:47:05.184997+00:00"
 }
 },
 {
 "name": "platform2",
 "uuid": "0987fedc-65ba-43fe-21dc-098765bafedc",
 "health": {
 "status": "BAD",
 "context": "Expected 9 agents running, but only 5 are",
 "last_updated": "2016-04-27T19:47:05.184997+00:00",
 }

 },
 {
 "name": "platform3",
 "uuid": "0000aaaa-1111-bbbb-2222-cccc3333dddd",
 "health": {
 "status": "GOOD",
 "context": "Currently scraping 20 devices",
 "last_updated": "2016-04-27T19:47:05.184997+00:00",
 }
 }
],
 "id": #
}

	TODO: change response Retrieve Installed Agents From platform1

	# POST /vc/jsonrpc
{
 "jsonrpc": "2.0",
 "method": "platforms.uuid.abcd1234-ef56-ab78-cd90-efabcd123456.list_agents",
 "authorization": "someAuthorizationToken",
 "id": #
}

	Response Success

	200 OK
{
 "jsonrpc": "2.0",
 "result": [
 {
 "name": "HelloAgent",
 "identity": "helloagent-0.0_1",
 "uuid": "a1b2c3d4-e5f6-a7b8-c9d0-e1f2a3b4c5d6",
 "process_id": 3142,
 "error_code": null,
 "is_running": true,
 "permissions": {
 "can_start": true,
 "can_stop": true,
 "can_restart": true,
 "can_remove": true
 }
 "health": {
 "status": "GOOD",
 "context": null
 }
 },
 {
 "name": "Historian",
 "identity": "sqlhistorianagent-3.5.0_1",
 "uuid": "a1b2c3d4-e5f6-a7b8-c9d0-e1f2a3b4c5d6",
 "process_id": 3143,
 "error_code": null,
 "is_running": true,
 "permissions": {
 "can_start": true,
 "can_stop": true,
 "can_restart": true,
 "can_remove": true
 }

 "health": {
 "status": "BAD",
 "context": "No publish in last 5 minutes"
 }
 },
 {
 "name": "VolltronCentralPlatform",
 "identity": "platform.agent",
 "uuid": "a1b2c3d4-e5f6-a7b8-c9d0-e1f2a3b4c5d6",
 "process_id": 3144,
 "error_code": null,
 "is_running": true,
 "permissions": {
 "can_start": false,
 "can_stop": false,
 "can_restart": true,
 "can_remove": false
 }
 "health": {
 "status": "BAD",
 "context": "One agent has reported bad status"
 }
 },
 {
 "name": "StoppedAgent-0.1",
 "identity": "stoppedagent-0.1_1",
 "uuid": "a1b2c3d4-e5f6-a7b8-c9d0-e1f2a3b4c5d6",
 "process_id": null,
 "error_code": 0,
 "is_running": false,s
 "health": {
 "status": "UNKNOWN",
 "context": "Error code -15"
 }
 "permissions": {
 "can_start": true,
 "can_stop": false,
 "can_restart": true,
 "can_remove": true
 }
 }
],
 "id": #
}

	TODO: Start An Agent

	# POST /vc/jsonrpc
{
 "jsonrpc": "2.0",
 "method": "platforms.uuid.0987fedc-65ba-43fe-21dc-098765bafedc.start_agent",
 "params": ["a1b2c3d4-e5f6-a7b8-c9d0-e1f2a3b4c5d6"],
 "authorization": "someAuthorizationToken",
 "id": #
}

	Response Success

	200 OK
{
 "jsonrpc": "2.0",
 "result": {
 "process_id": 1000,
 "return_code": null
 },
 "id": #
}

	TODO: Stop An Agent

	# POST /vc/jsonrpc
{
 "jsonrpc": "2.0",
 "method": "platforms.uuid.0987fedc-65ba-43fe-21dc-098765bafedc.stop_agent",
 "params": ["a1b2c3d4-e5f6-a7b8-c9d0-e1f2a3b4c5d6"],
 "authorization": "someAuthorizationToken",
 "id": #
}

	Response Success

	200 OK
{
 "jsonrpc": "2.0",
 "result": {
 "process_id": 1000,
 "return_code": 0
 },
 "id": #
}

	TODO: Remove An Agent

	# POST /vc/jsonrpc
{
 "jsonrpc": "2.0",
 "method": "platforms.uuid.0987fedc-65ba-43fe-21dc-098765bafedc.remove_agent",
 "params": ["a1b2c3d4-e5f6-a7b8-c9d0-e1f2a3b4c5d6"],
 "authorization": "someAuthorizationToken",
 "id": #
}

	Response Success

	200 OK
{
 "jsonrpc": "2.0",
 "result": {
 "process_id": 1000,
 "return_code": 0
 },
 "id": #
}

	TODO: Retrieve Running Agents

	# POST /vc/jsonrpc
{
 "jsonrpc": "2.0",
 "method": "platforms.uuid.0987fedc-65ba-43fe-21dc-098765bafedc.status_agents",
 "authorization": "someAuthorizationToken",
 "id": #
}

	Response Success

	200 OK
{
 "jsonrpc": "2.0",
 "result": [
 {
 "name": "RunningAgent",
 "uuid": "a1b2c3d4-e5f6-a7b8-c9d0-e1f2a3b4c5d6"
 "process_id": 1234,
 "return_code": null
 },
 {
 "name": "StoppedAgent",
 "uuid": "a1b2c3d4-e5f6-a7b8-c9d0-e1f2a3b4c5d6"
 "process_id": 1000,
 "return_code": 0
 }
],
 "id": #
}

	TODO: currently getting 500 error Retrieve An Agent’s RPC Methods

	
POST /vc/jsonrpc
{
 "jsonrpc": "2.0",
 "method": "platforms.uuid.0987fedc-65ba-43fe-21dc-098765bafedc.agents.uuid.a1b2c3d4-e5f6-a7b8-c9d0-e1f2a3b4c5d6.inspect",
 "authorization": "someAuthorizationToken",
 "id": #
}

	Response Success

	200 OK
{
 "jsonrpc": "2.0",
 "result": [
 {
 "method": "sayHello",
 "params": {
 "name": "string"
 }
 }
],
 "id": #
}

	TODO: Perform Agent Action

	# POST /vc/jsonrpc
{
 "jsonrpc": "2.0",
 "method": "platforms.uuid.0987fedc-65ba-43fe-21dc-098765bafedc.agents.uuid.a1b2c3d4-e5f6-a7b8-c9d0-e1f2a3b4c5d6.methods.say_hello",
 "params": {
 "name": "Dorothy"
 },
 "authorization": "someAuthorizationToken",
 "id": #
}

	Success Response

	200 OK
{
 "jsonrpc": "2.0",
 "result": "Hello, Dorothy!",
 "id": #
}

	TODO: Install Agent

	# POST /vc/jsonrpc
{
 "jsonrpc": "2.0",
 "method": "platforms.uuid.0987fedc-65ba-43fe-21dc-098765bafedc.install",
 "params": {
 "files": [
 {
 "file_name": "helloagent-0.1-py2-none-any.whl",
 "file": "data:application/octet-stream;base64,..."
 },
 {
 "file_name": "some-non-wheel-file.txt",
 "file": "data:application/octet-stream;base64,..."
 },
 ...
],
 }
 "authorization": "someAuthorizationToken",
 "id": #
}

	Success Response

	200 OK
{
 "jsonrpc": "2.0",
 "result": {
 [
 {
 "uuid": "a1b2c3d4-e5f6-a7b8-c9d0-e1f2a3b4c5d6"
 },
 {
 "error": "Some error message"
 },
 ...
]
 },
 "id": #
}

Operations

Operations agents assist with the operations of the platform systems and provide alerts for various platform and
environmental conditions. For details on each, please refer to the corresponding documents.

	Emailer Agent
	Configuration

	Failover Agent
	Introduction

	Standard Failover

	Simple Failover

	Configuration

	File Watch Publisher Agent
	Introduction

	Message Debugging
	Enabling the Message Debugger

	Message Viewer

	Debug Sessions

	Debug Message Exchanges

	Verbosity

	Session Statistics

	Database Administration

	Implementation Details

	System Monitoring Agent
	Configuration

	Periodic Publish

	JSON RPC Methods

	Threshold Detection Agent
	Configuration

	Topic Watcher Agent
	Requirements

	Configuration

Emailer Agent

Emailer agent is responsible for sending emails for an instance. It has been written so that any agent on the instance
can send emails through it via the “send_email” method or through the pubsub message bus using the topic
“platform/send_email”.

By default any alerts will be sent through this agent. In addition all emails will be published to the
“record/sent_email” topic for a historian to be able to capture that data.

Configuration

A typical configuration for this agent is as follows. We need to specify the SMTP server address, email address of the
sender, email addresses of all the recipients and minimum time for duplicate emails based upon the key.

{
 "smtp-address": "smtp.foo.com",
 "from-address": "billy@foo.com",
 "to-addresses": ["ann@foo.com", "bob@gmail.com"],
 "allow-frequency-minutes": 10
}

Finally package, install and start the agent. For more details, see
Agent Creation Walk-through

Failover Agent

Introduction

The failover agent provides a generic high availability option to VOLTTRON.
When the primary platform becomes inactive the secondary platform
will start an installed agent.

Standard Failover

There are two behavior patterns implemented in the agent. In the default
configuration, the secondary instance will ask Volttron Central to verify
that the primary instance is down. This helps to avoid a split brain scenario.
If neither Volttron Central nor the other failover instance is reachable
then the failover agent will stop the agent it is managing. These states are
shown in the tables below.

Primary Behavior

	
	VC Up

	VC Down

	Secondary Up

	start

	start

	Secondary Down

	start

	stop

Secondary Behavior

	
	VC Up

	VC Down

	Primary Up

	stop

	stop

	Primary Down

	Verify with VC
before starting

	stop

Simple Failover

There is also a simple configuration available that does not involve
coordination with Volttron Central. The secondary agent will start its managed
agent if believes the primary to be inactive. The simple primary always has its
managed agent started.

Configuration

Failover behavior is set in the failover agent’s configuration file. Example
primary and secondary configuration files are shown below.

{ | {
 "agent_id": "primary", | "agent_id": "secondary",
 "simple_behavior": true, | "simple_behavior": true,
 |
 "remote_vip": "tcp://127.0.0.1:8001", | "remote_vip": "tcp://127.0.0.1:8000",
 "remote_serverkey": "", | "remote_serverkey": "",
 |
 "agent_vip_identity": "platform.driver",| "agent_vip_identity": "platform.driver",
 |
 "heartbeat_period": 10, | "heartbeat_period": 10,
 |
 "timeout": 120 | "timeout": 120
} | }

	agent_id - primary or secondary

	simple_behavior - Switch to turn on or off simple behavior. Both instances should match.

	remote_vip - Address where remote_id can be reached.

	remote_serverkey - The public key of the platform where remote_id lives.

	agent_vip_identity - The vip identity of the agent that we want to manage.

	heartbeat_period - Send a message to remote_id with this period. Measured in seconds.

	timeout - Consider a platform inactive if a heartbeat has not been received for timeout seconds.

File Watch Publisher Agent

Introduction

FileWatchPublisher agent watches files for changes and publishes those changes per line on the corresponding topics.
Files and topics should be provided in the configuration.

Configuration

A simple configuration for FileWatchPublisher with two files to monitor is as follows:

{
 "files": [
 {
 "file": "/var/log/syslog",
 "topic": "platform/syslog"
 },
 {
 "file": "/home/volttron/tempfile.txt",
 "topic": "temp/filepublisher"
 }
]
}

Using this example configuration, FileWatchPublisher will watch syslog and tempFile.txt files and
publish the changes per line on their respective topics.

Message Debugging

VOLTTRON agent messages are routed over the VOLTTRON message bus. The Message Debugger Agent provides enhanced
examination of this message stream’s contents as an aid to debugging and troubleshooting agents and drivers.

This feature is implemented to provide visibility into the ZeroMQ message bus. The RabbitMQ message bus includes
methods for message debugging by default in the RabbitMQ management UI [https://www.rabbitmq.com/management.html].

When enabled, the Message Debugger Agent captures and records each message as it is routed.
A second process, Message Viewer, provides a user interface that optimizes and filters the
resulting data stream, either in real time or retrospectively, and displays its contents.

The Message Viewer can convey information about high-level interactions among VOLTTRON agents,
representing the message data as conversations that can be filtered and/or expanded.
A simple RPC call involving 4 individual message send/receive segments can be displayed as a
single row, which can then be expanded to drill down into the message details.
This results in a higher-level, easier-to-obtain view of message bus activity
than might be gleaned by using grep on verbose log files.

Pub/Sub interactions can be summarized by topic, including counts of messages published during
a given capture period by sender, receiver and topic.

Another view displays the most-recently-published message, or message exchange, that
satisfies the current filter criteria, continuously updated as new messages are routed.

Enabling the Message Debugger

In order to use the Message Debugger, two steps are required:

	VOLTTRON must have been started with a --msgdebug command line option.

	The Message Debugger Agent must be running.

When VOLTTRON has been started with --msgdebug, its Router publishes each message
to an IPC socket for which the Message Debugger Agent is a subscriber. This is kept disabled
by default because it consumes a significant quantity of CPU and memory resources, potentially
affecting VOLTTRON timing and performance. So as a general rule, the --msgdebug option
should be employed during development/debugging only, and should not be left enabled in
a production environment.

Example of starting VOLTTRON with the --msgdebug command line option:

(volttron) ./start-volttron ``--msgdebug``

If VOLTTRON is running in this mode, the stream of routed messages is available to
a subscribing Message Debugger Agent. It can be started from volttron-ctl in the same
fashion as other agents, for example:

(volttron) $ vctl status
 AGENT IDENTITY TAG STATUS
fd listeneragent-3.2 listener listener
08 messagedebuggeragent-0.1 platform.messagedebugger platform.messagedebugger
e1 vcplatformagent-3.5.4 platform.agent vcp
47 volttroncentralagent-3.5.5 volttron.central vc

(volttron) $ vctl start 08
Starting 089c53f0-f225-4608-aecb-3e86e0df30eb messagedebuggeragent-0.1

(volttron) $ vctl status
 AGENT IDENTITY TAG STATUS
fd listeneragent-3.2 listener listener
08 messagedebuggeragent-0.1 platform.messagedebugger platform.messagedebugger running [43498]
e1 vcplatformagent-3.5.4 platform.agent vcp
47 volttroncentralagent-3.5.5 volttron.central vc

See Agent Creation Walk-through for further details on
installing and starting agents from vctl.

Once the Message Debugger Agent is running, it begins capturing message data and
writing it to a SQLite database.

Message Viewer

The Message Viewer is a separate process that interacts with the Message Debugger Agent
primarily via VOLTTRON RPC calls. These calls allow it to request and report on filtered sets
of message data.

Since the Agent’s RPC methods are available for use by any VOLTTRON agent, the Message Viewer
is really just one example of a Message Debugger information consumer. Other viewers could be
created to satisfy a variety of specific debugging needs. For example, a viewer could support
browser-based message debugging with a graphical user interface, or a viewer could transform
message data into PCAP format for consumption by WireShark.

The Message Viewer in services/ops/MessageDebuggerAgent/messageviewer/viewer.py implements a
command-line UI, subclassing Python’s Cmd class. Most of the command-line options that it
displays result in a MessageDebuggerAgent RPC request. The Message Viewer formats and displays
the results.

In Linux, the Message Viewer can be started as follows, and displays the following menu:

(volttron) $ cd services/ops/MessageDebuggerAgent/messageviewer
(volttron) $ python viewer.py
Welcome to the MessageViewer command line. Supported commands include:
 display_message_stream
 display_messages
 display_exchanges
 display_exchange_details
 display_session_details_by_agent <session_id>
 display_session_details_by_topic <session_id>

 list_sessions
 set_verbosity <level>
 list_filters
 set_filter <filter_name> <value>
 clear_filters
 clear_filter <filter_name>

 start_streaming
 stop_streaming
 start_session
 stop_session
 delete_session <session_id>
 delete_database

 help
 quit
Please enter a command.
Viewer>

Command-Line Help

The Message Viewer offers two help levels. Simply typing help gives a list of available
commands. If a command name is provided as an argument, advice is offered on how to use
that command:

Viewer> help

Documented commands (type help <topic>):
==
clear_filter display_messages set_filter
clear_filters display_session_details_by_agent set_verbosity
delete_database display_session_details_by_topic start_session
delete_session help start_streaming
display_exchange_details list_filters stop_session
display_exchanges list_sessions stop_streaming
display_message_stream quit

Viewer> help set_filter

 Set a filter to a value; syntax is: set_filter <filter_name> <value>

 Some recognized filters include:
 . freq <n>: Use a single-line display, refreshing every <n> seconds (<n> can be floating point)
 . session_id <n>: Display Messages and Exchanges for the indicated debugging session ID only
 . results_only <n>: Display Messages and Exchanges only if they have a result
 . sender <agent_name>
 . recipient <agent_name>
 . device <device_name>
 . point <point_name>
 . topic <topic_name>: Matches all topics that start with the supplied <topic_name>
 . starttime <YYYY-MM-DD HH:MM:SS>: Matches rows with timestamps after the supplied time
 . endtime <YYYY-MM-DD HH:MM:SS>: Matches rows with timestamps before the supplied time
 . (etc. -- see the structures of DebugMessage and DebugMessageExchange)

Debug Sessions

The Message Debugger Agent tags each message with a debug session ID (a serial number),
which groups a set of messages that are bounded by a start time and an end time. The list_sessions
command describes each session in the database:

Viewer> list_sessions
 rowid start_time end_time num_messages
 1 2017-03-20 17:07:13.867951 - 2243
 2 2017-03-20 17:17:35.725224 - 1320
 3 2017-03-20 17:33:35.103204 2017-03-20 17:46:15.657487 12388

A new session is started by default when the Agent is started. After that, the stop_session
and start_session commands can be used to create new session boundaries. If the Agent is running
but no session is active (i.e., because stop_session was used to stop it), messages are
still written to the database, but they have no session ID.

Filtered Display

The set_filter <property> <value> command enables filtered display of messages. A variety
of properties can be filtered.

In the following example, message filters are defined by session_id and sender, and the display_messages
command displays the results:

Viewer> set_filter session_id 4
Set filters to {'session_id': '4'}
Viewer> set_filter sender testagent
Set filters to {'sender': 'testagent', 'session_id': '4'}
Viewer> display_messages
 timestamp direction sender recipient request_id subsystem method topic device point result
 11:51:00 incoming testagent messageviewer.connection - RPC pubsub.sync - - - -
 11:51:00 outgoing testagent pubsub - RPC pubsub.push - - - -
 11:51:00 incoming testagent platform.driver 1197886248649056372.284581685 RPC get_point - chargepoint1 Status -
 11:51:01 outgoing testagent platform.driver 1197886248649056372.284581685 RPC - - - - AVAILABLE
 11:51:01 incoming testagent pubsub 1197886248649056373.284581649 RPC pubsub.publish test_topic/test_subtopic - - -
 11:51:01 outgoing testagent pubsub 1197886248649056373.284581649 RPC - - - - None

Debug Message Exchanges

A VOLTTRON message’s request ID is not unique to a single message. A group of messages in an “exchange”
(essentially a small conversation among agents) will often share a common request ID, for instance during RPC
request/response exchanges.

The following example uses the same filters as above, and then uses display_exchanges
to display a single line for each message exchange, reducing the number of displayed rows from 6 to 2.
Note that not all messages have a request ID; messages with no ID are absent from the responses to
exchange queries.

Viewer> list_filters
{'sender': 'testagent', 'session_id': '4'}
Viewer> display_exchanges
 sender recipient sender_time topic device point result
 testagent platform.driver 11:51:00 - chargepoint1 Status AVAILABLE
 testagent pubsub 11:51:01 test_topic/test_subtopic - - None

Special Filters

Most filters that can be set with the set_filter command are simple string matches on
one or another property of a message. Some filters have special characteristics, though.
The set_filter starttime <timestamp> and set_filter endtime <timestamp> filters are
inequalities that test for messages after a start time or before an end time.

In the following example, note the use of quotes in the endtime value supplied to
set_filter. Any filter value can be delimited with quotes. Quotes must be
used when a value contains embedded spaces, as is the case here:

Viewer> list_sessions
 rowid start_time end_time num_messages
 1 2017-03-20 17:07:13.867951 - -
 2 2017-03-20 17:17:35.725224 - -
 3 2017-03-21 11:48:33.803288 2017-03-21 11:50:57.181136 6436
 4 2017-03-21 11:50:59.656693 2017-03-21 11:51:05.934895 450
 5 2017-03-21 11:51:08.431871 - 74872
 6 2017-03-21 12:17:30.568260 - 2331
Viewer> set_filter session_id 5
Set filters to {'session_id': '5'}
Viewer> set_filter sender testagent
Set filters to {'sender': 'testagent', 'session_id': '5'}
Viewer> set_filter endtime '2017-03-21 11:51:30'
Set filters to {'endtime': '2017-03-21 11:51:30', 'sender': 'testagent', 'session_id': '5'}
Viewer> display_exchanges
 sender recipient sender_time topic device point result
 testagent platform.driver 11:51:11 - chargepoint1 Status AVAILABLE
 testagent pubsub 11:51:11 test_topic/test_subtopic - - None
 testagent platform.driver 11:51:25 - chargepoint1 Status AVAILABLE
 testagent pubsub 11:51:25 test_topic/test_subtopic - - None
 testagent platform.driver 11:51:26 - chargepoint1 Status AVAILABLE
 testagent pubsub 11:51:26 test_topic/test_subtopic - - None

Another filter type with special behavior is set_filter topic <name>. Ordinarily, filters do an exact
match on a message property. Since message topics are often expressed as hierarchical substrings,
though, the topic filter does a substring match on the left edge of a message’s topic,
as in the following example:

Viewer> set_filter topic test_topic
Set filters to {'topic': 'test_topic', 'endtime': '2017-03-21 11:51:30', 'sender': 'testagent', 'session_id': '5'}
Viewer> display_exchanges
 sender recipient sender_time topic device point result
 testagent pubsub 11:51:11 test_topic/test_subtopic - - None
 testagent pubsub 11:51:25 test_topic/test_subtopic - - None
 testagent pubsub 11:51:26 test_topic/test_subtopic - - None
Viewer>

Another filter type with special behavior is set_filter results_only 1. In the JSON representation of a
response to an RPC call, for example an RPC call to a Master Driver interface, the response to the
RPC request typically appears as the value of a ‘result’ tag. The results_only filter matches
only those messages that have a non-empty value for this tag.

In the following example, note that when the results_only filter is set, it is given a value
of ‘1’. This is actually a meaningless value that gets ignored. It must be supplied because the
set_filter command syntax requires that a value be supplied as a parameter.

In the following example, note the use of clear_filter <property> to remove a single
named filter from the list of filters that are currently in effect. There is also a clear_filters
command, which clears all current filters.

Viewer> clear_filter topic
Set filters to {'endtime': '2017-03-21 11:51:30', 'sender': 'testagent', 'session_id': '5'}
Viewer> set_filter results_only 1
Set filters to {'endtime': '2017-03-21 11:51:30', 'sender': 'testagent', 'session_id': '5', 'results_only': '1'}
Viewer> display_exchanges
 sender recipient sender_time topic device point result
 testagent platform.driver 11:51:11 - chargepoint1 Status AVAILABLE
 testagent platform.driver 11:51:25 - chargepoint1 Status AVAILABLE
 testagent platform.driver 11:51:26 - chargepoint1 Status AVAILABLE

Streamed Display

In addition to exposing a set of RPC calls that allow other agents (like the Message Viewer)
to query the Message Debugger Agent’s SQLite database of recent messages, the Agent can also
publish messages in real time as it receives them.

This feature is disabled by default due to the large quantity of data that it might need to
handle. When it is enabled, the Agent applies the filters currently in effect to each message as
it is received, and re-publishes the transformed, ready-for-debugging message to a socket
if it meets the filter criteria. The Message Viewer can listen on that socket and display
the message stream as it arrives.

In the following display_message_stream example, the Message Viewer displays all messages
sent by the agent named ‘testagent’, as they arrive. It continues to display messages until
execution is interrupted with ctrl-C:

Viewer> clear_filters
Set filters to {}
Viewer> set_filter sender testagent
Set filters to {'sender': 'testagent'}
Viewer> display_message_stream
Streaming debug messages
 timestamp direction sender recipient request_id subsystem method topic device point result
 12:28:58 outgoing testagent pubsub - RPC pubsub.push - - - -
 12:28:58 incoming testagent platform.dr 11978862486 RPC get_point - chargepoint Status -
 iver 49056826.28 1
 4581713
 12:28:58 outgoing testagent platform.dr 11978862486 RPC - - - - AVAILABLE
 iver 49056826.28
 4581713
 12:28:58 incoming testagent pubsub 11978862486 RPC pubsub.publ test_topic/ - - -
 49056827.28 ish test_subtop
 4581685 ic
 12:28:58 outgoing testagent pubsub 11978862486 RPC - - - - None
 49056827.28
 4581685
 12:28:58 outgoing testagent pubsub - RPC pubsub.push - - - -
^CViewer> stop_streaming
Stopped streaming debug messages

(Note the use of wrapping in the column formatting. Since these messages aren’t known in advance, the
Message Viewer has incomplete information about how wide to make each column. Instead, it must
make guesses based on header widths, data widths in the first row received, and min/max values,
and then wrap the data when it overflows the column boundaries.)

Single-Line Display

Another filter with special behavior is set_filter freq <seconds>. This filter, which takes a number N
as its value, displays only one row, the most recently captured row that satisfies the filter criteria.
(Like other filters, this filter can be used with either display_messages or display_exchanges.)
It then waits N seconds, reissues the query, and overwrites the old row with the new one.
It continues this periodic single-line overwritten display until it is interrupted with ctrl-C:

Viewer> list_filters
{'sender': 'testagent'}
Viewer> set_filter freq 10
Set filters to {'freq': '10', 'sender': 'testagent'}
Viewer> display_exchanges
 sender recipient sender_time topic device point result
 testagent pubsub 12:31:28 test_topic/test_subtopic - - None

(Again, the data isn’t known in advance, so the Message Viewer has to guess the best
width of each column. In this single-line display format, data gets truncated if it doesn’t fit,
because no wrapping can be performed – only one display line is available.)

Displaying Exchange Details

The display_exchange_details <request_id> command provides a way to get more specific details
about an exchange, i.e. about all messages that share a common request ID. At low or medium
verbosity, when this command is used (supplying the relevant request ID, which can be obtained
from the output of other commands), it displays one row for each message:

Viewer> set_filter sender testagent
Set filters to {'sender': 'testagent', 'session_id': '4'}
Viewer> display_messages
 timestamp direction sender recipient request_id subsystem method topic device point result
 11:51:00 incoming testagent messageviewer.connection - RPC pubsub.sync - - - -
 11:51:00 outgoing testagent pubsub - RPC pubsub.push - - - -
 11:51:00 incoming testagent platform.driver 1197886248649056372.284581685 RPC get_point - chargepoint1 Status -
 11:51:01 outgoing testagent platform.driver 1197886248649056372.284581685 RPC - - - - AVAILABLE
 11:51:01 incoming testagent pubsub 1197886248649056373.284581649 RPC pubsub.publish test_topic/test_subtopic - - -
 11:51:01 outgoing testagent pubsub 1197886248649056373.284581649 RPC - - - - None
Viewer> display_exchange_details 1197886248649056373.284581649
 timestamp direction sender recipient request_id subsystem method topic device point result
 11:51:01 incoming testagent pubsub 1197886248649056373.284581649 RPC pubsub.publish test_topic/test_subtopic - - -
 11:51:01 outgoing testagent pubsub 1197886248649056373.284581649 RPC - - - - None

At high verbosity, display_exchange_details switches display formats, showing all properties for
each message in a json-like dictionary format:

Viewer> set_verbosity high
Set verbosity to high
Viewer> display_exchange_details 1197886248649056373.284581649

{
 "data": "{\"params\":{\"topic\":\"test_topic/test_subtopic\",\"headers\":{\"Date\":\"2017-03-21T11:50:56.293830\",\"max_compatible_version\":\"\",\"min_compatible_version\":\"3.0\"},\"message\":[{\"property_1\":1,\"property_2\":2},{\"property_3\":3,\"property_4\":4}],\"bus\":\"\"},\"jsonrpc\":\"2.0\",\"method\":\"pubsub.publish\",\"id\":\"15828311332408898779.284581649\"}",
 "device": "",
 "direction": "incoming",
 "frame7": "",
 "frame8": "",
 "frame9": "",
 "headers": "{u'Date': u'2017-03-21T11:50:56.293830', u'max_compatible_version': u'', u'min_compatible_version': u'3.0'}",
 "message": "[{u'property_1': 1, u'property_2': 2}, {u'property_3': 3, u'property_4': 4}]",
 "message_size": 374,
 "message_value": "{u'property_1': 1, u'property_2': 2}",
 "method": "pubsub.publish",
 "params": "{u'topic': u'test_topic/test_subtopic', u'headers': {u'Date': u'2017-03-21T11:50:56.293830', u'max_compatible_version': u'', u'min_compatible_version': u'3.0'}, u'message': [{u'property_1': 1, u'property_2': 2}, {u'property_3': 3, u'property_4': 4}], u'bus': u''}",
 "point": "",
 "point_value": "",
 "recipient": "pubsub",
 "request_id": "1197886248649056373.284581649",
 "result": "",
 "sender": "testagent",
 "session_id": 4,
 "subsystem": "RPC",
 "timestamp": "2017-03-21 11:51:01.027623",
 "topic": "test_topic/test_subtopic",
 "user_id": "",
 "vip_signature": "VIP1"
}

{
 "data": "{\"params\":{\"topic\":\"test_topic/test_subtopic\",\"headers\":{\"Date\":\"2017-03-21T11:50:56.293830\",\"max_compatible_version\":\"\",\"min_compatible_version\":\"3.0\"},\"message\":[{\"property_1\":1,\"property_2\":2},{\"property_3\":3,\"property_4\":4}],\"bus\":\"\"},\"jsonrpc\":\"2.0\",\"method\":\"pubsub.publish\",\"id\":\"15828311332408898779.284581649\"}",
 "device": "",
 "direction": "outgoing",
 "frame7": "",
 "frame8": "",
 "frame9": "",
 "headers": "{u'Date': u'2017-03-21T11:50:56.293830', u'max_compatible_version': u'', u'min_compatible_version': u'3.0'}",
 "message": "[{u'property_1': 1, u'property_2': 2}, {u'property_3': 3, u'property_4': 4}]",
 "message_size": 383,
 "message_value": "{u'property_1': 1, u'property_2': 2}",
 "method": "pubsub.publish",
 "params": "{u'topic': u'test_topic/test_subtopic', u'headers': {u'Date': u'2017-03-21T11:50:56.293830', u'max_compatible_version': u'', u'min_compatible_version': u'3.0'}, u'message': [{u'property_1': 1, u'property_2': 2}, {u'property_3': 3, u'property_4': 4}], u'bus': u''}",
 "point": "",
 "point_value": "",
 "recipient": "testagent",
 "request_id": "1197886248649056373.284581649",
 "result": "",
 "sender": "pubsub",
 "session_id": 4,
 "subsystem": "RPC",
 "timestamp": "2017-03-21 11:51:01.031183",
 "topic": "test_topic/test_subtopic",
 "user_id": "testagent",
 "vip_signature": "VIP1"
}

Verbosity

As mentioned in the previous section, Agent and Viewer behavior can be adjusted by changing
the current verbosity with the set_verbosity <level> command. The default verbosity is low.
low, medium and high levels are available:

Viewer> set_verbosity high
Set verbosity to high
Viewer> set_verbosity none
Invalid verbosity choice none; valid choices are ['low', 'medium', 'high']

At high verbosity, the following query formatting rules are in effect:

	When displaying timestamps, display the full date and time (including microseconds), not just HH:MM:SS.

	In responses to display_message_exchanges, use dictionary format (see example in previous section).

	Display all columns, not just “interesting” columns (see the list below).

	Don’t exclude messages/exchanges based on excluded senders/receivers (see the list below).

At medium or low verbosity:

	When displaying timestamps, display HH:MM:SS only.

	In responses to display_message_exchanges, use table format.

	Display “interesting” columns only (see the list below).

	Exclude messages/exchanges for certain senders/receivers (see the list below).

At low verbosity:

	If > 1000 objects are returned by a query, display the count only.

The following “interesting” columns are displayed at low and medium verbosity levels
(at high verbosity levels, all properties are displayed):

Debug Message Debug Message Exchange Debug Session

timestamp sender_time rowid
direction start_time
sender sender end_time
recipient recipient num_messages
request_id
subsystem
method
topic topic
device device
point point
result result

Messages from the following senders, or to the following receivers, are excluded at
low and medium verbosity levels:

Sender Receiver

(empty) (empty)
None
control control
config.store config.store
pubsub
control.connection
messageviewer.connection
platform.messagedebugger
platform.messagedebugger.loopback_rpc

These choices about which columns are “interesting” and which senders/receivers are excluded
are defined as parameters in Message Viewer, and can be adjusted as necessary by changing
global value lists in viewer.py.

Session Statistics

One useful tactic for starting at a summary level and drilling down is to capture a set
of messages for a session and then examine the counts of sending and receiving agents,
or sending agents and topics. This gives hints on which values might serve as useful filters
for more specific queries.

The display_session_details_by_agent <session_id> command displays statistics by sending and
receiving agent. Sending agents are table columns, and receiving agents are table rows.
This query also applies whatever filters are currently in effect; the filters can reduce
the counts and can also reduce the number of columns and rows.

The following example shows the command being used to list all senders and receivers for
messages sent during debug session 7:

Viewer> list_sessions
 rowid start_time end_time num_messages
 1 2017-03-20 17:07:13.867951 - -
 2 2017-03-20 17:17:35.725224 - -
 3 2017-03-21 11:48:33.803288 2017-03-21 11:50:57.181136 6436
 4 2017-03-21 11:50:59.656693 2017-03-21 11:51:05.934895 450
 5 2017-03-21 11:51:08.431871 - 74872
 6 2017-03-21 12:17:30.568260 2017-03-21 12:38:29.070000 60384
 7 2017-03-21 12:38:31.617099 2017-03-21 12:39:53.174712 3966
Viewer> clear_filters
Set filters to {}
Viewer> display_session_details_by_agent 7
 Receiving Agent control listener messageviewer.connection platform.driver platform.messagedebugger pubsub testagent
 (No Receiving Agent) - - 2 - - - -
 control - - - - - 2 -
 listener - - - - - 679 -
 messageviewer.connection - - - - 3 - -
 platform.driver - - - - - 1249 16
 platform.messagedebugger - - 3 - - - -
 pubsub 2 679 - 1249 - 4 31
 testagent - - - 16 - 31 -

The display_session_details_by_topic <session_id> command is similar to display_session_details_by_agent,
but each row contains statistics for a topic instead of for a receiving agent:

Viewer> display_session_details_by_topic 7
 Topic control listener messageviewer.connection platform.driver platform.messagedebugger pubsub testagent
 (No Topic) 1 664 5 640 3 1314 39
 devices/chargepoint1/Address - - - 6 - 6 -
 devices/chargepoint1/City - - - 6 - 6 -
 devices/chargepoint1/Connector - - - 5 - 5 -
 devices/chargepoint1/Country - - - 5 - 5 -
 devices/chargepoint1/Current - - - 6 - 6 -
 devices/chargepoint1/Description - - - 6 - 6 -
 devices/chargepoint1/Energy - - - 5 - 5 -
 devices/chargepoint1/Lat - - - 6 - 6 -
 devices/chargepoint1/Level - - - 5 - 5 -
 devices/chargepoint1/Long - - - 6 - 6 -
 devices/chargepoint1/Mode - - - 5 - 5 -
 devices/chargepoint1/Power - - - 6 - 6 -
 devices/chargepoint1/Reservable - - - 5 - 5 -
 devices/chargepoint1/State - - - 6 - 6 -
 devices/chargepoint1/Status - - - 5 - 5 -
 devices/chargepoint1/Status.TimeSta - - - 6 - 6 -
 mp
 devices/chargepoint1/Type - - - 6 - 6 -
 devices/chargepoint1/Voltage - - - 5 - 5 -
 devices/chargepoint1/alarmTime - - - 6 - 6 -
 devices/chargepoint1/alarmType - - - 6 - 6 -
 devices/chargepoint1/all - - - 5 - 5 -
 devices/chargepoint1/allowedLoad - - - 6 - 6 -
 devices/chargepoint1/clearAlarms - - - 6 - 6 -
 devices/chargepoint1/currencyCode - - - 6 - 6 -
 devices/chargepoint1/driverAccountN - - - 5 - 5 -
 umber
 devices/chargepoint1/driverName - - - 5 - 5 -
 devices/chargepoint1/endTime - - - 5 - 5 -
 devices/chargepoint1/mainPhone - - - 6 - 6 -
 devices/chargepoint1/maxPrice - - - 5 - 5 -
 devices/chargepoint1/minPrice - - - 5 - 5 -
 devices/chargepoint1/numPorts - - - 6 - 6 -
 devices/chargepoint1/orgID - - - 5 - 5 -
 devices/chargepoint1/organizationNa - - - 5 - 5 -
 me
 devices/chargepoint1/percentShed - - - 6 - 6 -
 devices/chargepoint1/portLoad - - - 6 - 6 -
 devices/chargepoint1/portNumber - - - 6 - 6 -
 devices/chargepoint1/sessionID - - - 5 - 5 -
 devices/chargepoint1/sessionTime - - - 6 - 6 -
 devices/chargepoint1/sgID - - - 6 - 6 -
 devices/chargepoint1/sgName - - - 6 - 6 -
 devices/chargepoint1/shedState - - - 5 - 5 -
 devices/chargepoint1/startTime - - - 6 - 6 -
 devices/chargepoint1/stationID - - - 5 - 5 -
 devices/chargepoint1/stationMacAddr - - - 6 - 6 -
 devices/chargepoint1/stationManufac - - - 5 - 5 -
 turer
 devices/chargepoint1/stationModel - - - 6 - 6 -
 devices/chargepoint1/stationName - - - 5 - 5 -
 devices/chargepoint1/stationRightsP - - - 6 - 6 -
 rofile
 devices/chargepoint1/stationSerialN - - - 6 - 6 -
 um
 heartbeat/control 1 - - - - 1 -
 heartbeat/listener - 15 - - - 15 -
 heartbeat/platform.driver - - - 1 - 1 -
 heartbeat/pubsub - - - - - 2 -
 test_topic/test_subtopic - - - - - 8 8

Database Administration

The Message Debugger Agent stores message data in a SQLite database’s DebugMessage,
DebugMessageExchange and DebugSession tables. If the database isn’t present already
when the Agent is started, it is created automatically.

The SQLite database can consume a lot of disk space in a relatively short time,
so the Message Viewer has command-line options that recover that space by
deleting the database or by deleting all messages belonging to a given debug session.

The delete_session <session_id> command deletes the database’s DebugSession row
with the indicated ID, and also deletes all DebugMessage and DebugMessageExchange rows
with that session ID. In the following example, delete_session deletes the 60,000
DebugMessages that were captured during a 20-minute period as session 6:

Viewer> list_sessions
 rowid start_time end_time num_messages
 1 2017-03-20 17:07:13.867951 - -
 2 2017-03-20 17:17:35.725224 - -
 3 2017-03-21 11:48:33.803288 2017-03-21 11:50:57.181136 6436
 4 2017-03-21 11:50:59.656693 2017-03-21 11:51:05.934895 450
 5 2017-03-21 11:51:08.431871 - 74872
 6 2017-03-21 12:17:30.568260 2017-03-21 12:38:29.070000 60384
 7 2017-03-21 12:38:31.617099 2017-03-21 12:39:53.174712 3966
 8 2017-03-21 12:42:08.482936 - 3427
Viewer> delete_session 6
Deleted debug session 6
Viewer> list_sessions
 rowid start_time end_time num_messages
 1 2017-03-20 17:07:13.867951 - -
 2 2017-03-20 17:17:35.725224 - -
 3 2017-03-21 11:48:33.803288 2017-03-21 11:50:57.181136 6436
 4 2017-03-21 11:50:59.656693 2017-03-21 11:51:05.934895 450
 5 2017-03-21 11:51:08.431871 - 74872
 7 2017-03-21 12:38:31.617099 2017-03-21 12:39:53.174712 3966
 8 2017-03-21 12:42:08.482936 - 4370

The delete_database command deletes the entire SQLite database, removing all records
of previously-captured DebugMessages, DebugMessageExchanges and DebugSessions.
The database will be re-created the next time a debug session is started.

Viewer> delete_database
Database deleted
Viewer> list_sessions
No query results
Viewer> start_session
Message debugger session 1 started
Viewer> list_sessions
 rowid start_time end_time num_messages
 1 2017-03-22 12:39:40.320252 - 180

It’s recommended that the database be deleted if changes are made to the DebugMessage,
DebugMessageExchange or DebugSession object structures that are defined in agent.py.
A skew between these data structures in Python code vs. the ones in the database can
cause instability in the Message Debugger Agent, perhaps causing it to fail. If a failure
of this kind prevents use of the Message Viewer’s delete_database command, the
database can be deleted directly from the filesystem. By default, it is located
in $VOLTTRON_HOME’s run directory.

Implementation Details

[image: ../../../_images/40-message-debugger.jpg]
Router changes: MessageDebuggerAgent reads and stores all messages that pass through the VIP router.
This is accomplished by subscribing to the messages on a new socket published by the platform’s
Router.issue() method.

The ``direction`` property: Most agent interactions result in at least two messages, an incoming
request and an outgoing response. Router.issue() has a topic parameter with values INCOMING,
OUTGOING, ERROR and UNROUTABLE. The publication on the socket that happens in issue() includes this
“issue topic” (not to be confused with a message’s topic) along with each message.
MessageDebuggerAgent records it as a DebugMessage property called direction, since its
value for almost all messages is either INCOMING or OUTGOING.

SQLite Database and SQL Alchemy: MessageDebuggerAgent records each messsage as a DebugMessage row
in a relational database. SQLite is used since it’s packaged with Python and is already being used
by other VOLTTRON agents. Database semantics are kept simple through the use of a SQL Alchemy
object-relational mapping framework. Python’s “SQLAlchemy” plug-in must be loaded in order for
MessageDebuggerAgent to run.

Calling MessageViewer Directly: The viewer.py module that starts the Message Viewer command line
also contains a MessageViewer class. It exposes class methods which can be used to make direct
Python calls that, in turn, make Message Debugger Agent’s RPC calls. The MessageViewer
class-method API includes the following calls:

	delete_debugging_db()

	delete_debugging_session(session_id)

	disable_message_debugging()

	display_db_objects(db_object_name, filters=None)

	display_message_stream()

	enable_message_debugging()

	message_exchange_details(message_id)

	session_details_by_agent(session_id)

	session_details_by_topic(session_id)

	set_filters(filters)

	set_verbosity(verbosity_level)

	start_streaming(filters=None)

	stop_streaming()

The command-line UI’s display_messages and display_exchanges commands are implemented here
as display_db_objects('DebugMessage') and display_db_objects(DebugMessageExchange).
These calls return json-encoded representations of DebugMessages and DebugMessageExchanges,
which are formatted for display by MessageViewerCmd.

MessageViewer connection: MessageViewer is not actually a VOLTTRON agent. In order for it make
MessageDebuggerAgent RPC calls, which are agent-agent interactions, it builds a “connection”
that manages a temporary agent. This is a standard VOLTTRON pattern that is also used, for
instance, by Volttron Central.

View the message debugging specification for more information on the message
debugging implementation for ZeroMQ.

	Message Bus Debugging Specification
	Description

	Feature: Capture Messages and Display a Message Summary

	Feature: Capture and Display Message Details

	Feature: Display Message Statistics

	Feature: Filter the Message Stream

	User Interface: Linux Command Line

	Feature (not implemented): Watch Most Recent

	Feature (not implemented): Regular Expression Support

	Feature (not implemented): Message Stream Record and Playback

	Feature (not implemented): On-the-fly Message Inspection and Modification

	Feature (not implemented): PyCharm Debugging Plugin

	User Interface (not implemented): PCAP/Wireshark

	User Interface (not implemented): Volttron Central Dashboard Widget

	User Interface (not implemented): Graphical Display of Message Sequence

	Related Development: PyCharm Documentation
	Engineering Design Notes

	Grabbing Messages Off the Bus

	Message Processor

	Message Viewer

	Message Db Schema

Message Bus Debugging Specification

NOTE: This is a planning document, created prior to implementation of the
VOLTTRON Message Debugger. It describes the tool’s general goals, but it’s not
always accurate about specifics of the ultimate implementation. For a description
of Message Debugging as implemented, with advice on how to configure and
use it, please see Message-Debugging.

Description

VOLTTRON agents send messages to each other on the VOLTTRON message bus.
It can be useful to examine the contents of this message stream
while debugging and troubleshooting agents and drivers.

In satisfaction of this specification, a new Message Monitor capability will be implemented
allowing VOLTTRON agent/driver developers to monitor the message stream,
filter it for an interesting set of messages, and display the
contents and characteristics of each message.

Some elements below are central to this effort (required),
while others are useful improvements (optional) that may be
implemented if time permits.

Feature: Capture Messages and Display a Message Summary

When enabled, the Message Monitor will capture details about a stream of routed messages.
On demand, it will display a message summary, either in real time as the messages are routed,
or retrospectively.

A summary view will convey the high level interactions occurring between VOLTTRON agents
as conversations that may be expanded for more detail. A simple RPC call that involves
4 message send/recv segments will be displayed as a single object that can be expanded.
In this way, the message viewer will provide a higher-level view of
message bus activity than might be gleaned from verbose logs using grep.

Pub/sub interactions will be summarized at the topic level with high-level statistics
such as the number of subscribers, # of messages published during the capture period, etc.
Drilling into the interaction might show the last message published with the ability to
drill deeper into individual messages. A diff display would show how the published
data is changing.

Summary view

- 11:09:31.0831 RPC set_point charge.control platform.driver
| - params: ('set_load', 10) return: True
- 11:09:31.5235 Pub/Sub devices/my_device platform.driver 2 subscribers
| - Subscriber: charge.control
 | - Last message 11:09:31.1104:
 [
 {
 'Heartbeat': True,
 'PowerState': 0,
 'temperature': 50.0,
 'ValveState': 0
 },
 ...
]
 | - Diff to 11:09:21.5431:
 'temperature': 48.7,

The summary’s contents and format will vary by message subsystem.

RPC request/response pairs will be displayed on a single line:

(volttron) d1:volttron myname$ msmon —agent='(Agent1,Agent2)'

Agent1 Agent2
2016-11-22T11:09:31.083121+00:00 rpc: devices/my_topic; 2340972387; sent 2016-11-22T11:09:31.277933+00:00 responded: 0.194 sec
2016-11-22T11:09:32.005938+00:00 rpc: devices/my_topic; 2340972388; sent 2016-11-22T11:09:32.282193+00:00 responded: 0.277 sec
2016-11-22T11:09:33.081873+00:00 rpc: devices/my_topic; 2340972389; sent 2016-11-22T11:09:33.271199+00:00 responded: 0.190 sec
2016-11-22T11:09:34.049139+00:00 rpc: devices/my_topic; 2340972390; sent 2016-11-22T11:09:34.285393+00:00 responded: 0.236 sec
2016-11-22T11:09:35.053183+00:00 rpc: devices/my_topic; 2340972391; sent 2016-11-22T11:09:35.279317+00:00 responded: 0.226 sec
2016-11-22T11:09:36.133948+00:00 rpc: devices/my_topic; 2340972392; sent 2016-11-22T11:09:36.133003+00:00 dequeued

When PubSub messages are displayed, each message’s summary will include its count of subscribers:

(volttron) d1:volttron myname$ msmon —agent=(Agent1)

Agent1
2016-11-22T11:09:31.083121+00:00 pubsub: devices/my_topic; 2340972487; sent; 2 subs
2016-11-22T11:09:32.005938+00:00 pubsub: devices/my_topic; 2340972488; sent; 2 subs
2016-11-22T11:09:33.081873+00:00 pubsub: devices/my_topic; 2340972489; sent; 2 subs
2016-11-22T11:09:34.049139+00:00 pubsub: devices/my_topic; 2340972490; sent; 2 subs
2016-11-22T11:09:35.053183+00:00 pubsub: devices/my_topic; 2340972491; sent; 2 subs

While streaming output of a message summary, a defined keystroke sequence will “pause” the output,
and another keystroke sequence will “resume” displaying the stream.

Feature: Capture and Display Message Details

The Message Monitor will capture a variety of details about each message, including:

	Sending agent ID

	Receiving agent ID

	User ID

	Message ID

	Subsystem

	Topic

	Message data

	Message lifecycle timestamps, in UTC (when sent, dequeued, responded)

	Message status (sent, responded, error, timeout)

	Message size

	Other message properties TBD (e.g., queue depth?)

On demand, it will display these details for a single message ID:

(volttron)d1:volttron myname$ msmon --id='2340972390'

2016-11-22T11:09:31.053183+00:00 (Agent1)
INFO:
 Subsystem: 'pubsub',
 Sender: 'Agent1',
 Topic: 'devices/my_topic',
 ID: '2340972390',
 Sent: '2016-11-22T11:09:31.004986+00:00',
 Message:
 [
 {
 'Heartbeat': True,
 'PowerState': 0,
 'temperature': 50.0,
 'ValveState': 0
 },
 {
 'Heartbeat':
 {
 'units': 'On/Off',
 'type': 'integer'
 },
 'PowerState':
 {
 'units': '1/0',
 'type': 'integer'
 },
 'temperature':
 {
 'units': 'Fahrenheit',
 'type': 'integer'
 },
 'ValveState':
 {
 'units': '1/0',
 'type': 'integer'
 }
 }
]

A VOLTTRON message ID is not unique to a single message. A group of messages in a “conversation”
may share a common ID, for instance during RPC request/response exchanges.
When detailed display of all messages for a single message ID is requested, they will be displayed
in chronological order.

Feature: Display Message Statistics

Statistics about the message stream will also be available on demand:

	Number of messages sent, by agent, subsystem, topic

	Number of messages received, by agent, subsystem, topic

Feature: Filter the Message Stream

The Message Monitor will be able to filter the message stream display
to show only those messages that match a given set of criteria:

	Sending agent ID(s)

	Receiving agent ID(s)

	User ID(s)

	Subsystem(s)

	Topic - Specific topic(s)

	Topic - Prefix(es)

	Specific data value(s)

	Sampling start/stop time

	Other filters TBD

User Interface: Linux Command Line

A Linux command-line interface will enable the following user actions:

	Enable message tracing

	Disable message tracing

	Define message filters

	Define verbosity of displayed-message output

	Display message stream

	Begin recording messages

	Stop recording messages

	Display recorded messages

	Play back (re-send) recorded messages

Feature (not implemented): Watch Most Recent

Optionally, the Message Monitor can be asked to “watch” a specific data element.
In that case, it will display the value of that element in the most recent message
matching the filters currently in effect. As the data to be displayed changes,
the display will be updated in place without scrolling (similar to “top” output):

(volttron) d1:volttron myname$ msmon —agent='(Agent1)' --watch='temperature'

Agent1
2016-11-22T11:09:31.053183+00:00 pubsub: my_topic; 2340972487; sent; 2 subs; temperature=50

Feature (not implemented): Regular Expression Support

It could help for the Message Monitor’s filtering logic to support regular expressions.
Regex support has also been requested (Issue #207) when identifying a subscribed pub/sub topic
during VOLTTRON message routing.

Optionally, regex support will be implemented in Message Monitor filtering criteria,
and also (configurably) during VOLTTRON topic matching.

Feature (not implemented): Message Stream Record and Playback

The Message Monitor will be able to “record” and “play back” a message sequence:

	Capture a set of messages as a single “recording”

	Inspect the contents of the “recording”

	“Play back” the recording – re-send the recording’s messsage sequence in VOLTTRON

Feature (not implemented): On-the-fly Message Inspection and Modification

VOLTTRON message inspection and modification, on-the-fly, may be supported from the command line.
The syntax and implementation would be similar to pdb (Python Debugger), and might
be written as an extension to pdb.

Capabilities:

	Drill-down inspection of message contents.

	Set a breakpoint based on message properties, halting upon routing a matching message.

	While halted on a breakpoint, alter a message’s contents.

Feature (not implemented): PyCharm Debugging Plugin

VOLTTRON message debugging may also be published as a PyCharm plugin.
The plugin would form a more user-friendly interface for the same set of capabilities
described above – on-the-fly message inspection and modification, with the ability to
set a breakpoint based on message properties.

User Interface (not implemented): PCAP/Wireshark

Optionally, we may elect to render the message trace as a stream of PCAP data,
thereby exploiting Wireshark’s filtering and display capabilities.
This would be in accord with the enhancement suggested in VOLTTRON Issue #260.

User Interface (not implemented): Volttron Central Dashboard Widget

Optionally, the Message Monitor will be integrated as a new Volttron Central dashboard widget,
supporting each of the following:

	Enable/Disable the monitor

	Filter messages

	Configure message display details

	Record/playback messages

User Interface (not implemented): Graphical Display of Message Sequence

Optionally, the Volttron Central dashboard widget will provide graphical display
of message sequences, allowing enhanced visualization of request/response patterns.

Related Development: PyCharm Documentation

Also included in this effort will be a contribution to VOLTTRON documentation about installing
and configuring a PyCharm environment for developing, debugging and testing VOLTTRON
agents and drivers.

Engineering Design Notes

Grabbing Messages Off the Bus

This tool depends on reading and storing all messages that pass through the VIP router. The Router class
already has hooks that allow for the capturing of messages at various points in the routing workflow. The
BaseRouter abstract class defines issue(self, topic, frames, extra). This method is called from BaseRouter.route
and BaseRouter._send during the routing of messasges. The topic parameter (not to be confused with a
message topic found in frames) identifies the point or state in the routing worflow at which the issue was called.

The defined topics are: INCOMING, OUTGOING, ERROR and UNROUTABLE. Most messages will result in two calls, one
with the INCOMING topic as the message enters the router and one with the OUTGOING topic as the message is
sent on to its destination. Messages without a recipient are intended for the router itself and do not result
in an OUTGOING call to issue.

Router.issue contains the concrete implementation of the method. It does two things:

	It writes the topic, frames and optional extra parameters to the logger using the FramesFormatter.

	It invokes self._tracker.hit(topic, frames, extra). The Tracker class collects statistics by topic and counts the messages within a topic by peer, user and subsystem.

The issue method can be modified to optionally publish the issue messages to an in-process ZMQ address
that the message-viewing tool will subscribe to. This will minimize changes to core VOLTTRON code and minimize
the impact of processing these messages for debugging.

Message Processor

The message processor will subscribe to messages coming out of the Router.issue() method and process these
messages based on the current message viewer configuration. Messages will be written to a SQLite db since this
is packaged with Python and currently used by other VOLTTRON agents.

Message Viewer

The message viewer will display messages from the SQLite db. We need to consider whether it should also subscribe
to receiving messages in real-time. The viewer will be responsible for displaying message statistics and will provide
a command line interface to filter and display messages.

Message Db Schema

message(id, created_on, issue_topic, extras, sender, recipient, user_id, msg_id, subsystem, data)

msg_id will be used to associate pairs of incoming/outgoing messages.

Note

data will be a jsonified list of frames, alternatively we could add a message_data table with one
row per frame.

A session table will track the start and end of a debug session and, at the end of a session, record statistics
on the messages in the session.

session(id, created_on, name, start_time, end_time, num_messages)

The command line tool will allow users to delete old sessions and select a session for review/playback.

System Monitoring Agent

The System Monitoring Agent (colloquially “SysMon”) can be installed on the platform to monitor
various system resource metrics, including percent CPU utilization, percent system memory (RAM)
utilization, and percent storage (disk) utilization based on disk path.

Configuration

The SysMon agent configuration includes options for setting the base publish topic as well as
intervals in seconds for checking the various system resource utilization levels.

{
 "base_topic": "datalogger/log/platform",
 "cpu_check_interval": 5,
 "memory_check_interval": 5,
 "disk_check_interval": 5,
 "disk_path": "/"
}

The base topic will be formatted with the name of the function call used to determine the
utilization percentage for the resource. For example, using the configuration above, the topic
for cpu utilization would be “datalogger/log/platform/cpu_percent”.

The disk path string can be set to specify the full path to a specific system data storage “disk”.
Currently the SysMon agent supports configuration for only a single disk at a time.

Periodic Publish

At the interval specified by the configuration option for each resource, the agent will automatically
query the system for the resource utilization statistics and publish it to the message bus using the
topic as previously described. The message content for each publish will contain only a single numeric
value for that specific topic. Currently “scrape_all” style publishes are not supported.

Example Publishes:

2020-03-10 11:20:33,755 (listeneragent-3.3 7993) listener.agent INFO: Peer: pubsub, Sender: platform.sysmon:, Bus: , Topic: datalogger/log/platform/cpu_percent, Headers: {'min_compatible_version': '3.0', 'max_compatible_version': ''}, Message:
4.8
2020-03-10 11:20:33,804 (listeneragent-3.3 7993) listener.agent INFO: Peer: pubsub, Sender: platform.sysmon:, Bus: , Topic: datalogger/log/platform/memory_percent, Headers: {'min_compatible_version': '3.0', 'max_compatible_version': ''}, Message:
35.6
2020-03-10 11:20:33,809 (listeneragent-3.3 7993) listener.agent INFO: Peer: pubsub, Sender: platform.sysmon:, Bus: , Topic: datalogger/log/platform/disk_percent, Headers: {'min_compatible_version': '3.0', 'max_compatible_version': ''}, Message:

JSON RPC Methods

The VIP subsystem developed for the VOLTTRON message bus supports remote procedure calls (RPC), which
can be used to more directly fetch data from the SysMon agent. Examples are provided below for each
RPC call.

Get Percent CPU Utilization
self.vip.rpc.call(PLATFORM.SYSMON, "cpu_percent).get()

Get Percent System Memory Utilization
self.vip.rpc.call(PLATFORM.SYSMON, "memory_percent).get()

Get Percent Storage "disk" Utilization
self.vip.rpc.call(PLATFORM.SYSMON, "disk_percent).get()

Threshold Detection Agent

The ThresholdDetectionAgent will publish an alert when a value published to a
topic exceeds or falls below a configured value. The agent can be configured to
watch topics are associated with a single value or to watch devices’ all topics.

Configuration

The Threshold Detection Agent supports the config store
and can be configured with a file named “config”.

The file must be in the following format:

	Topics and points in device publishes may have maximum and minimum thresholds but both are not required

	A device’s point entries are configured the same way as standard topic entries

{
 "topic": {
 "threshold_max": 10
 },

 "devices/some/device/all": {
 "point0": {
 "threshold_max": 10,
 "threshold_min": 0
 },
 "point1": {
 "threshold_max": 42
 }
 }
}

Topic Watcher Agent

The Topic Watcher Agent listens to a set of configured topics and publishes an alert if
they are not published within some time limit. In addition to “standard” topics
the Topic Watcher Agent supports inspecting device all topics. This can be useful when
a device contains volatile points that may not be published.

Requirements

The Topic Watcher agent requires the Sqlite 3 package. This package can
be installed in an activated environment with:

pip install sqlite3

Configuration

Topics are organied by groups. Any alerts raised will summarize all missing
topics in the group.

Individual topics have two configuration options. For standard topics
configuration consists of a key value pair of the topic to its time limit.

The other option is for all publishes. The topic key is paired with a
dictionary that has two keys, “seconds” and “points”. “seconds” is the
topic’s time limit and “points” is a list of points to watch.

{
 "groupname": {
 "devices/fakedriver0/all": 10,

 "devices/fakedriver1/all": {
 "seconds": 10,
 "points": ["temperature", "PowerState"]
 }
 }
}

Historian Framework

Historian Agents are the way by which device, actuator, datalogger, and analysis topics are automatically
captured and stored in some sort of data store. Historians exist for the following storage options:

	A general SQL Historian implemented for MySQL, SQLite, PostgreSQL, and Amazon Redshift

	MongoDB Historian

	Crate Historian

	Forward Historian for sending data to another VOLTTRON instance

	OpenEIS Historian

	MQTT Historian Forwards data to an MQTT broker

	InfluxDB Historian

Other implementations of Historians can be created by following the
Developing Historian Agents guide.

Base Historian

Historians are all built upon the BaseHistorian which provides general functionality the specific implementations are
built upon.

This base Historian will cache all received messages to a local database before publishing it to the Historian. This
allows recovery from unexpected happenings before the successful writing of data to the Historian.

Configuration

In most cases the default configuration settings are fine for all deployments.

All Historians support the following settings:

{
 # Maximum amount of time to wait before retrying a failed publish in seconds.
 # Will try more frequently if new data arrives before this timelime expires.
 # Defaults to 300
 "retry_period": 300.0,

 # Maximum number of records to submit to the historian at a time.
 # Defaults to 1000
 "submit_size_limit": 1000,

 # In the case where a historian needs to catch up after a disconnect
 # the maximum amount of time to spend writing to the database before
 # checking for and caching new data.
 # Defaults to 30
 "max_time_publishing": 30.0,

 # Limit how far back the historian will keep data in days.
 # Partial days supported via floating point numbers.
 # A historian must implement this feature for it to be enforced.
 "history_limit_days": 366,

 # Limit the size of the historian data store in gigabytes.
 # A historian must implement this feature for it to be enforced.
 "storage_limit_gb": 2.5

 # Size limit of the backup cache in Gigabytes.
 # Defaults to no limit.
 "backup_storage_limit_gb": 8.0,

 # Do not actually gather any data. Historian is query only.
 "readonly": false,

 # capture_device_data
 # Defaults to true. Capture data published on the `devices/` topic.
 "capture_device_data": true,

 # capture_analysis_data
 # Defaults to true. Capture data published on the `analysis/` topic.
 "capture_analysis_data": true,

 # capture_log_data
 # Defaults to true. Capture data published on the `datalogger/` topic.
 "capture_log_data": true,

 # capture_record_data
 # Defaults to true. Capture data published on the `record/` topic.
 "capture_record_data": true,

 # Replace a one topic with another before saving to the database.
 "topic_replace_list": [
 #{"from": "FromString", "to": "ToString"}
],

 # For historian developers. Adds benchmarking information to gathered data.
 # Defaults to false and should be left that way.
 "gather_timing_data": false

 # Allow for the custom topics or for limiting topics picked up by a historian instance.
 # the key for each entry in custom topics is the data handler. The topic and data must
 # conform to the syntax the handler expects (e.g., the capture_device_data handler expects
 # data the driver framework). Handlers that expect specific data format are
 # capture_device_data, capture_log_data, and capture_analysis_data. All other handlers will be
 # treated as record data. The list associated with the handler is a list of custom
 # topics to be associated with that handler.
 #
 # To restrict collection to only the custom topics, set the following config variables to False
 # capture_device_data
 # capture_analysis_data
 # capture_log_data
 # capture_record_data
 "custom_topics": {
 "capture_device_data": ["devices/campus/building/device/all"],
 "capture_analysis_data": ["analysis/application_data/example"],
 "capture_record_data": ["example"]
 },
 # To restrict the points processed by a historian for a device or set of devices (i.e., this configuration
 # parameter only filters data on topics with base 'devices). If the 'device' is in the
 # topic (e.g.,'devices/campus/building/device/all') then only points in the list will be passed to the
 # historians capture_data method, and processed by the historian for storage in its database (or forwarded to a
 # remote platform (in the case of the ForwardHistorian). The key in the device_data_filter dictionary can
 # be made more restrictive (e.g., "device/subdevice") to limit unnecessary searches through topics that may not
 # contain the point(s) of interest.
 "device_data_filter":
 {
 "device": ["point_name1", "point_name2"]
 }
}

Topics

By default the base historian will listen to 4 separate root topics:

	datalogger/*

	record/*

	analysis/*

	devices/*

Each root topic has a specific message syntax that it is expecting for incoming data.

Messages published to datalogger will be assumed to be timepoint data that is composed of units and specific types
with the assumption that they have the ability to be plotted easily.

Messages published to devices are data that comes directly from drivers.

Messages published to analysis are analysis data published by agents in the form of key value pairs.

Finally, messages that are published to record will be handled as string data and can be customized to the user
specific situation.

Platform Historian

A platform historian is a “friendly named” historian on a VOLTTRON instance. It always has
the identity of platform.historian. A platform historian is made available to a VOLTTRON Central agent for monitoring
of the VOLTTRON instances health and plotting topics from the platform historian. In order for one of the historians to
be turned into a platform historian the identity keyword must be added to it’s configuration with the value of
platform.historian. The following configuration file shows a SQLite based platform historian configuration:

{
 "agentid": "sqlhistorian-sqlite",
 "identity": "platform.historian",
 "connection": {
 "type": "sqlite",
 "params": {
 "database": "~/.volttron/data/platform.historian.sqlite"
 }
 }
}

	Historian Topic Syntax
	record/*

	devices/*

	analysis/*

	datalogger/*

	Crate Historian
	Prerequisites
	1. Crate Database

	2. Crate Driver

	Configuration

	Influxdb Historian
	Prerequisites
	InfluxDB Installation

	Authentication in InfluxDB

	InfluxDB Driver

	Configuration
	Connection

	Aggregations

	Database Schema
	Measurement Table

	Meta Table

	Mongo Historian
	Prerequisites
	1. Mongodb

	2. Mongodb connector

	3. Configuration Options

	MQTT Historian
	Overview

	Dependencies

	OpenEIS Historian
	Configuration

	SQL Historian
	Configuration
	MySQL Specifics

	Sqlite3 Specifics

	PostgreSQL and Redshift
	Installation notes

	Dependencies

	PostgreSQL and Redshift Configuration
	Local PostgreSQL Database

	Remote PostgreSQL Database

	TimescaleDB Support

	Redshift Database

	Data Mover Historian
	Configuration

	Forward Historian
	Configuration

Historian Topic Syntax

Each historian will subscribe to the following message bus topics:

	datalogger/*

	anaylsis/*

	record/*

	devices/*

For each of these topics there is a different message syntax that must be adhered to in order for the correct
interpretation of the data being specified.

record/*

The record topic is the most flexible of all of the topics. This topic allows any serializable message to be published
to any topic under the root topic record/.

Note

This topic is not recommended to plot, as the structure of the messages are not necessarily numeric

Example messages that can be published

Dictionary data
{'foo': 'world'}

Numerical data
52

Time data (note: not a `datetime` object)
'2015-12-02T11:06:32.252626'

devices/*

The devices topic is meant to be data structured from a scraping of a Modbus or BACnet device. Currently drivers for
both of these protocols write data to the message bus in the proper format. VOLTTRON drivers also publish an
aggregation of points in an all topic.

Only the `all` topic messages are read and published to a historian.

Both the all topic and point topic have the same header information, but the message body for each is slightly
different. For a complete working example of these messages please see
examples.ExampleSubscriber.subscriber.subscriber_agent

The format of the header and message for device topics (i.e. messages published to topics with pattern “devices/*/all”)
follows the following pattern:

Header contains the data associated with the message.
{
 # python code to get this is
 # from datetime import datetime
 # from volttron.platform.messaging import headers as header_mod
 # from volttron.platform.agent import utils
 # now = utils.format_timestamp(datetime.utcnow())
 # {
 # headers_mod.DATE: now,
 # headers_mod.TIMESTAMP: now
 # }
 "Date": "2015-11-17 21:24:10.189393+00:00",
 "TimeStamp": "2015-11-17 21:24:10.189393+00:00"
}

Message Format:

WITH METADATA
Messages contains a two element list. The first element contains a
dictionary of all points under a specific parent. While the second
element contains a dictionary of meta data for each of the specified
points. For example devices/pnnl/building/OutsideAirTemperature and
devices/pnnl/building/MixedAirTemperature ALL message would be created as:
[
 {"OutsideAirTemperature ": 52.5, "MixedAirTemperature ": 58.5},
 {
 "OutsideAirTemperature ": {'units': 'F', 'tz': 'UTC', 'type': 'float'},
 "MixedAirTemperature ": {'units': 'F', 'tz': 'UTC', 'type': 'float'}
 }
]

#WITHOUT METADATA
Message contains a dictionary of all points under a specific parent
{"OutsideAirTemperature ": 52.5, "MixedAirTemperature ": 58.5}

analysis/*

Data sent to analysis/* topics is result of analysis done by applications. The format of data sent to analysis/*
topics is similar to data sent to devices/*/all topics.

datalogger/*

Messages published to datalogger/* will be assumed to be time point data that is composed of units and specific types
with the assumption that they have the ability to be graphed easily.

{"MixedAirTemperature": {"Readings": ["2015-12-02T00:00:00",
 <mixed_reading],
 "Units": "F",
 "tz": "UTC",
 "data_type": "float"}}

If no datetime value is specified as a part of the reading, current time is used. A Message can be published without
any header. In the above message Readings and Units are mandatory.

Crate Historian

Crate is an open source SQL database designed on top of a No-SQL design. It allows automatic data replication and
self-healing clusters for high availability, automatic sharding, and fast joins, aggregations and sub-selects.

Find out more about crate from https://crate.io/.

Prerequisites

1. Crate Database

For Arch Linux, Debian, RedHat Enterprise Linux and Ubuntu distributions there is a simple installer to get Crate up and
running on your system.

sudo bash -c "$(curl -L https://try.crate.io)"

This command will download and install all of the requirements for running Crate, create a Crate user and install a
Crate service. After the installation the service will be available for viewing at http://localhost:4200 by
default.

Note

There is no authentication support within crate.

2. Crate Driver

There is a Python library for crate that must be installed in the VOLTTRON Python virtual environment in order to access
Crate. From an activated environment, in the root of the volttron folder, execute the following command:

python bootstrap.py --crate

or

python bootstrap.py --databases

or

pip install crate

Configuration

Because there is no authorization to access a crate database the configuration for the Crate Historian is very easy.

{
 "connection": {
 "type": "crate",
 # Optional table prefix defaults to historian
 "schema": "testing",
 "params": {
 "host": "localhost:4200"
 }
 }
}

Finally package, install and start the Crate Historian agent.

See also

Agent Development Walk-through

Influxdb Historian

InfluxDB is an open source time series database with a fast, scalable engine and high availability. It’s often used to
build DevOps Monitoring (Infrastructure Monitoring, Application Monitoring, Cloud Monitoring), IoT Monitoring, and
real-time analytics solutions.

More information about InfluxDB is available from https://www.influxdata.com/.

Prerequisites

InfluxDB Installation

To install InfluxDB on an Ubuntu or Debian operating system, run the script:

services/core/InfluxdbHistorian/scripts/install-influx.sh

For installation on other operating systems,
see https://docs.influxdata.com/influxdb/v1.4/introduction/installation/.

Authentication in InfluxDB

By default, the InfluxDB Authentication option is disabled, and no user authentication is required to access any
InfluxDB database. You can enable authentication by updating the InfluxDB configuration file. For detailed information
on enabling authentication, see:
https://docs.influxdata.com/influxdb/v1.4/query_language/authentication_and_authorization/.

If Authentication is enabled, authorization privileges are enforced. There must be at least one defined admin user
with access to administrative queries as outlined in the linked document above. Additionally, you must pre-create the
user and database that are specified in the configuration file (the default configuration file for InfluxDB
is services/core/InfluxdbHistorian/config). If your user is a non-admin user, they must be granted a full set of
privileges on the desired database.

InfluxDB Driver

In order to connect to an InfluxDb client, the Python library for InfluxDB must be installed in VOLTTRON’s virtual
environment. From the command line, after enabling the virtual environment, install the InfluxDB library as follows:

python bootstrap.py --influxdb

or

python bootstrap.py --databases

or

pip install influxdb

Configuration

The default configuration file for VOLTTRON’s InfluxDB Historian agent should be in the format:

{
 "connection": {
 "params": {
 "host": "localhost",
 "port": 8086, # Don't change this unless default bind port
 # in influxdb config is changed
 "database": "historian",
 "user": "historian", # user is optional if authentication is turned off
 "passwd": "historian" # passwd is optional if authentication is turned off
 }
 },
 "aggregations": {
 "use_calendar_time_periods": true
 }
}

The InfluxDB Historian agent can be packaged, installed and started according to the standard VOLTTRON agent creation
procedure. A sample VOLTTRON configuration file has been provided: services/core/InfluxdbHistorian/config.

See also

Agent Development Walk-through

Connection

The host, database, user and passwd values in the VOLTTRON configuration file
can be modified. user and passwd are optional if InfluxDB Authentication is disabled.

Note

Be sure to initialize or pre-create the database and user defined in the configuration file, and if user
is a non-admin user, be make sure to grant privileges for the user on the specified database. For more
information, see Authentication in InfluxDB.

Aggregations

In order to use aggregations, the VOLTTRON configuration file must also specify a value, either true or false,
for use_calendar_time_periods, indicating whether the aggregation period should align to calendar time periods. If
this value is omitted from the configuration file, aggregations cannot be used.

For more information on historian aggregations, see:
Aggregate Historian Agent Specification.

Supported Influxdb aggregation functions:

	Aggregations: COUNT(), DISTINCT(), INTEGRAL(), MEAN(), MEDIAN(), MODE(), SPREAD(), STDDEV(), SUM()

	Selectors: FIRST(), LAST(), MAX(), MIN()

	Transformations: CEILING(),CUMULATIVE_SUM(), DERIVATIVE(), DIFFERENCE(), ELAPSED(), NON_NEGATIVE_DERIVATIVE(),
NON_NEGATIVE_DIFFERENCE()

More information how to use those functions: https://docs.influxdata.com/influxdb/v1.4/query_language/functions/

Note

Historian aggregations in InfluxDB are different from aggregations employed by other historian agents in VOLTTRON.
InfluxDB doesn’t have a separate agent for aggregations. Instead, aggregation is supported through the
query_historian function. Other agents can execute an aggregation query directly in InfluxDB by calling the
RPC.export method query. For an example, see
Aggregate Historian Agent Specification

Database Schema

Each InfluxDB database has a meta table as well as other tables for different measurements, e.g. one table for
“power_kw”, one table for “energy”, one table for “voltage”, etc. (An InfluxDB measurement is similar to a
relational table, so for easier understanding, InfluxDB measurements will be referred to below as tables.)

Measurement Table

Example: If a topic name is CampusA/Building1/Device1/Power_KW, the power_kw table might look as follows:

	time

	building

	campus

	device

	source

	value

	2017-12-28T20:41:00.004260096Z

	building1

	campusa

	device1

	scrape

	123.4

	2017-12-30T01:05:00.004435616Z

	building1

	campusa

	device1

	scrape

	567.8

	2018-01-15T18:08:00.126345Z

	building1

	campusa

	device1

	scrape

	10

building, campus, device, and source are InfluxDB tags. value is an InfluxDB field.

Note

The topic is converted to all lowercase before being stored in the table. In other words, a set of tag names, as
well as a table name, are created by splitting topic_id into substrings (see meta table below).

In this example, where the typical format of a topic name is <campus>/<building>/<device>/<measurement>, campus,
building and device are each stored as tags in the database.

A topic name might not confirm to that convention:

	The topic name might contain additional substrings, e.g. CampusA/Building1/LAB/Device/OutsideAirTemperature.
In this case, campus will be campusa/building, building will be lab, and device will be device.

	The topic name might contain fewer substrings, e.g. LAB/Device/OutsideAirTemperature. In this case, the
campus tag will be empty, building will be lab, and device will be device.

Meta Table

The meta table will be structured as in the following example:

	time

	last_updated

	meta_dict

	topic

	topic_id

	1970-01-01T00:00:00Z

	2017-12-28T20:47:00.003051+00:00

	{u’units’: u’kw’, u’tz’: u’US/Pacific’, u’type’: u’float’}

	CampusA/Building1/Device1/Power_KW

	campusa/building1/device1/power_kw

	1970-01-01T00:00:00Z

	2017-12-28T20:47:00.003051+00:00

	{u’units’: u’kwh’, u’tz’: u’US/Pacific’, u’type’: u’float’}

	CampusA/Building1/Device1/Energy_KWH

	campusa/building1/device1/energy_kwh

In the InfluxDB, last_updated, meta_dict and topic are fields and topic_id is a tag.

Since InfluxDB is a time series database, the time column is required, and a dummy value (time=0, which is
1970-01-01T00:00:00Z based on epoch unix time) is assigned to all topics for easier metadata updating. Hence, if the
contents of meta_dict change for a specific topic, both last_updated and meta_dict values for that topic will be
replaced in the table.

Mongo Historian

MongoDB is a NoSQL document database, which allows for great performance for transactional data. Because MongoDB
documents do not have a schema, it is easy to store and query data which changes over time. MongoDB also scales
horizontally using sharding.

For more information about MongoDB, read the MongoDB documentation [https://docs.mongodb.com/]

Prerequisites

1. Mongodb

Setup mongodb based on using one of the three installation scripts for the corresponding environment:

	Install as root on Redhat or Cent OS

sudo scripts/historian-scripts/root_install_mongo_rhel.sh

The above script will prompt user for os version, db user name, password and database name. Once installed you can
start and stop the service using the command:

sudo service mongod [start|stop|service]

	Install as root on Ubuntu

sudo scripts/historian-scripts/root_install_mongo_ubuntu.sh

The above script will prompt user for os version, db user name, password and database name. Once installed you can
start and stop the service using the command:

sudo service mongod [start|stop|service]

	Install as non root user on any Linux machine

scripts/historian-scripts/install_mongodb.sh

Usage:

install_mongodb.sh [-h] [-d download_url] [-i install_dir] [-c config_file] [-s]

Optional arguments:

-s setup admin user and test collection after install and startup

-d download url. defaults to https://fastdl.mongodb.org/linux/mongodb-linux-x86_64-3.2.4.tgz

-i install_dir. defaults to current_dir/mongo_install

-c config file to be used for mongodb startup. Defaults to default_mongodb.conf in the same directory as this
script. Any data path mentioned in the config file should already exist and should have write access to the
current user

-h print the help message

2. Mongodb connector

This historian requires a mongodb connector installed in your activated VOLTTRON virtual environment to talk to MongoDB.
Please execute the following from an activated shell in order to install it:

python bootstrap.py --mongo

or

python bootstrap.py --databases

or

pip install pymongo

3. Configuration Options

The historian configuration file can specify

"history_limit_days": <n days>

which will remove entries from the data and rollup collections older than n days. Timestamps passed to the
manage_db_size method are truncated to the day.

MQTT Historian

Overview

The MQTT Historian agent publishes data to an MQTT broker. The mqttlistener.py script will connect to the broker
and print all messages.

Dependencies

The Paho MQTT library from Eclipse is needed for the agent and can be installed with:

pip install paho-mqtt

The Mosquitto MQTT broker may be useful for testing and can be installed with

apt-get install mosquitto

OpenEIS Historian

An OpenEIS Historian has been developed to integrate real time data ingestion into the OpenEIS platform. In order for
the OpenEIS Historian to be able to communicate with an OpenEIS server a datasource must be created on the OpenEIS
server.

The process of creating a dataset is documented in the
OpenEIS User’s Guide [https://github.com/VOLTTRON/openeis/raw/2.x/guides/PNNL-24065%20-%20OpenEIS%20Users%20Guide.pdf]
under Creating a Dataset heading.

Configuration

Once a dataset is created you will be able to add datasets through the configuration file. An example configuration for
the historian is as follows:

{
 # The agent id is used for display in volttron central.
 "agentid": "openeishistorian",
 # The vip identity to use with this historian.
 # should not be a platform.historian!
 #
 # Default value is un referenced because it listens specifically to the bus.
 #"identity": "openeis.historian",

 # Require connection section for all historians. The openeis historian
 # requires a url for the openis server and login credentials for publishing
 # to the correct user's dataset.
 "connection": {
 "type": "openeis",
 "params": {
 # The server that is running openeis
 # the rest path for the dataset is dataset/append/{id}
 # and will be populated from the topic_dataset list below.
 "uri": "http://localhost:8000",

 # Openeis requires a username/password combination in order to
 # login to the site via rest or the ui.
 #
 "login": "volttron",
 "password": "volttron"
 }
 },

 # All datasets that are going to be recorded by this historian need to be
 # defined here.
 #
 # A dataset definition consists of the following parts
 # "ds1": {
 #
 # The dataset id that was created in openeis.
 # "dataset_id": 1,
 #
 # Setting to 1 allows only the caching of data that actually meets
 # the mapped point criteria for this dataset.
 # Defaults to 0
 # "ignore_unmapped_points": 0,
 #
 # An ordered list of points that are to be posted to openeis. The
 # points must contain a key specifying the incoming topic with the
 # value an openeis schema point:
 # [
 # {"rtu4/OutsideAirTemp": "campus1/building1/rtu4/OutdoorAirTemperature"}
 #]
 # },
 "dataset_definitions": {
 "ds1": {
 "dataset_id": 1,
 "ignore_unmapped_points": 0,
 "points": [
 {"campus1/building1/OutsideAirTemp": "campus1/building1/OutdoorAirTemperature"},
 {"campus1/building1/HVACStatus": "campus1/building1/HVACStatus"},
 {"campus1/building1/CompressorStatus": "campus1/building1/LightingStatus"}
]
 }
#,
#"ds2": {
"id": 2,
"points": [
"rtu4/OutsideAirTemp",
"rtu4/MixedAirTemp"
]
}
 }
}

SQL Historian

An SQL Historian is available as a core service (services/core/SQLHistorian in the VOLTTRON repository).

The SQL Historian has been programmed to handle for inconsistent network connectivity (automatic re-connection to tcp
based databases). All additions to the historian are batched and wrapped within a transaction with commit and rollback
functions. This allows the maximum throughput of data with the most protection.

Configuration

The following example configurations show the different options available for configuring the SQL Historian Agent:

MySQL Specifics

MySQL requires a third party driver (mysql-connector) to be installed in
order for it to work. Please execute the following from an activated
shell in order to install it.

pip install --allow-external mysql-connector-python mysql-connector-python

or

python bootstrap.py --mysql

or

python bootstrap.py --databases

In addition, the mysql database must be created and permissions
granted for select, insert and update before the agent is started. In
order to support timestamp with microseconds you need at least MySql
5.6.4. Please see this MySql
documentation [http://dev.mysql.com/doc/refman/5.6/en/fractional-seconds.html]
for more details

The following is a minimal configuration file for using a MySQL based
historian. Other options are available and are documented
http://dev.mysql.com/doc/connector-python/en/connector-python-connectargs.html.
Not all parameters have been tested, use at your own risk.

{
 "agentid": "sqlhistorian-mysql",
 "connection": {
 "type": "mysql",
 "params": {
 "host": "localhost",
 "port": 3306,
 "database": "volttron",
 "user": "user",
 "passwd": "pass"
 }
 }
}

Sqlite3 Specifics

An Sqlite Historian provides a convenient solution for under powered
systems. The database is parameter is a location on the file system. By
default it is relative to the agents installation directory, however it
will respect a rooted or relative path to the database.

{
 "agentid": "sqlhistorian-sqlite",
 "connection": {
 "type": "sqlite",
 "params": {
 "database": "data/historian.sqlite"
 }
 }
}

PostgreSQL and Redshift

Installation notes

	The PostgreSQL database driver supports recent PostgreSQL versions. It has been tested on 10.x, but should work with
9.x and 11.x.

	The user must have SELECT, INSERT, and UPDATE privileges on historian tables.

	The tables in the database are created as part of the execution of the SQL Historian Agent, but this will fail if the
database user does not have CREATE privileges.

	Care must be exercised when using multiple historians with the same database. This configuration may be used only if
there is no overlap in the topics handled by each instance. Otherwise, duplicate topic IDs may be created, producing
strange results.

	Redshift databases do not support unique constraints. Therefore, it is possible that tables may contain some
duplicate data. The Redshift driver handles this by using distinct queries. It does not remove duplicates from the
tables.

Dependencies

The PostgreSQL and Redshift database drivers require the psycopg2 Python package.

From an activated shell execute:

pip install psycopg2-binary

PostgreSQL and Redshift Configuration

The following are minimal configuration files for using a psycopg2-based historian. Other options are available and are
documented [http://initd.org/psycopg/docs/module.html].

Warning

Not all parameters have been tested, use at your own risk.

Local PostgreSQL Database

The following snippet demonstrates how to configure the SQL Historian Agent to use a PostgreSQL database on the local
system that is configured to use Unix domain sockets. The user executing VOLTTRON must have appropriate privileges.

{
 "connection": {
 "type": "postgresql",
 "params": {
 "dbname": "volttron"
 }
 }
}

Remote PostgreSQL Database

The following snippet demonstrates how to configure the SQL Historian Agent to use a remote PostgreSQL database.

{
 "connection": {
 "type": "postgresql",
 "params": {
 "dbname": "volttron",
 "host": "historian.example.com",
 "port": 5432,
 "user": "volttron",
 "password": "secret"
 }
 }
}

TimescaleDB Support

Both of the above PostgreSQL connection types can make use of TimescaleDB’s high performance Hypertable backend for the
primary time-series table. The agent assumes you have completed the TimescaleDB installation and setup
the database by following the instructions here [https://docs.timescale.com/latest/getting-started/setup].

To use, simply add timescale_dialect: true to the connection params in the Agent Config as below:

{
 "connection": {
 "type": "postgresql",
 "params": {
 "dbname": "volttron",
 "host": "historian.example.com",
 "port": 5432,
 "user": "volttron",
 "password": "secret",
 "timescale_dialect": true
 }
 }
}

Redshift Database

The following snippet demonstrates how to configure the SQL Historian Agent to use a Redshift database.

{
 "connection": {
 "type": "redshift",
 "params": {
 "dbname": "volttron",
 "host": "historian.example.com",
 "port": 5432,
 "user": "volttron",
 "password": "secret"
 }
 }
}

Data Mover Historian

The Data Mover sends data from its platform to a remote platform in cases where there are not sufficient resources to
store data locally. It shares this functionality with the Forward Historian, however the
Data Mover does not have the goal of data appearing “live” on the remote platform. This allows DataMover to be more
efficient by both batching data and by sending an RPC call to a remote historian instead of publishing data on the
remote message bus. This allows allows the Data Mover to be more robust by ensuring that the receiving historian is
running. If the target is unreachable, the Data Mover will cache data until it is available.

Configuration

The default configuration file is services/core/DataMover/config. Change the destination-vip value to
point towards the foreign Volttron instance.

The following is an example configuration:

{
 "destination-vip": "ipc://@/home/volttron/.volttron/run/vip.socket",
 "destination-serverkey": null,
 "required_target_agents": [],
 "custom_topic_list": [],
 "services_topic_list": [
 "devices", "analysis", "record", "datalogger", "actuators"
],
 "topic_replace_list": [
 #{"from": "FromString", "to": "ToString"}
]
}

The services_topic_list allows you to specify which of the main data topics to forward. If there is no entry, the
historian defaults to sending all.

topic_replace_list allows you to replace portions of topics if needed. This could be used to correct or standardize
topics or to replace building/device names with an anonymous version. The receiving platform will only see the
replaced values.

Adding the configuration option below will limit the backup cache to n gigabytes. This will keep a hard drive from
filling up if the agent is disconnected from its target for a long time.

"backup_storage_limit_gb": n

See also

Historian Framework

Forward Historian

The primary use case for the Forward Historian is to send data to another instance of VOLTTRON as if the data were live.
This allows agents running on a more secure and/or more powerful machine to run analysis on data being collected on a
potentially less secure/powerful board.

Given this use case, it is not optimized for batching large amounts of data when “live-ness” is not needed. For this
use case, please see the Data Mover Historian.

The Forward Historian can be found in the services/core directory.

Configuration

The default configuration file is services/core/ForwardHistorian/config. Change the destination-vip value to
point towards the foreign VOLTTRON instance.

{
 "agentid": "forwarder",
 "destination-vip": "ipc://@/home/volttron/.volttron/run/vip.socket"
}

In order to send to a remote platform, you will need its VIP address and server key. The server key can be found by
running:

vctl auth serverkey

Put the result into the following example:

Note

The example shown uses the local IP address, the IP address for your configuration should match the intended target

{
 "agentid": "forwarder",
 "destination-vip": "tcp://127.0.0.1:22916",
 "destination-serverkey": "<SOME_KEY>"
}

Adding the configuration option below will limit the backup cache to n gigabytes. This will help keep a hard drive
from filling up if the agent is disconnected from its target for a long time.

"backup_storage_limit_gb": n

See also

Historian Framework

Web Framework

This document describes the interaction between web enabled agents and the Master Web Service agent.

The web framework enables agent developers to expose JSON, static, and websocket endpoints.

Web SubSystem

Enabling

The web subsystem is not enabled by default as it is only required by a small subset of agents. To enable the web subsystem the platform instance must have an enabled the web server and the agent must pass enable_web=True to the agent constructor.

Methods

The web subsystem allows an agent to register three different types of endpoints; path based, JSON and websocket. A path based endpoint allows the agent to specify a prefix and a static path on the file system to serve static files. The prefix can be a regular expression.

Note

The web subsystem is only available when the constructor contains enable_web=True.

The below examples are within the context of an object that has extended the volttron.platform.vip.agent.Agent base class.

Note

For all endpoint methods the first match wins. Therefore ordering which endpoints are registered first becomes important.

@Core.receiver('onstart')
def onstart(self, sender, **kwargs):
 """
 Allow serving of static content from /var/www
 """
 self.vip.web.register_path(r'^/vc/.*', '/var/www')

JSON endpoints allows an agent to serve data responses to specific queries from a web client.non-static responses. The agent will pass a callback to the subsystem which will be called when the endpoint is triggered.

def jsonrpc(env, data):
"""
The main entry point for jsonrpc data
"""
 return {'dyamic': 'data'}

@Core.receiver('onstart')
def onstart(self, sender, **kwargs):
"""
Register the /vc/jsonrpc endpoint for doing json-rpc based methods
"""
 self.vip.web.register_endpoint(r'/vc/jsonrpc', self.jsonrpc)

Websocket endpoints allow bi-directional communication between the client and the server. Client connections can be authenticated during the opening of a websocket through the response of an open callback.

def _open_authenticate_ws_endpoint(self, fromip, endpoint):
 """
 A client attempted to open an endpoint to the server.

 Return True or False if the endpoint should be allowed.

 :rtype: bool
 """
 return True

def _ws_closed(self, endpoint):
 _log.debug("CLOSED endpoint: {}".format(endpoint))

def _ws_received(self, endpoint, message):
 _log.debug("RECEIVED endpoint: {} message: {}".format(endpoint,
 message))

@Core.receiver('onstart')
def onstart(self, sender, **kwargs):
 self.vip.web.register_websocket(r'/vc/ws', self.open_authenticate_ws_endpoint, self._ws_closed, self._ws_received)

Simulation Integration Framework

This framework provides a way to integrate different type of simulation platforms with VOLTTRON. Integration with specific simulation platforms
are all built upon the BaseSimIntegration class which provides common APIs needed to interface with different types of simulation platforms.
Each of the concrete simulation class extends BaseSimIntegration class and is responsible for interfacing with a particular simulation platform.
Using these concrete simulation objects, agents will be able to use the APIs provided by them to participate in a simulation, send inputs to the
simulation and receive outputs from the simulation and act on it. Currently, we have implementations for integrating with HELICS,
GridAPPSD and EnergyPlus. If one wants to integrate with a new simulation platform, then one has to extend BaseSimIntegration class and provide
concrete implementation for each of the APIs provided by BaseSimIntegration class. For details on BaseSimIntegration class, please refer to
volttron/platform/agent/base_simulation_integration/base_sim_integration.py

	Specification For Simplifying Integration With Simulation Platforms
	Features:

	APIs

	Configuration for Integrating With Simulation Platforms
	Example Configuration

	Integrating With Simulation Platforms
	Register With Simulation Platform

	Start the Simulation Platform

	Receive outputs from the simulation

	Publish to the simulation

	Advance the simulation

	Pause the simulation

	Resume the simulation

	Stop the simulation

Specification For Simplifying Integration With Simulation Platforms

There are several simulation platforms that can be integrated with VOLTTRON
to run as a single cohesive simulated environment for different type of
applications. Some of the platforms are FNCS, HELICS, GridAPPS-D and
EnergyPlus. They all have unique application areas and differ in the type
of simulations they run, inputs they accept and outputs they produce. There
are some similarities in the some of the basic steps of integrating with
VOLTTRON such as

	Start simulation

	Subscribe to outputs from the simulation

	Publish outputs from simulation to VOLTTRON

	Subscribe to topics from VOLTTRON

	Send inputs to simulation

	Advance simulation time step

	Pause simulation

	Resume simulation

	Stop simulation

Currently, VOLTTRON has individual implementations for integrating with
many of the above simulation platforms. For example, an example of
integrating with GridAPPSD can be found in examples/GridAPPS-D/gridappsd_example/agent.py.
EnergyPlus agent can be found in ``. These implementations
will still be available for users. Instead, in this specification
we are proposing a base simulation integration class that will provide
common APIs and concrete simulation integration classes that will have
implementation of the these APIs as per the needs of the individual
simulation platforms. Users can use appropriate simulation classes based on
which simulation platform they want to integrate with.

Features:

	
	Start simulation

	This will start the simulation or register itself to be participant in
the simulation.

	
	Register for inputs from simulation

	A list of points need to be made available in a config file. The inputs
are then read from the config file and registered with simulation platform.
Whenever there is any change in those particular points, they are made
available to this class to process. The agent using this class object
can process it or publish it over VOLTTRON message bus to be consumed by
other agents.

	
	Send inputs to simulation

	Send inputs such as set points (for example, charge_EV5),
data points etc to the simulation. The simulation would then act on these
inputs.

	
	Receive outputs from simulation

	Receive outputs generated by the simulation (for example, OutdoorAirTemperature
for a energyPlus simulation). The agent can then act on these output values.
If the config file has an associated topic, the output value will be republished
on the VOLTTRON message bus.

	
	Simulation time management

	Typically, in a simulation environment, one can run applications in real
time mode or in fast execution mode. All the participants in the simulation
have to be in sync with respect to time for simulation to be correct. There
is typically a central unit which acts as a global timekeeper. This timekeeper
can possibly be configured to use periodic time keeping, which means it
periodically advances in time (based on pre-configured time period) or
based on time advancement message. After each advancement, it would send
out all the output messages to the registered participants. Another way of
advancing the simulation would be based on concept of time request-time grant. Each of the
participants would request for certain time after it is done with its
work and get blocked until that is granted. The global time keeper would
grant time (and hence advance in simulation) that is lowest among the list
of time requests and all participants would advance to that time.

	
	Pause the simulation

	Some simulation platforms can pause the simulation if needed. We need provide
wrapper API to call simulation specific pause API.

	
	Resume the simulation

	Some simulation platforms can resume the simulation if needed. We need provide
API to call simulation specific resume API.

	
	Stop the simulation

	This will unregister itself from the simulation and stop the simulation.

APIs

	
	start_simulation():

	
	Connect to the simulation platform.

	Register with the platform as a participant

	
	register_inputs(config=None, callback=None)

	
	Register the config containing inputs and outputs with the simulation platform.

	If agent provides a callback method, this will be called when new output values is received from simulation

	
	publish_to_simulation(topic, message)

	
	Send message to simulation

	
	make_time_request(time_steps)

	
	Make request to simulation to advance to next time delta

	
	pause_simulation()

	
	Pause simulation

	
	resume_simulation()

	
	Resume simulation

	
	stop_simulation()

	
	Stops the simulation

	
	is_sim_installed()

	
	Flag indicating if simulation is installed

Configuration for Integrating With Simulation Platforms

Configurations for interfacing with simulation platforms will vary depending on the specifications of that platform but there may be few common configuration
options that we can group together as separate sections such as

	Config parameters that help us setup the simulation such as connection parameters (connection address), unique name for the participant, total simulation time

	List of topics for subscribing with simulation platform

	List of topics for publishing to the simulation platform

	List of topics subscribing with VOLTTRON message bus

We have grouped these four categories of configuration into four different sections - properties, inputs, outputs and volttron_subscriptions.
The simulation integration class will read these four sections and register with simulation platform appropriately. If an agent needs to
interface with EnergyPlus or HELICS using the simulation integration framework, then it will need to group the configurations into above four
sections.

Note

GridAPPS-D can run complex power system simulations using variety of simulators such as GridLAB-D, HELICS, MatPower etc.
So the configuration for GridAPPS-D cannot follow the above format. Because of this, the configuration for GridAPPSD is taken in the raw format and passed drectly to the GridAPPS-D simulation.

Example Configuration

The configuration for interfacing with a simulation platform is described by using integration with HELICS as an example. Each participant in a
HELICS co-simulation environment is called a federate.

Below is an example HELICS config file.

Config parameters for setting up HELICS federate
properties:
 name: federate1 # unique name for the federate
 loglevel: 5 # log level
 coreType: zmq # core type
 timeDelta: 1.0 # time delta (defaults to 1s)
 uninterruptible: true
 simulation_length: 360 # simulation length in seconds (defaults to 360s)

configuration for subscribing to HELICS simulation
outputs:
 # List of subscription information, typically contains
 # - subscription topic,
 # - datatype
 # - publication topic for VOLTTRON (optional) to republish the
 # message on VOLTTRON message bus
 # - additional/optional simulation specific configuration
 - sim_topic: federate2/totalLoad
 volttron_topic: helics/abc
 type: complex
 required: true
 - sim_topic: federate2/charge_EV6
 volttron_topic: helics/ev6
 type: complex
 required: true

configuration for publishing to HELICS simulation
inputs:
 # List of publication information, containing
 # - HELICS publication topic,
 # - datatype
 # - metadata associated with the topic (for example unit)
 # - subscription topic for VOLTTRON message bus (optional) which can then be
 # republished on HELICS with HELICS publication topic
 # - additional/optional publication specific configuration
 - sim_topic: pub1 # HELICS publication key
 type: double # datatype
 unit: m # unit
 info: this is an information string for use by the application #additional info
 volttron_topic: pub1/all # topic to subscribe on VOLTTRON bus
 global: true
 - sim_topic: pub2
 type: double
 volttron_topic: pub2/all

volttron_subscriptions:
 - feeder0_output/all

The properties section may contain the following.

	Unique name for the federate

	core type (for example, zmq, tcp, mpi)

	time step delta in seconds

	total simulation time etc

Note
The individual fields under this section may vary depending on whether the agent is interfacing with HELICS or EnergyPlus.

In the inputs section, list of subscriptions (if any) need to be provided. Each subscription will contain the following.

	subscription topic

	data type

	VOLTTRON topic to republish the message on VOLTTRON message bus (optional)

	required flag (optional)

In the outputs section, list of publications (if any) need to be provided. Each publication will contain the following.

	publication topic

	data type

	metadata associated with the topic

	VOLTTRON topic to subscribe on the VOLTTRON message bus which will be republished on simulation bus (optional)

	additional information (optional)

In the volttron_subscriptions, list of topics need to be subscribed on VOLTTRON bus can be provided.

Integrating With Simulation Platforms

An agent wanting to integrate with a simulation platform has to create an object of concrete simulation integration class (HELICSSimIntegration).
This is best described with an example agent. The example agent will interface with HELICS co-simulation platform. For
more info about HELICS, please refer to https://helics.readthedocs.io/en/latest/installation/linux.html.

class HelicsExample(Agent):
 """
 HelicsExampleAgent demonstrates how VOLTTRON agent can interact with HELICS simulation environment
 """
 def __init__(self, config, **kwargs):
 super(HelicsExample, self).__init__(enable_store=False, **kwargs)
 self.config = config
 self.helics_sim = HELICSSimIntegration(config, self.vip.pubsub)

Register With Simulation Platform

The agent has to first load the configuration file containing parameters such as connection address, simulation duration, input and
output topics etc., and register with simulation platform. The concrete simulation object will then register the agent with simulation
platform (in this case, HELICS) using appropriate APIs. The registration steps include connecting to the simulation platform, passing the
input and outputs topics to the simulation etc. In addition to that, the agent has to provide a callback method in order for
the concrete simulation object to pass the messages received from the simulation to the agent. The best place to call the register_inputs API is
within the onstart method of the agent.

@Core.receiver("onstart")
def onstart(self, sender, **kwargs):
 """
 Register config parameters with HELICS.
 Start HELICS simulation.
 """
 # Register inputs with HELICS and provide callback method to receive messages from simulation
 try:
 self.helics_sim.register_inputs(self.config, self.do_work)
 except ValueError as ex:
 _log.error("Unable to register inputs with HELICS: {}".format(ex))
 self.core.stop()
 return

Start the Simulation Platform

After registering with the simulation platform, the agent can go ahead and start the simulation.

Register inputs with HELICS and provide callback method to receive messages from simulation
try:
 self.helics_sim.start_simulation()
except ValueError as ex:
 _log.error("Unable to register inputs with HELICS: {}".format(ex))
 self.core.stop()
 return

Receive outputs from the simulation

The concrete simulation object spawns a continuous loop that waits for any incoming messages (subscription messages) from the
simulation platform. On receiving a message, it passes the message to the callback method registered by the agent during the
register with simulation step <Register-Simulation>`_. The agent can now choose to work on the incoming message based on it’s use case.
The agent can also choose to publish some message back to the simulation at this point of time as shown in below example. This is
totally optional and is based on agent’s usecase.
At the end of the callback method, the agent needs to make time request to the simulation, so that it can advance forward in
simulation. Please note, this is a necessary step for HELICS co-simulation integration as the HELICS broker waits for time
requests from all it’s federates before advancing the simulation. If no time request is made, the broker blocks the simulation.

def do_work(self):
 """
 Perform application specific work here using HELICS messages
 :return:
 """
 current_values = self.helics_sim.current_values
 _log.debug("Doing work: {}".format(self.core.identity))
 _log.debug("Current set of values from HELICS: {}".format(current_values))
 # Do something with HELICS messages
 # agent specific work!!!

 for pub in self.publications:
 key = pub['sim_topic']
 # Check if VOLTTRON topic has been configured. If no, publish dummy value for the HELICS
 # publication key
 volttron_topic = pub.get('volttron_topic', None)
 if volttron_topic is None:
 value = 90.5
 global_flag = pub.get('global', False)
 # If global flag is False, prepend federate name to the key
 if not global_flag:
 key = "{fed}/{key}".format(fed=self._federate_name, key=key)
 value = 67.90
 self.helics_sim.publish_to_simulation(key, value)

 self.helics_sim.make_time_request()

Publish to the simulation

The agent can publish messages to the simulation using publish_to_simulation API. The code snippet iterates over all the publication keys (topics)
and uses publish_to_simulation API to publish a dummy value of 67.90 for every publication key.

for pub in self.publications:
 key = pub['sim_topic']
 value = 67.90
 self.helics_sim.publish_to_simulation(key, value)

Advance the simulation

With some simulation platforms such as HELICS, the federate can make explicit time request to advance in time by certain
number of time steps. There will be a global time keeper (in this case HELICS broker) which will be responsible for maintaining
time within the simulation. In the time request mode, each federate has to request for time advancement after it has
completed it’s work. The global time keeper grants the lowest time among all time requests. All the federates receive
the granted time and advance forward in simulation time together in a synchronized manner. Please note, the granted time
may not be the same as the requested time by the agent.

Typically, the best place to make the time request is in the callback method provided to the simulation integration object.

self.helics_sim.make_time_request()

Pause the simulation

Some simulation platforms such as GridAPPS-D have the capability to pause the simulation. The agent can make use of
this functionality by calling the appropriate wrapper API exposed by the concrete simulation class. In case of HELICS,
we do not have capability of pause/resume simulation, so calling pause_simulation() API will result in no operation.

self.helics_sim.pause_simulation()

Resume the simulation

If the simulation platform provides the pause simulation functionality then it will also provide capability to resume
the simulation. The agent can call resume_simulation API to resume the simulation. In case of HELICS, we do not have the
capability of pause/resume simulation, so calling resume_simulation() API will result in no operation.

self.helics_sim.resume_simulation()

Stop the simulation

The agent can stop the simulation at any point of point. In the case of HELICSSimIntegration object, it will disconnect
the federate from the HELICS core and close the library. Generally, it is a good practice to call the stop_simulation API
within the onstop() method of the agent. In this way, the agent stops the simulation before exiting the process.

@Core.receiver("onstop")
def onstop(self, sender, **kwargs):
 """
 This method is called when the Agent is about to shutdown, but before it
 disconnects from the message bus.
 """
 self.helics_sim.stop_simulation()

Platform Service Standardization

Service will interact with the message bus through three topics.

	Request - The service agent will listen to incoming requests on this
topic

	Response - The service agent will respond on this topic

	Error - The service will “throw” errors on this topic

Agents which are using these services agents should publish to the above
Request topic and listen on the Reponse and Error topics. Response and
Errors will retain the header that was sent into the request.

Headers

	Request Headers

	Common Header Formats

	type - Unique type of request for the service agent to handle (If an
agent handles more than one request type on a specific topic)

	requesterID - Name of the requesting agent

Header List

	type - Unique type of request for the service agent to handle (If an
agent handles more than one request type on a specific topic)

	priority - HIGH, LOW, LOW_PREEMPT (Found in Scheduler and Activator)

	taskId - Unique task among scheduled tasks.

	window - Seconds remaining in timeslot (actuator agent)

	SourceName - used as name to publish to in smap for archiver agent.

	FROM - Same as requestor id (volttron.messaging.headers.FROM)

	CONTENT_TYPE - volttron.messaging.headers.CONTENT_TYPE.JSON,
volttron.messaging.headers.CONTENT_TYPE.PLAIN_TEXT
Datalogger location is specified in the message itself.

	Multibuilding

	Cookie

Request Formats (Content-Types)

	volttron.messaging.headers.CONTENT_TYPE.JSON

	volttron.messaging.headers.CONTENT_TYPE.PLAIN_TEXT

Topic List

	Actuator and Scheduling Agent

	devices/actuators/schedule/request (NEW_SCHEDULE request)

	devices/actuators/schedule/request (CANCEL_SCHEDULE request)

	devices/actuators/schedule/response

	devices/actuators/schedule/announce/[full device path]

	devices/actuators/schedule/response (Response for preempted task)

	devices/actuators/get/[full device path]/[actuation point]

	devices/actuators/set/[full device path]/[actuation point]

	devices/actuators/value/[full device path]/[actuation point]

	devices/actuators/error/[full device path]/[actuation point]

	Archiver Agent

	archiver/request/[path to the value desired/ full device path]

	Logger Agent

	datalogger/log/

	datalogger/log/[path in SMAP for the data point]

	datalogger/status (Status of the storage request)

	Mobility Agent

	platform/move/request/[agent id]

	platform/move/reply/[agent id]

	Multi-Building Agent

	building/recv/[campus]/[building]/[topic]

	building/send/[campus]/[building]/[topic]

	building/error/[campus]/[building]/[topic]

	Weather Agent

	Weather agent topic
list [https://github.com/VOLTTRON/volttron/wiki/WeatherAgentTopics]

	Platform Topics

	platform/shutdown

	agent/[agent]/shutdown

Acquiring Third Party Agent Code

Third party agents developed from a variety of sources are available from the volttron-applications repository (https://github.com/VOLTTRON/volttron-applications.git). The current best practice is to have the main volttron and the volttron-applications repository within the same common ancestry folder.

volttron-repositories/
|
|--- volttron/
|
|--- volttron-applications/

One can clone the latest applications from the repository via the following command:

git clone https://github.com/VOLTTRON/volttron-applications.git

Driver Framework Overview

VOLTTRON drivers act as an interface between agents on the platform and a device. While running on the platform,
drivers are special purpose agents which instead of being run as a separate process, are run as a greenlet in the
Master Driver process.

Driver instances are created by the Master Driver when a new driver configuration is added to the configuration store.
Drivers use the following topic pattern devices/<campus>/<building>/<device id>. When a configuration file is added
to the Master Driver’s store using this pattern, the Master Driver creates a Driver Agent. The Driver agent is in turn
instantiated with a instance of the Interface class corresponding to the driver_type parameter in the configuration
file. The Interface class is responsible for implementing the communication paradigms of a device or protocol. Once
configured, the Master Driver periodically polls the Driver Agent for data which is collected from the interface class.
Additionally, points can be requested ad-hoc via the Master Driver’s JSON-RPC method “get_point”. Points may be set
by using JSON-RPC with the Actuator agent to set up a schedule and calling the “set_point” method.

Driver Conventions

	Drivers are polled by the Master Driver agent and values can be set using the Actuator Agent

	Drivers should have a 1-to-1 relationship with a device

	Driver modules should be written in Python files in the services/core/MasterDriverAgent/master_driver/interfaces
directory in the VOLTTRON repository. The master driver will search for a Python file in this directory matching the
name provided by the driver_type value from the driver configuration when creating the Driver agent.

	Driver code consists of an Interface class (exactly named), supported in most cases by one or more Register classes

Agent-Driver Communication Patterns

The VOLTTRON message bus has been developed to allow agents on the platform to interact with each other, as well as with
ICS (Industrial Control Systems) and IOT (Internet of Things) devices via the VOLTTRON driver framework. Agents and
drivers have the ability to publish data to the message bus and to subscribe to message bus topics to read in data as it
is published. Additionally, agents may implement JSONRPC calls and expose JSONRPC endpoints to communicate more directly
with other agents. The following diagram demonstrates typical platform communication patterns for a single platform
deployment.

Typical Single Platform Behavior

The diagram features several entities that comprise the platform and its connected components:

	The VOLTTRON message bus - The message bus is the means of transmission of information in VOLTTRON. The VOLTTRON
message bus is built around existing message bus software; currently VOLTTRON supports RabbitMQ and ZeroMQ. The
VOLTTRON integration includes Pub/Sub and JSON RPC interfaces for agent and driver communication.

	VOLTTRON Platform Agents and Subsystems - These agents and subsystems are installed on the platform to manage the
platform. They provide many user facing functions, aid in communication and manage other agents and drivers.

	User’s Agents - These agents are either agents included in the core repository but installed by a user, or user built
agent modules. They may perform a huge variety of user specified tasks, including data collection, device control,
simulation, etc.

	Master Driver Agent - This agent is installed by a user to facilitate communication with drivers. Drivers should not
communicated with directly - the master driver implements several features for communicating with drivers to ensure
smooth operation and consistent driver behavior.

	Actuator agent - This agent is installed by user to provide scheduling capability for controlling drivers. The master
driver does not include protections for race conditions, etc. It is always recommended to use the Actuator agent to
set values on a device.

	Device Driver - Drivers are special purpose agents which provide an interface between the master driver and devices
such as Modbus, and BACnet devices. Drivers implement a specific set of features for protecting device communication
ensuring uniform behaviors across different devices.

	Device - Devices may be low level physical computers for controlling various systems such as PLCs (Programmable Logic
Controller), devices which communicate on the local network (such as a Smart T.V.), or devices which are accessed via
a remote web API (other smart devices).

Lines of Communication

Connectivity of the platform follows the following paradigm:

	Platform agents (including the Master Driver and Actuator), subsystems, and user agents communicate with the message
bus via a publish/subscribe system.

	Agents can communicate “directly” to each other via JSONRPC calls - JSONRPC calls use the VOLTTRON message bus router
to “direct” messages to an intended recipient. RPC calls from an agent specify a function for the recipient to
perform including input parameters, and the response to the sender should contain the value output by the specified
function.

	The Master Driver will periodically poll device drivers. This functionality is intentionally not user-facing. The
Master Driver iterates over the configured drivers and calls their respective “scrape_all” methods. This will trigger
the drivers to collect point values.

	The Driver will communicate with its configured end devices to collect data points which it then returns to the
driver. The driver then publishes the point data to the bus under the <campus>/<building>/<device id>/all topic.

	To get an individual device point, the user agent should send an RPC call to the Master Driver for “get_point”,
providing the point’s corresponding topic. After the Master Driver processes the request, communication happens very
similarly to polling, but rather than an “all” publish, the data is returned via the Master Driver to the user agent.

	To set a point on a device, it is recommended to use an Actuator Agent. The user agent sends an RPC request to the
Actuator to schedule time for the agent to control the device. During that scheduled time the user agent may send it
a set point request. If the schedule has been created, the actuator will then forward that request to the Master
Driver, at which point the communication happens similarly to a “get_point” request.

The general paradigm for the device-driver relationship as specified by the VOLTTRON driver framework is a 1-to-1
relationship. Each end device should be interacted with via a single device driver configured on one platform. To
distribute device data, the DataPuller and forwarder agents can be used at the platform level. Multiple platforms are
not intended to collect data or share control of a single device.

Special Case Drivers

Some drivers require a different communication paradigm. One common alternative is shown in the diagram below:

This example describes an alternative pattern wherein BACnet drivers communicate via a BACnet proxy agent to communicate
with end devices. This behavior is derived from the networking requirements of the BACnet specification. BACnet
specifies a star topology for a given network; “slave” devices in a BACnet network communicate with a single “master”.
In this case, the BACnet proxy acts as a virtual BACnet master, and device drivers forward their requests to this agent
which then performs the BACnet communication (whereas the typical pattern would have devices communicate directly with
the corresponding device). There are many other situations which may require this paradigm to be adopted (such as
working with remote APIs with request limits), and it is up to the party implementing the driver to determine if this
pattern or another pattern may be the most appropriate implementation pattern for their respective use case.

Installing the Fake Driver

The Fake Driver is included as a way to quickly see data published to the message bus in a format that mimics what a
true driver would produce. This is a simple implementation of the VOLTTRON driver framework.

See instructions for installing the fake driver

To view data being published from the fake driver on the message bus, one can
install the Listener Agent and read the VOLTTRON log file:

cd <root volttron directory>
tail -f volttron.log

Master Driver

The Master Driver agent is a special purpose agent a user can install on the platform to manage communication of
the platform with devices. The Master driver features a number of endpoints for collecting data and sending control
signals using the message bus and automatically publishes data to the bus on a specified interval.

How does it work?

The Master Driver creates a number of driver instances based on the contents of its config store; for each
combination of driver configuration, registry configuration and other referenced config files, a driver instance is
created by the Master Driver. When configuration files are removed, the corresponding driver instance is removed by the
Master Driver.

Drivers are special-purpose agents for device communication, and unlike most agents, run
as separate threads under the Master Driver (typically agents are spawned as their own process). While running, the
driver periodically “scrapes” device data and publishes the scrape to the message bus, as well as handling ad-hoc data
collection and control signalling commands issued from the Master Driver. The actual commands are issued to devices by
the driver’s “Interface” class.

An Interface class is a Python class which serves as the interface between the driver and the device. The Interface
does this by implementing a set of well-defined actions using the communication paradigms and protocols used by the
device. For devices such as BACnet and Modbus devices, interfaces wrap certain protocol functions in Python code to be
used by the driver. In other cases, interfaces interact with web-API’s, etc.

Device/Driver Communication

The below diagram demonstrates driver communication on the platform in a typical case.

[image: ../../_images/driver_flow.png]
Communication occurs using the following steps:

	Platform agents and the user’s agents communicate between themselves and the message bus using publish/subscribe or
JSON-RPC

	The user’s agent sends a JSON-RPC request to the Platform Driver to get_point

	And/Or the user’s agent sends a JSON-RPC request to the Actuator to set_point

	The Platform Driver forwards the request to the driver instance specified in the request

	The device driver communicates with the end device

	The end device returns a response to the driver indicating its current status

	The driver publishes the device’s response to the message bus using a publish

Installation

The Master Driver must first be configured, similarly to other agents.

Then, the user must add driver configurations, registry configurations, and any other referenced configurations
to the config store if they do not already exist.

Adding Device Configurations to the Configuration Store

Configurations are added to the Configuration Store using the command line:

volttron-ctl config store platform.driver <name> <file name> <file type>

	name - The name used to refer to the file from the store.

	file name - A file containing the contents of the configuration.

	file type - --raw, --json, or --csv. Indicates the type of the file. Defaults to --json.

The main configuration must have the name config

Device configuration but not registry configurations must have a name prefixed with devices/. Scripts that
automate the process will prefix registry configurations with registry_configs/, but that is not a requirement for
registry files.

The name of the device’s configuration in the store is used to create the topic used to reference the device. For
instance, a configuration named devices/PNNL/ISB1/vav1 will publish scrape results to devices/PNNL/ISB1/vav1 and
is accessible with the Actuator Agent via PNNL/ISB1/vav1.

The name of a registry configuration must match the name used to refer to it in the driver configuration. The reference
is not case sensitive.

If the Master Driver Agent is running any changes to the configuration store will immediately affect the running devices
according to the changes.

Example

Consider the following three configuration files: A master driver configuration called master-driver.agent, a
Modbus device configuration file called modbus_driver.config and corresponding Modbus registry configuration file called
modbus_registry.csv

To store the master driver configuration run the command:

volttron-ctl config store platform.driver config master-driver.agent

To store the registry configuration run the command (note the --csv option):

volttron-ctl config store platform.driver registry_configs/modbus_registry.csv modbus_registry.csv --csv

Note

The registry_configs/modbus_registry.csv argument in the above command must match the reference to the
registry_config found in modbus_driver.config.

To store the driver configuration run the command:

volttron-ctl config store platform.driver devices/my_campus/my_building/my_device modbus_config.config

Converting Old Style Configuration

The new Master Driver no longer supports the old style of device configuration. The old device_list setting is
ignored.

To simplify updating to the new format scripts/update_master_driver_config.py is provide to automatically update to
the new configuration format.

With the platform running run:

python scripts/update_master_driver_config.py <old configuration> <output>

old_configuration`` is the main configuration file in the old format. The script automatically modifies the driver
files to create references to CSV files and adds the CSV files with the appropriate name.

output is the target output directory.

If the --keep-old switch is used the old configurations in the output directory (if any) will not be deleted before
new configurations are created. Matching names will still be overwritten.

The output from scripts/update_master_driver_config.py can be automatically added to the configuration store
for the Master Driver agent with scripts/install_master_driver_configs.py.

Creating and naming configuration files in the form needed by scripts/install_master_driver_configs.py can speed up
the process of changing and updating a large number of configurations. See the --help message for
scripts/install_master_driver_configs.py for more details.

Usage

After installing the Master Driver and loading driver configs into the config store, the installed drivers begin
polling and JSON-RPC endpoints become usable.

Polling

Once running, the Master Driver will spawn drivers using the driver_type parameter of the
driver configuration and periodically poll devices for all point data specified in
the registry configuration (at the interval specified by the interval parameter
of the driver configuration).

Using the default configuration provided in the repository, device data collected during a “scrape all” is published
to the depth_first_all topic for the device.

For more information on device data topics, please view the device state publish docs.

JSON-RPC Endpoints

get_point - Returns the value of specified device set point

	Parameters

	
	path - device topic string (typical format is devices/campus/building/device)

	point_name - name of device point from registry configuration file

	set_point - Set value on specified device set point. If global override is condition is set, raise OverrideError

	exception.

	Parameters

	
	path - device topic string (typical format is devices/campus/building/device)

	point_name - name of device point from registry configuration file

	value - desired value to set for point on device

Warning

It is not recommended to call the set_point method directly. It is recommended to instead use the
Actuator agent to set points on a device, using its scheduling capability.

scrape_all - Returns values for all set points on the specified device.

	Parameters

	
	path - device topic string (typical format is devices/campus/building/device)

get_multiple_points - return values corresponding to multiple points on the same device

	Parameters

	
	path - device topic string (typical format is devices/campus/building/device)

	point_names - iterable of device point names from registry configuration file

	set_multiple_points - Set values on multiple set points at once. If global override is condition is set, raise

	OverrideError exception.

	Parameters

	
	path - device topic string (typical format is devices/campus/building/device)

	point_names_value - list of tuples consisting of (point_name, value) pairs for setting a series of
points

heart_beat - Send a heartbeat/keep-alive signal to all devices configured for Master Driver

	revert_point - Revert the set point of a device to its default state/value. If global override is condition is

	set, raise OverrideError exception.

	Parameters

	
	path - device topic string (typical format is devices/campus/building/device)

	point_name - name of device point from registry configuration file

	revert_device - Revert all the set point values of the device to default state/values. If global override is

	condition is set, raise OverrideError exception.

	Parameters

	
	path - device topic string (typical format is devices/campus/building/device)

	set_override_on - Turn on override condition on all the devices matching the specified pattern (

	override docs)

	Parameters

	
	
	pattern - Override pattern to be applied. For example,

	
	If pattern is campus/building1/* - Override condition is applied for all the devices under
campus/building1/.

	If pattern is campus/building1/ahu1 - Override condition is applied for only campus/building1/ahu1
The pattern matching is based on bash style filename matching semantics.

	duration - Duration in seconds for the override condition to be set on the device (default 0.0,
duration <= 0.0 imply indefinite duration)

	failsafe_revert - Flag to indicate if all the devices falling under the override condition must to be
set
to its default state/value immediately.

	staggered_revert -

set_override_off - Turn off override condition on all the devices matching the pattern.

	Parameters

	
	pattern - device topic pattern for devices on which the override condition should be removed.

get_override_devices - Get a list of all the devices with override condition.

clear_overrides - Turn off override condition for all points on all devices.

get_override_patterns - Get a list of all override condition patterns currently set.

Actuator Agent

This agent is used to manage write access to devices. Agents may request scheduled times, called Tasks, to interact with
one or more devices.

Actuator Agent Communication

Scheduling a Task

An agent can request a task schedule by publishing to the devices/actuators/schedule/request topic with the following
header:

{
 'type': 'NEW_SCHEDULE',
 'requesterID': <Ignored, VIP Identity used internally>
 'taskID': <unique task ID>, #The desired task ID for this task. It must be unique among all other scheduled tasks.
 'priority': <task priority>, #The desired task priority, must be 'HIGH', 'LOW', or 'LOW_PREEMPT'
}

with the following message:

[
 ["campus/building/device1", #First time slot.
 "2013-12-06 16:00:00", #Start of time slot.
 "2013-12-06 16:20:00"], #End of time slot.
 ["campus/building/device1", #Second time slot.
 "2013-12-06 18:00:00", #Start of time slot.
 "2013-12-06 18:20:00"], #End of time slot.
 ["campus/building/device2", #Third time slot.
 "2013-12-06 16:00:00", #Start of time slot.
 "2013-12-06 16:20:00"], #End of time slot.
 #etc...
]

Warning

If time zones are not included in schedule requests then the Actuator will interpret them as being in local time.
This may cause remote interaction with the actuator to malfunction.

Points on Task Scheduling

	Everything in the header is required

	Task id and requester id (agentid) should be a non empty value of type string

	A Task schedule must have at least one time slot.

	The start and end times are parsed with dateutil’s date/time
parser [http://labix.org/python-dateutil#head-c0e81a473b647dfa787dc11e8c69557ec2c3ecd2].
The default string representation of a python datetime object will parse without issue.

	Two Tasks are considered conflicted if at least one time slot on a device from one task overlaps the time slot of the
other on the same device.

	The end time of one time slot can be the same as the start time of another time slot for the same device. This will
not be considered a conflict. For example, time_slot1(device0, time1, **time2**) and
time_slot2(device0, **time2**, time3) are not considered a conflict

	A request must not conflict with itself

	If something goes wrong see this failure string list for an
explanation of the error.

Task Priorities

	HIGH: This Task cannot be preempted under any circumstance. This task may preempt other conflicting preemptable
Tasks.

	LOW: This Task cannot be preempted once it has started. A Task is considered started once the earliest time slot
on any device has been reached. This Task may not preempt other Tasks.

	LOW_PREEMPT: This Task may be preempted at any time. If the Task is preempted once it has begun running any
current time slots will be given a grace period (configurable in the ActuatorAgent configuration file, defaults to 60
seconds) before being revoked. This Task may not preempt other Tasks.

Canceling a Task

A task may be canceled by publishing to the devices/actuators/schedule/request topic with the following header:

{
 'type': 'CANCEL_SCHEDULE',
 'requesterID': <Ignored, VIP Identity used internally>
 'taskID': <unique task ID>, #The desired task ID for this task. It must be unique among all other scheduled tasks.
}

Points on Task Canceling

	The requesterID and taskID must match the original values from the original request header.

	After a Tasks time has passed there is no need to cancel it. Doing so will result in a TASK_ID_DOES_NOT_EXIST
error.

	If something goes wrong see this failure string list for an explanation
of the error.

Actuator Agent Schedule Response

In response to a Task schedule request the ActuatorAgent will respond on the topic devices/actuators/schedule/result
with the header:

{
 'type': <'NEW_SCHEDULE', 'CANCEL_SCHEDULE'>
 'requesterID': <Agent VIP identity from the request>,
 'taskID': <Task ID from the request>
}

And the message (after parsing the json):

{
 'result': <'SUCCESS', 'FAILURE', 'PREEMPTED'>,
 'info': <Failure reason, if any>,
 'data': <Data about the failure or cancellation, if any>
}

The Actuator Agent may publish cancellation notices for preempted Tasks using the PREEMPTED result.

Preemption Data

Preemption data takes the form:

{
 'agentID': <Agent ID of preempting task>,
 'taskID': <Task ID of preempting task>
}

Failure Reasons

In many cases the Actuator Agent will try to give good feedback as to why a request failed.

General Failures

	INVALID_REQUEST_TYPE: Request type was not NEW_SCHEDULE or CANCEL_SCHEDULE.

	MISSING_TASK_ID: Failed to supply a taskID.

	MISSING_AGENT_ID: AgentID not supplied.

Task Schedule Failures

	TASK_ID_ALREADY_EXISTS: The supplied taskID already belongs to an existing task.

	MISSING_PRIORITY: Failed to supply a priority for a Task schedule request.

	INVALID_PRIORITY: Priority not one of HIGH, LOW, or LOW_PREEMPT.

	MALFORMED_REQUEST_EMPTY: Request list is missing or empty.

	REQUEST_CONFLICTS_WITH_SELF: Requested time slots on the same device overlap.

	MALFORMED_REQUEST: Reported when the request parser raises an unhandled exception. The exception name and info are
appended to this info string.

	CONFLICTS_WITH_EXISTING_SCHEDULES: This schedule conflict with an existing schedules that it cannot preempt. The
data item for the results will contain info about the conflicts in this form (after parsing json)

{
 '<agentID1>':
 {
 '<taskID1>':
 [
 ["campus/building/device1",
 "2013-12-06 16:00:00",
 "2013-12-06 16:20:00"],
 ["campus/building/device1",
 "2013-12-06 18:00:00",
 "2013-12-06 18:20:00"]
]
 '<taskID2>':[...]
 }
 '<agentID2>': {...}
}

Task Cancel Failures

	TASK_ID_DOES_NOT_EXIST: Trying to cancel a Task which does not exist. This error can also occur when trying to
cancel a finished Task.

	AGENT_ID_TASK_ID_MISMATCH: A different agent ID is being used when trying to cancel a Task.

Actuator Agent Value Request

Once an Task has been scheduled and the time slot for one or more of the devices has started an agent may interact with
the device using the get and set topics.

Both get and set are responded to the same way. See Actuator Reply below.

Getting values

While a driver for a device should always be setup to periodically broadcast the state of a device you may want an
up-to-the-moment value for an actuation point on a device.

To request a value publish a message to the following topic:

'devices/actuators/get/<full device path>/<actuation point>'

Setting Values

Value are set in a similar manner:

To set a value publish a message to the following topic:

'devices/actuators/set/<full device path>/<actuation point>'

With this header:

#python
{
 'requesterID': <Ignored, VIP Identity used internally>
}

And the message contents being the new value of the actuator.

Warning

The actuator agent expects all messages to be JSON and will parse them accordingly. Use publish_json to send
messages where possible. This is significant for Boolean values especially

Actuator Reply

The ActuatorAgent will reply to both get and set on the value topic for an actuator:

'devices/actuators/value/<full device path>/<actuation point>'

With this header:

{
 'requesterID': <Agent VIP identity>
}

With the message containing the value encoded in JSON.

Actuator Error Reply

If something goes wrong the Actuator Agent will reply to both get and set on the error topic for an actuator:

'devices/actuators/error/<full device path>/<actuation point>'

With this header:

{
 'requesterID': <Agent VIP identity>
}

The message will be in the following form:

{
 'type': <Error Type or name of the exception raised by the request>
 'value': <Specific info about the error>
}

Common Error Types

	LockError: Returned when a request is made when we do not have permission to use a device. (Forgot to schedule,
preempted and we did not handle the preemption message correctly, ran out of time in time slot, etc…)

	ValueError: Message missing or could not be parsed as JSON

Schedule State Broadcast

Periodically the ActuatorAgent will publish the state of all currently scheduled devices. For each device the
ActuatorAgent will publish to an associated topic:

'devices/actuators/schedule/announce/<full device path>'

With the following header:

{
 'requesterID': <VIP identity of agent with access>,
 'taskID': <Task associated with the time slot>
 'window': <Seconds remaining in the time slot>
}

The frequency of the updates is configurable with the schedule_publish_interval setting.

Task Preemption

Both LOW and LOW_PREEMPT priority Tasks can be preempted. LOW priority Tasks may be preempted by a conflicting
HIGH priority Task before it starts. LOW_PREEMPT priority Tasks can be preempted by HIGH priority Tasks even
after they start.

When a Task is preempted the ActuatorAgent will publish to devices/actuators/schedule/response with the following
header:

{
 'type': 'CANCEL_SCHEDULE',
 'requesterID': <Agent VIP identity for the preempted Task>,
 'taskID': <Task ID for the preempted Task>
}

And the message (after parsing the json):

{
 'result': 'PREEMPTED',
 'info': '',
 'data':
 {
 'agentID': <Agent VIP identity of preempting task>,
 'taskID': <Task ID of preempting task>
 }
}

Preemption Grace Time

If a LOW_PREEMPT priority Task is preempted while it is running the Task will be given a grace period to clean up
before ending. For every device which has a current time slot the window of remaining time will be reduced to the grace
time. At the end of the grace time the Task will finish. If the Task has no currently open time slots on any devices
it will end immediately.

ActuatorAgent Configuration

	schedule_publish_interval: Interval between current schedules being published to the message bus for all devices

	preempt_grace_time: Minimum time given to Tasks which have been preempted to clean up in seconds. Defaults to 60

	schedule_state_file: File used to save and restore Task states if the ActuatorAgent restarts for any reason. File
will be created if it does not exist when it is needed

Sample configuration file

{
 "schedule_publish_interval": 30,
 "schedule_state_file": "actuator_state.pickle"
}

Heartbeat Signal

The ActuatorAgent can be configured to send a heartbeat message to the device to indicate the platform is running.
Ideally, if the heartbeat signal is not sent the device should take over and resume normal operation.

The configuration has two parts, the interval (in seconds) for sending the heartbeat and the specific point that should
be modified each iteration.

The heart beat interval is specified with a global heartbeat_interval setting. The ActuatorAgent will automatically
set the heartbeat point to alternating “1” and “0” values. Changes to the heartbeat point will be published like any
other value change on a device.

The heartbeat points are specified in the driver configuration file of individual devices.

Notes on Working With the ActuatorAgent

	An agent can watch the window value from device state updates to perform scheduled
actions within a timeslot

	If an Agent’s Task is LOW_PREEMPT priority it can watch for device state updates where the window is less than
or equal to the grace period (default 60.0)

	When considering if to schedule long or multiple short time slots on a single device:

	Do we need to ensure the device state for the duration between slots?

	Yes: Schedule one long time slot instead

	No: Is it all part of the same Task or can we break it up in case there is a conflict with one of our time
slots?

	When considering time slots on multiple devices for a single Task:

	Is the Task really dependent on all devices or is it actually multiple Tasks?

	When considering priority:

	Does the Task have to happen on an exact day?

	Yes: Use HIGH

	No: Consider LOW and reschedule if preempted

	Is it problematic to prematurely stop a Task once started?

	Yes: Consider LOW or HIGH

	No: Consider LOW_PREEMPT and watch the device state updates for a small window value

	If an agent is only observing but needs to assure that no another Task is going on while taking readings it can
schedule the time to prevent other agents from messing with a devices state. The schedule updates can be used as a
reminder as to when to start watching

	Any device, existing or not, can be scheduled. This allows for agents to schedule fake devices to create
reminders to start working later rather then setting up their own internal timers and schedules

Fake Driver

The FakeDriver is included as a way to quickly see data published to the message bus in a format
that mimics what a true Driver would produce. This is an extremely simple implementation of the
VOLTTRON driver framework.

Fake Device Driver Configuration

This driver does not connect to any actual device and instead produces random and or pre-configured values.

Driver Config

There are no arguments for the driver_config section of the device configuration file. The driver_config entry must
still be present and should be left blank.

Here is an example device configuration file:

{
 "driver_config": {},
 "driver_type": "bacnet",
 "registry_config":"config://registry_configs/vav.csv",
 "interval": 5,
 "timezone": "UTC",
 "heart_beat_point": "heartbeat"
}

A sample fake device configuration file can be found in the VOLTTRON repository in
examples/configurations/drivers/fake.config

Fake Device Registry Configuration File

The registry configuration file is a CSV [https://en.wikipedia.org/wiki/Comma-separated_values] file. Each row
configures a point on the device.

The following columns are required for each row:

	Volttron Point Name - The name by which the platform and agents running on the platform will refer to this
point. For instance, if the Volttron Point Name is HeatCall1 (and using the example device configuration
above) then an agent would use pnnl/isb2/hvac1/HeatCall1 to refer to the point when using the RPC interface of
the actuator agent.

	Units - Used for meta data when creating point information on the historian.

	Writable - Either TRUE or FALSE. Determines if the point can be written to. Only points labeled TRUE
can be written to through the ActuatorAgent. Points labeled TRUE incorrectly will cause an error to be returned
when an agent attempts to write to the point.

The following columns are optional:

	Starting Value - Initial value for the point. If the point is reverted it will change back to this value. By
default, points will start with a random value (1-100).

	Type - Value type for the point. Defaults to “string”. Valid types are:

	string

	integer

	float

	boolean

Any additional columns will be ignored. It is common practice to include a Point Name or Reference Point Name to
include the device documentation’s name for the point and Notes and Unit Details for additional information
about a point. Please note that there is nothing in the driver that will enforce anything specified in the
Unit Details column.

BACnet

	Volttron Point Name

	Units

	Units Details

	Writable

	Starting Value

	Type

	Notes

	Heartbeat

	On/Off

	On/Off

	TRUE

	0

	boolean

	Point for heartbeat toggle

	OutsideAirTemperature1

	F

	-100 to 300

	FALSE

	50

	float

	CO2 Reading 0.00-2000.0 ppm

	SampleWritableFloat1

	PPM

	10.00 (default)

	TRUE

	10

	float

	Setpoint to enable demand control ventilation

	SampleLong1

	Enumeration

	1 through 13

	FALSE

	50

	int

	Status indicator of service switch

	SampleWritableShort1

	%

	0.00 to 100.00 (20 default)

	TRUE

	20

	int

	Minimum damper position during the standard mode

	SampleBool1

	On / Off

	on/off

	FALSE

	TRUE

	boolean

	Status indicator of cooling stage 1

	SampleWritableBool1

	On / Off

	on/off

	TRUE

	TRUE

	boolean

	Status indicator

A sample fake registry configuration file can be found
here [https://raw.githubusercontent.com/VOLTTRON/volttron/c57569bd9e71eb32afefe8687201d674651913ed/examples/configurations/drivers/fake.csv]
or in the VOLTTRON repository in examples/configurations/drivers/fake.csv

Installation

Installing a Fake driver in the Master Driver Agent requires adding copies of the device
configuration and registry configuration files to the Master Driver’s configuration store

	Create a config directory (if one doesn’t already exist) inside your Volttron repository:

mkdir config

All local config files will be worked on here.

	Copy over the example config file and registry config file from the VOLTTRON repository:

cp examples/configurations/drivers/fake.config config/
cp examples/configurations/drivers/fake.csv config/

	Edit the driver config fake.config for the paths on your system:

{
 "driver_config": {},
 "registry_config": "config://fake.csv",
 "interval": 5,
 "timezone": "US/Pacific",
 "heart_beat_point": "Heartbeat",
 "driver_type": "fakedriver",
 "publish_breadth_first_all": false,
 "publish_depth_first": false,
 "publish_breadth_first": false
 }

	Create a copy of the Master Driver config from the VOLTTRON repository:

cp examples/configurations/drivers/master-driver.agent config/fake-master-driver.config

	Add fake.csv and fake.config to the configuration store:

vctl config store platform.driver devices/campus/building/fake config/fake.config
vcfl config store platform.driver fake.csv config/fake.csv --csv

	Edit fake-master-driver.config to reflect paths on your system

{
 "driver_scrape_interval": 0.05
}

	Use the scripts/install-agent.py script to install the Master Driver agent:

python scripts/install-agent.py -s services/core/MasterDriverAgent -c config/fake-master-driver.config

	If you have a Listener Agent already installed, you should start seeing data being published to
the bus.

BACnet Driver

BACnet Driver Configuration

Communicating with BACnet devices requires that the BACnet Proxy Agent is configured and
running. All device communication happens through this agent.

Requirements

The BACnet driver requires the BACPypes package. This package can be installed in an activated environment with:

pip install bacpypes

Alternatively, running bootstrap.py with the --drivers option will install all
requirements for drivers included in the repository including BACnet.

python3 bootstrap.py --drivers

Warning

Current versions of VOLTTRON support only BACPypes version 0.16.7

Driver Config

There are nine arguments for the driver_config section of the device configuration file:

	device_address - Address of the device. If the target device is behind an IP to MS/TP router then Remote
Station addressing will probably be needed for the driver to find the device

	device_id - BACnet ID of the device. Used to establish a route to the device at startup

	min_priority - (Optional) Minimum priority value allowed for this device whether specifying the priority
manually or via the registry config. Violating this parameter either in the configuration or when writing to the
point will result in an error. Defaults to 8

	max_per_request - (Optional) Configure driver to manually segment read requests. The driver will only grab up
to the number of objects specified in this setting at most per request. This setting is primarily for scraping
many points off of low resource devices that do not support segmentation. Defaults to 10000

	proxy_address - (Optional) VIP address of the BACnet proxy. Defaults to “platform.bacnet_proxy”. See
Communicating With Multiple BACnet Networks for details. Unless your BACnet network has special needs you should not
change this value

	ping_retry_interval - (Optional) The driver will ping the device to establish a route at startup. If the
BACnet proxy is not available the driver will retry the ping at this interval until it succeeds. Defaults to 5

	use_read_multiple - (Optional) During a scrape the driver will tell the proxy to use a
ReadPropertyMultipleRequest to get data from the device. Otherwise the proxy will use multiple ReadPropertyRequest
calls. If the BACnet proxy is reporting a device is rejecting requests try changing this to false for that device.
Be aware that setting this to false will cause scrapes for that device to take much longer. Only change if needed.
Defaults to true

	cov_lifetime - (Optional) When a device establishes a change of value subscription for a point, this argument
will be used to determine the lifetime and renewal period for the subscription, in seconds. Defaults to 180
(Added to Master Driver version 3.2)

Here is an example device configuration file:

{
 "driver_config": {"device_address": "10.1.1.3",
 "device_id": 500,
 "min_priority": 10,
 "max_per_request": 24
 },
 "driver_type": "bacnet",
 "registry_config":"config://registry_configs/vav.csv",
 "interval": 5,
 "timezone": "UTC",
 "heart_beat_point": "heartbeat"
}

A sample BACnet configuration file [https://raw.githubusercontent.com/VOLTTRON/volttron/c57569bd9e71eb32afefe8687201d674651913ed/examples/configurations/drivers/bacnet1.config]
can be found in the VOLTTRON repository at examples/configurations/drivers/bacnet1.config

BACnet Registry Configuration File

The registry configuration file is a CSV [https://en.wikipedia.org/wiki/Comma-separated_values] file. Each row
configures a point on the device.

Most of the configuration file can be generated with the grab_bacnet_config.py utility in scripts/bacnet. See
BACnet Auto-Configuration.

Currently, the driver provides no method to access array type properties even if the members of the array are of a
supported type.

The following columns are required for each row:

	Volttron Point Name - The name by which the platform and agents running on the platform will refer to this
point. For instance, if the Volttron Point Name is HeatCall1 (and using the example device configuration above)
then an agent would use pnnl/isb2/hvac1/HeatCall1 to refer to the point when using the RPC interface of the
Actuator agent

	Units - Used for meta data when creating point information on the historian.

	BACnet Object Type - A string representing what kind of BACnet standard object the point belongs to. Examples
include:

	analogInput

	analogOutput

	analogValue

	binaryInput

	binaryOutput

	binaryValue

	multiStateValue

	Property - A string representing the name of the property belonging to the object. Usually, this will be
presentValue

	Writable - Either TRUE or FALSE. Determines if the point can be written to. Only points labeled TRUE
can be written to through the Actuator Agent. Points labeled TRUE incorrectly will cause an error to be
returned when an agent attempts to write to the point

	Index - Object ID of the BACnet object

The following columns are optional:

	Write Priority - BACnet priority for writing to this point. Valid values are 1-16. Missing this column or
leaving the column blank will use the default priority of 16

	COV Flag - Either True or False. Determines if a BACnet Change-of-Value subscription should be
established for this point. Missing this column or leaving the column blank will result in no change of value
subscriptions being established. (Added to Master Driver version 3.2)

Any additional columns will be ignored. It is common practice to include a Point Name or Reference Point Name
column to include the device documentation’s name for the point and Notes and Unit Details columns for additional
information about a point.

BACnet

	Point Name

	Volttron Point Name

	Units

	Unit Details

	BACnet Object Type

	Property

	Writable

	Index

	Notes

	Building/FCB.Local Application.PH-T

	PreheatTemperature

	degreesFahrenheit

	-50.00 to 250.00

	analogInput

	presentValue

	FALSE

	3000119

	Resolution: 0.1

	Building/FCB.Local Application.RA-T

	ReturnAirTemperature

	degreesFahrenheit

	-50.00 to 250.00

	analogInput

	presentValue

	FALSE

	3000120

	Resolution: 0.1

	Building/FCB.Local Application.RA-H

	ReturnAirHumidity

	percentRelativeHumidity

	0.00 to 100.00

	analogInput

	presentValue

	FALSE

	3000124

	Resolution: 0.1

	Building/FCB.Local Application.CLG-O

	CoolingValveOutputCommand

	percent

	0.00 to 100.00 (default 0.0)

	analogOutput

	presentValue

	TRUE

	3000107

	Resolution: 0.1

	Building/FCB.Local Application.MAD-O

	MixedAirDamperOutputCommand

	percent

	0.00 to 100.00 (default 0.0)

	analogOutput

	presentValue

	TRUE

	3000110

	Resolution: 0.1

	Building/FCB.Local Application.PH-O

	PreheatValveOutputCommand

	percent

	0.00 to 100.00 (default 0.0)

	analogOutput

	presentValue

	TRUE

	3000111

	Resolution: 0.1

	Building/FCB.Local Application.RH-O

	ReheatValveOutputCommand

	percent

	0.00 to 100.00 (default 0.0)

	analogOutput

	presentValue

	TRUE

	3000112

	Resolution: 0.1

	Building/FCB.Local Application.SF-O

	SupplyFanSpeedOutputCommand

	percent

	0.00 to 100.00 (default 0.0)

	analogOutput

	presentValue

	TRUE

	3000113

	Resolution: 0.1

A sample BACnet registry file can be found here [https://raw.githubusercontent.com/VOLTTRON/volttron/c57569bd9e71eb32afefe8687201d674651913ed/examples/configurations/drivers/bacnet.csv] or
in the VOLTTRON repository in examples/configurations/drivers/bacnet.csv

	BACnet Proxy Agent
	Introduction

	Requirements

	Configuration
	BACnet device settings

	Device Addressing

	Communicating With Multiple BACnet Networks

	BACnet Change of Value Services

	BACnet Auto-Configuration
	Configuring the Utilities
	Sample BACpypes.ini

	Scanning for BACnet Devices
	Reading Output

	BACNet Scan Options

	Automatically Generating a BACnet Registry Configuration File
	Output and Assumptions

	Scraping Multiple Devices
	Grab Multiple Configs Options

	BACnet Proxy Alternative Scripts

	Problems and Debugging

	BACnet Router Addressing
	Caveats

BACnet Proxy Agent

Introduction

Communication with BACnet device on a network happens via a single virtual BACnet device. In VOLTTRON driver framework,
we use a separate agent specifically for communicating with BACnet devices and managing the virtual BACnet device.

Requirements

The BACnet Proxy agent requires the BACPypes package. This package can be installed in an activated environment with:

pip install bacpypes

Alternatively, running bootstrap.py with the –drivers option will install all
requirements for drivers included in the repository including BACnet.

python3 bootstrap.py --drivers

Warning

Current versions of VOLTTRON support only BACPypes version 0.16.7

Configuration

The agent configuration sets up the virtual BACnet device.

{
 "device_address": "10.0.2.15",
 "max_apdu_length": 1024,
 "object_id": 599,
 "object_name": "Volttron BACnet driver",
 "vendor_id": 15,
 "segmentation_supported": "segmentedBoth"
}

BACnet device settings

	device_address - Address bound to the network port over which BACnet communication will happen on the computer
running VOLTTRON. This is NOT the address of any target device. See
BACnet Router Addressing.

	object_id - ID of the Device object of the virtual BACnet device. Defaults to 599. Only needs to be changed if
there is a conflicting BACnet device ID on your network.

These settings determine the capabilities of the virtual BACnet device. BACnet communication happens at the lowest
common denominator between two devices. For instance, if the BACnet proxy supports segmentation and the target device
does not communication will happen without segmentation support and will be subject to those limitations. Consequently,
there is little reason to change the default settings outside of the max_apdu_length (the default is not the largest
possible value).

	max_apdu_length - (From bacpypes documentation) BACnet works on lots of different types of networks, from
high-speed Ethernet to “slower” and “cheaper” ARCNET or MS/TP (a serial bus protocol used for a field bus defined by
BACnet). For devices to exchange messages they have to know the maximum size message the device can handle.
(End BACpypes docs)

This setting determines the largest APDU (Application Protocol Data Unit) accepted by the BACnet virtual
device. Valid options are 50, 128, 206, 480, 1024, and 1476. Defaults to 1024.(Optional)

	object_name - Name of the object. Defaults to “Volttron BACnet driver”. (Optional)

	vendor_id - Vendor ID of the virtual BACnet device. Defaults to 15. (Optional)

	segmentation_supported - (From bacpypes documentation) A vast majority of BACnet communications traffic fits into
one message, but there can be times when larger messages are convenient and more efficient. Segmentation allows
larger messages to be broken up into segments and spliced back together. It is not unusual for “low power” field
equipment to not support segmentation. (End BACpypes docs)

Possible setting are “segmentedBoth” (default), “segmentedTransmit”, “segmentedReceive”, or “noSegmentation”
(Optional)

Device Addressing

In some cases, it will be needed to specify the subnet mask of the virtual device or a different port number to listen
on. The full format of the BACnet device address is:

<ADDRESS>/<NETMASK>:<PORT>

where <PORT> is the port to use and <NETMASK> is the netmask length. The most common value is 24. See
http://www.computerhope.com/jargon/n/netmask.htm

For instance, if you need to specify a subnet mask of 255.255.255.0 and the IP address bound to the network port is
192.168.1.2 you would use the address:

192.168.1.2/24

If your BACnet network is on a different port (47809) besides the default (47808) you would use the address:

192.168.1.2:47809

If you need to do both:

192.168.1.2/24:47809

Communicating With Multiple BACnet Networks

If two BACnet devices are connected to different ports they are considered to be on different BACnet networks. In order
to communicate with both devices, you will need to run one BACnet Proxy Agent per network.

Each proxy will need to be bound to different ports appropriate for each BACnet network and will need a different VIP
identity specified. When configuring drivers you will need to specify which proxy to use by
specifying the VIP identity.

For example, a proxy connected to the default BACnet network:

{
 "device_address": "192.168.1.2/24"
}

and another on port 47809:

{
 "device_address": "192.168.1.2/24:47809"
}

a device on the first network:

{
 "driver_config": {"device_address": "1002:12",
 "proxy_address": "platform.bacnet_proxy_47808",
 "timeout": 10},
 "driver_type": "bacnet",
 "registry_config":"config://registry_configs/bacnet.csv",
 "interval": 60,
 "timezone": "UTC",
 "heart_beat_point": "Heartbeat"
}

and a device on the second network:

{
 "driver_config": {"device_address": "12000:5",
 "proxy_address": "platform.bacnet_proxy_47809",
 "timeout": 10},
 "driver_type": "bacnet",
 "registry_config":"config://registry_configs/bacnet.csv",
 "interval": 60,
 "timezone": "UTC",
 "heart_beat_point": "Heartbeat"
}

Notice that both configs use the same registry configuration (config://registry_configs/bacnet.csv). This is perfectly
fine as long as the registry configuration is appropriate for both devices. For scraping large numbers of points from
a single BACnet device, there is an optional timeout parameter provided, to prevent the master driver timing out while
the BACnet Proxy Agent is collecting points.

BACnet Change of Value Services

[image: BACnet Change of Value Communications]

Change of Value Services added in version 0.5 of the BACnet Proxy and version 3.2 of the Master Driver.

There are a variety of scenarios in which a user may desire data from some BACnet device point values to be published
independently of the regular scrape interval. Bacpypes provides a “ChangeOfValueServices” (hereby referred to as ‘COV’)
module, which enables a device to push updates to the platform.

The BACnet COV requires that points on the device be properly configured for COV. A point on the BACnet device can be
configured with the ‘covIncrement’ property, which determines the threshold for a COV notification (note: this property
must be configured by the device operator - VOLTTRON does not provide the ability to set or modify this property).

Based on configuration options for BACnet drivers, the driver will instruct the BACnet Proxy to establish a COV
subscription with the device. The subscription will last for an amount of time specified in the driver configuration,
and will auto-renew the subscription. If the proxy loses communication with the device or the device driver is stopped
the subscription will be removed when the lifetime expires.

While the subscription exists, the device will send (confirmed) notifications to which will be published, with the topic
based on the driver’s configured publish topics.

https://bacpypes.readthedocs.io/en/latest/modules/service/cov.html

BACnet Auto-Configuration

Included with the platform are two scripts for finding and configuring BACnet devices. These scripts are located in
scripts/bacnet. bacnet_scan.py will scan the network for devices. grab_bacnet_config.py creates a CSV file
for the BACnet driver that can be used as a starting point for creating your own register configuration.

Both scripts are configured with the file BACpypes.ini.

Configuring the Utilities

While running both scripts create a temporary virtual BACnet device using the bacpypes library. The virtual
device must be configured properly in order to work. This configuration is stored in scripts/bacnet/BACpypes.ini
and will be read automatically when the utility is run.

Note

The only value that (usually) needs to be changed is the address field.

Warning

This is the address bound to the port on the machine you are running the script from, NOT A TARGET DEVICE

This value should be set to the IP address of the network interface used to communicate with the remote device. If
there is more than one network interface you must use the address of the interface connected to the network that can
reach the device.

In Linux you can usually get the addresses bound to all interfaces by running ifconfig from the command line.

If a different outgoing port other than the default 47808 must be used, it can be specified as part of the address in
the form:

<ADDRESS>:<PORT>

In some cases, the netmask of the network will be needed for proper configuration. This can be done following this
format:

<ADDRESS>/<NETMASK>:<PORT>

where <NETMASK> is the netmask length. The most common value is 24. See
http://www.computerhope.com/jargon/n/netmask.htm

In some cases, you may also need to specify a different device ID by changing the value of objectIdentifier so the
virtual BACnet device does not conflict with any devices on the network. objectIdentifier defaults to 599.

Sample BACpypes.ini

[BACpypes]
objectName: Betelgeuse
address: 10.0.2.15/24
objectIdentifier: 599
maxApduLengthAccepted: 1024
segmentationSupported: segmentedBoth
vendorIdentifier: 15

Scanning for BACnet Devices

If the addresses for BACnet devices are unknown they can be discovered using the bacnet_scan.py utility.

To run the utility simply execute the following command:

python bacnet_scan.py

and expect output similar to this:

Device Address = <Address 192.168.1.42>
Device Id = 699
maxAPDULengthAccepted = 1024
segmentationSupported = segmentedBoth
vendorID = 15

Device Address = <RemoteStation 1002:11>
Device Id = 540011
maxAPDULengthAccepted = 480
segmentationSupported = segmentedBoth
vendorID = 5

Reading Output

The address where the device can be reached is listed on the Device Address line. The BACnet device ID is listed on
the Device Id line. The remaining lines are informational and not needed to configure the BACnet driver.

For the first example, the IP address 192.168.1.42 can be used to reach the device. The second device is behind a
BACnet router and can be reached at 1002:11. See BACnet router addressing.

BACNet Scan Options

	--address ADDRESS: Send the WhoIs request only to a specific address. Useful as a way to ping devices on a
network that blocks broadcast traffic.

	--range LOW/HIGH: Specify the device ID range for the results. Useful for filtering.

	--timeout SECONDS: Specify how long to wait for responses to the original broadcast. This defaults to 5 which
should be sufficient for most networks.

	--csv-out CSV_OUT: Write the discovered devices to a CSV file. This can be used as inout for
grab_multiple_configs.py. See Scraping Multiple Devices.

Automatically Generating a BACnet Registry Configuration File

A CSV registry configuration file for the BACnet driver can be generated with the grab_bacnet_config.py script.

Warning

This configuration will need to be edited before it can be used!

The utility is invoked with the command:

python grab_bacnet_config.py <device id>

This will query the device with the matching device ID for configuration information and print the resulting CSV file to
the console.

In order to save the configuration to a file use the --out-file option to specify the output file name.

Optionally the --address option can be used to specify the address of the target. In some cases, this is needed to
help establish a route to the device.

Output and Assumptions

	Attempts at determining if a point is writable proved too unreliable. Therefore all points are considered to be
read-only in the output.

	The only property for which a point is setup for an object is presentValue.

	By default, the Volttron Point Name is set to the value of the name property of the BACnet object on the
device. In most cases this name is vague. No attempt is made at choosing a better name. A duplicate of
Volttron Point Name column called Reference Point Name is created to so that once Volttron Point Name is
changed a reference remains to the actual BACnet device object name.

	Meta data from the objects on the device is used to attempt to put useful info in the Units, Unit Details,
and Notes columns. Information such as the range of valid values, defaults, the resolution or sensor input, and
enumeration or state names are scraped from the device.

With a few exceptions “Units” is pulled from the object’s “units” property and given the name used by the bacpypes
library to describe it. If a value in the Units column takes the form

UNKNOWN UNIT ENUM VALUE: <value>

then the device is using a nonstandard value for the units on that object.

Scraping Multiple Devices

The grab_multiple_configs.py script will use the CSV output of bacnet_scan.py to automatically run
grab_bacnet_config.py on every device listed in the CSV file.

The output is put in two directories. devices/ contains basic driver configurations for the scrapped devices.
registry_configs/ contains the registry file generated by grab_bacnet_config.py.

grab_multiple_configs.py makes no assumptions about device names or topics, however the output is appropriate for
the install_master_driver_configs.py script.

Grab Multiple Configs Options

	--out-directory OUT_DIRECTORY Specify the output directory.

	--use-proxy Use proxy_grab_bacnet_config.py to gather configuration data.

BACnet Proxy Alternative Scripts

Both grab_bacnet_config.py and bacnet_scan.py have alternative versions called
proxy_grab_bacnet_config.py and proxy_bacnet_scan.py respectively. These versions require that the
VOLTTRON platform is running and BACnet Proxy agent is running. Both of these agents use the same command line
arguments as their independent counterparts.

Warning

These versions of the BACnet scripts are intended as a proof of concept and have not been optimized for performance.
proxy_grab_bacnet_config.py takes about 10 times longer to grab a configuration than grab_bacnet_config.py

Problems and Debugging

	Both grab_bacnet_config.py and bacnet_scan.py creates a virtual device that open up a port for communication
with devices. If the BACnet Proxy is running on the VOLTTRON platform it will cause both of these scripts to fail at
startup. Stopping the BACnet Proxy will resolve the problem.

	Typically the utility should run quickly and finish in 30 seconds or less. In our testing, we have never seen a
successful scrape take more than 15 seconds on a very slow device with many points. Many devices will scrape in less
than 3 seconds.

	If the utility has not finished after about 60 seconds it is probably having trouble communicating with the device and
should be stopped. Rerunning with debug output can help diagnose the problem.

To output debug messages to the console add the --debug switch to the end of the command line arguments.

python grab_bacnet_config.py <device ID> --out-file test.csv --debug

On a successful run you will see output similar to this:

DEBUG:<u>main</u>:initialization
DEBUG:<u>main</u>: - args: Namespace(address='10.0.2.20', buggers=False, debug=[], ini=<class 'bacpypes.consolelogging.ini'>, max_range_report=1e+20, out_file=<open file 'out.csv', mode 'wb' at 0x901b0d0>)
DEBUG:<u>main</u>.SynchronousApplication:<u>init</u> (<bacpypes.app.LocalDeviceObject object at 0x901de6c>, '10.0.2.15')
DEBUG:<u>main</u>:starting build
DEBUG:<u>main</u>:pduSource = <Address 10.0.2.20>
DEBUG:<u>main</u>:iAmDeviceIdentifier = ('device', 500)
DEBUG:<u>main</u>:maxAPDULengthAccepted = 1024
DEBUG:<u>main</u>:segmentationSupported = segmentedBoth
DEBUG:<u>main</u>:vendorID = 5
DEBUG:<u>main</u>:device_name = MS-NCE2560-0
DEBUG:<u>main</u>:description =
DEBUG:<u>main</u>:objectCount = 32
DEBUG:<u>main</u>:object name = Building/FCB.Local Application.Room Real Temp 2
DEBUG:<u>main</u>: object type = analogInput
DEBUG:<u>main</u>: object index = 3000274
DEBUG:<u>main</u>: object units = degreesFahrenheit
DEBUG:<u>main</u>: object units details = -50.00 to 250.00
DEBUG:<u>main</u>: object notes = Resolution: 0.1
DEBUG:<u>main</u>:object name = Building/FCB.Local Application.Room Real Temp 1
DEBUG:<u>main</u>: object type = analogInput
DEBUG:<u>main</u>: object index = 3000275
DEBUG:<u>main</u>: object units = degreesFahrenheit
DEBUG:<u>main</u>: object units details = -50.00 to 250.00
DEBUG:<u>main</u>: object notes = Resolution: 0.1
DEBUG:<u>main</u>:object name = Building/FCB.Local Application.OSA
DEBUG:<u>main</u>: object type = analogInput
DEBUG:<u>main</u>: object index = 3000276
DEBUG:<u>main</u>: object units = degreesFahrenheit
DEBUG:<u>main</u>: object units details = -50.00 to 250.00
DEBUG:<u>main</u>: object notes = Resolution: 0.1
...

and will finish something like this:

...
DEBUG:<u>main</u>:object name = Building/FCB.Local Application.MOTOR1-C
DEBUG:<u>main</u>: object type = binaryOutput
DEBUG:<u>main</u>: object index = 3000263
DEBUG:<u>main</u>: object units = Enum
DEBUG:<u>main</u>: object units details = 0-1 (default 0)
DEBUG:<u>main</u>: object notes = BinaryPV: 0=inactive, 1=active
DEBUG:<u>main</u>:finally

Typically if the BACnet device is unreachable for any reason (wrong IP, network down/unreachable, wrong interface
specified, device failure, etc) the scraper will stall at this message:

DEBUG:<u>main</u>:starting build

If you have not specified a valid interface in BACpypes.ini you will see the following error with a stack trace:

ERROR:<u>main</u>:an error has occurred: [Errno 99] Cannot assign requested address
<Python stack trace cut>

BACnet Router Addressing

The underlying library that Volttron uses for BACnet supports IP to MS/TP routers. Devices behind the router use a
Remote Station address in the form:

<network>:<address>

where <network> is the configured network ID of the router and <address> is the address of the device behind the
router.

For example to access the device at <address> 12 for a router configured for <network> 1002 can be accessed with
this address:

1002:12

<network> must be number from 0 to 65534 and <address> must be a number from 0 to 255.

This type of address can be used anywhere an address is required in configuration of the Volttron BACnet driver.

Caveats

VOLTTRON uses a UDP broadcast mechanism to establish the route to the device. If the route cannot be established it
will fall back to a UDP broadcast for all communication with the device. If the IP network where the router is
connected blocks UDP broadcast traffic then these addresses will not work.

Chargepoint Driver

Chargepoint Driver Configuration

The chargepoint driver requires at least one additional python library and has its own requirements.txt.
Make sure to run:

pip install -r <chargepoint driver path>/requirements.txt

before using this driver.

driver_config

There are three arguments for the driver_config section of the device configuration file:

	stationID - Chargepoint ID of the station. This format is usually ‘1:00001’

	username - Login credentials for the Chargepoint API

	password- Login credentials for the Chargepoint API

The Chargepoint login credentials are generated in the Chargepoint web portal and require a Chargepoint account with
sufficient privileges. Station IDs are also available on the web portal.

Here is an example device configuration file:

{
 "driver_config": {"stationID": "3:12345",
 "username": "4b90fc0ae5fe8b6628e50af1215d4fcf5743a6f3c63ee1464012875",
 "password": "ebaf1a3cdfb80baf5b274bdf831e2648"},
 "driver_type": "chargepoint",
 "registry_config":"config://chargepoint.csv",
 "interval": 60,
 "timezone": "UTC",
 "heart_beat_point": "heartbeat"
}

A sample Chargepoint configuration file can be found in the VOLTTRON repository in
examples/configurations/drivers/chargepoint1.config

Chargepoint Registry Configuration File

The registry configuration file is a CSV [https://en.wikipedia.org/wiki/Comma-separated_values] file. Each row
configures a point on the device.

The following columns are required for each row:

	Volttron Point Name - The name by which the platform and agents running on the platform will refer to this
point.

	Attribute Name - Chargepoint API attribute name. This determines the field that will be read from the API
response and must be one of the allowed values.

	Port # - If the point describes a specific port on the Chargestation, it is defined here. (Note 0 and an empty
value are equivalent.)

	Type - Python type of the point value.

	Units - Used for meta data when creating point information on the historian.

	Writable - Either “TRUE” or “FALSE”. Determines if the point can be written to. Only points labeled TRUE can
be written.

	Notes - Miscellaneous notes field.

	
	Register Name - A string representing how to interpret the data register. Acceptable values are:

	
	StationRegister

	StationStatusRegister

	LoadRegister

	AlarmRegister

	StationRightsRegister

	Starting Value - Default value for writeable points. Read-only points should not have a value in this column.

Detailed descriptions for all available Chargepoint registers may be found in the README.rst in the Chargepoint
driver directory.

A sample Chargepoint registry file can be found in the VOLTTRON repository in
examples/configurations/drivers/chargepoint.csv

	Chargepoint API Driver Specification
	Driver Scope & Functions

	Mapping VOLTTRON Device Interface to Chargepoint APIs
	Device Mapping

	Requirements

	Driver Configuration
	API Plans & Access Rights

	Registry Configuration
	getStationStatus

	getLoad, shedLoad, clearShedState

	getAlarms, clearAlarms

	getStationRights

	getChargingSessionData

	getStations

	Engineering Discussion
	Questions

	Performance

	3rd Party Library Dependencies

Chargepoint API Driver Specification

Spec Version 1.1

ChargePoint [http://www.chargepoint.com] operates the largest independently owned EV charging network in the US.
It sells charge stations to businesses and provides a web application to manage and report on these Chargestations.
Chargepoint offers a Web Services API [https://na.chargepoint.com/UI/downloads/en/ChargePoint_Web_Services_API_Guide_Ver4.1_Rev4.pdf]
that its customers may use to develop applications that integrate with the Chargepoint network devices.

The Chargepoint API Driver for VOLTTRON will enable real-time monitoring and control of Chargepoint EVSEs within
the VOLTTRON platform by creating a standard VOLTTRON device driver on top of the Chargepoint Web Services API.
Each port on each managed Chargestation will look like a standard VOLTTRON device, monitored and controlled through
the VOLTTRON device driver interface.

Driver Scope & Functions

This driver will enable VOLTTRON to support the following use cases with Chargepoint EVSEs:

	Monitoring of Chargestation status, load and energy consumption

	Demand charge reduction

	Time shifted charging

	Demand response program participation

The data and functionality to be made available through the driver interface will be implemented using the
following Chargepoint web services:

	API Method Name

	Key Data/Function Provided

	getStationStatus

	Port status: AVAILABLE, INUSE, UNREACHABLE, UNKNOWN

	shedLoad

	Limit station power by percent or max load for some time period.

	clearShedState

	Clear all shed state and allow normal charging

	getLoad

	Port load in Kw, shedState, allowedLoad, percentShed

	getAlarms

	Only the last alarm will be available.

	clearAlarms

	Clear all alarms.

	getStationRights

	Name of station rights profile, eg. ‘network_manager’

	getChargingSessionData

	Energy used in last session, start/end timestamps

	getStations

	Returns description/address/nameplate of chargestation.

The Chargepoint Driver will implement version 5.0 Rev 7 of the Chargepoint API. While the developer’s guide
is not yet publicly available, the WSDL Schema is.

Note

Station Reservation API has been removed from the 5.0 version of the API.*

WSDL for this API is located here:

https://webservices.chargepoint.com/cp_api_5.0.wsdl

Mapping VOLTTRON Device Interface to Chargepoint APIs

The VOLTTRON driver interface represents a single device as a list of registers accessed through a simple get_point/
set_point API. In contrast, the Chargepoint web services for real-time monitoring and control are spread across
eight distinct APIs that return hierarchical XML. The Chargepoint driver is the adaptor that will make a suite
of web services look like a single VOLTTRON device.

Device Mapping

The Chargepoint driver will map a single VOLTTRON device (a driver instance) to one Chargestation. Since
a Chargestation can have multiple ports, each with their own set of telemetry, the registry will include a port
index column on attributes that are specific to a port. This will allow deployments to use an indexing convention
that has been followed with other drivers. (See Registry Configuration for more details)

Requirements

The Chargepoint driver requires at least one additional Python library and has its own requirements.txt.
Make sure to run

pip install -r <chargepoint driver path>/requirements.txt

before using this driver.

Driver Configuration

Each device must be configured with its own driver configuration file. The driver configuration must reference
the registry configuration file, defining the set of points that will be available from the device. For
Chargestation devices, the driver_config entry of the driver Configuration file will need to contain all
parameters required by the web service API:

	Parameter

	Purpose

	username

	Credentials established through Chargepoint account

	password

	

	stationID

	Unique station ID assigned by chargepoint

The driver_type must be chargepoint

A sample driver configuration file for a single device, looks like this:

{
 "driver_config": {
 "username" : "1b905c936af141b98f9b0f816087f3605a30c1df1d07f146281b151",
 "password" : "**Put your chargepoint API passqword here**",
 "stationID" : "1:34003",
 },
 "driver_type": "chargepoint",
 "registry_config":"config://chargepoint.csv",
 "interval": 60,
 "heart_beat_point": "heartbeat"
}

API Plans & Access Rights

Chargepoint offers API plans that vary in available features and access rights. Some of the API calls
to be implemented here are not available across all plans. Furthermore, the attributes returned in response
to an API call may be limited by the API plan and access rights associated with the userid. Runtime
exceptions related to plans and access rights will generate DriverInterfaceError exceptions. These can be
avoided by using a registry configuration that does not include APIs or attributes that are not
available to the <username>.

Registry Configuration

The registry file defines the individual points that will be exposed by the Chargepoint driver. It should only
reference points that will actually be used since each point is potentially an additional web service call. The driver
will be smart and limit API calls to those that are required to satisfy the points found in the CSV.

Naming of points will conform to the conventions established by the Chargepoint web services API whenever possible.
Note that Chargepoint naming conventions are camel-cased with no spaces or hyphens. Multi-word names start
with a lowercase letter. Single word names start uppercase.

The available registry entries for each API method name are shown below along with a description of any notable behavior
associated with that register. Following that is a sample of the associated XML returned by the API.

getStationStatus

The getStationStatus query returns information for all ports on the Chargestation.

Note

In all the registry entries shown below, the Attribute Name column defines the unique name within the
Chargepoint driver that must be used to reference this particular attribute and associated API. The
VOLTTRON point name usually matches the Attribute Name in these examples but may be changed during
deployment.

getStationStatus

	Volttron Point Name

	Attribute Name

	Register Name

	Port #

	Type

	Units

	Starting Value

	Writable

	Notes

	Status

	Status

	StationStatusRegister

	1

	string

	
	
	FALSE

	AVAILABLE, INUSE, UNREACHABLE, UNKNOWN

	Status.TimeStamp

	TimeStamp

	StationStatusRegister

	1

	datetime

	
	
	FALSE

	Timestamp of the last communication between the station and ChargePoint

Sample XML returned by getStationStatus.

<ns1:getStationStatusResponse xmlns:ns1="urn:dictionary:com.chargepoint.webservices">
 <responseCode>100</responseCode>
 <responseText>API input request executed successfully.</responseText>
 <stationData>
 <stationID>1:33923</stationID>
 <Port>
 <portNumber>1</portNumber>
 <Status>AVAILABLE</Status>
 <TimeStamp>2016-11-07T19:19:19Z</TimeStamp>
 </Port>
 <Port>
 <portNumber>2</portNumber>
 <Status>INUSE</Status>
 <TimeStamp>2016-11-07T19:19:19Z</TimeStamp>
 </Port>
 </stationData>
 <moreFlag>0</moreFlag>
</ns1:getStationStatusResponse>

getLoad, shedLoad, clearShedState

Reading any of these values will return the result of a call to getLoad. Writing shedState=True will call
shedLoad and pass the last written value of allowedLoad or percentShed. The API allows only one of these
two values to be provided. Writing to allowedLoad will simultaneously set percentShed to None and vice
versa.

getLoad, shedLoad, clearShedState

	Volttron Point Name

	Attribute Name

	Register Name

	Port #

	Type

	Units

	Starting Value

	Writable

	Notes

	shedState

	shedState

	LoadRegister

	1

	integer

	0 or 1

	0

	TRUE

	True when load shed limits are in place

	portLoad

	portLoad

	LoadRegister

	1

	float

	kw

	
	FALSE

	Load in kw

	allowedLoad

	allowedLoad

	LoadRegister

	1

	float

	kw

	
	TRUE

	Allowed load in kw when shedState is True

	percentShed

	percentShed

	LoadRegister

	1

	integer

	percent

	
	TRUE

	Percent of max power shed when shedState is True

Sample XML returned by getLoad

<ns1:getLoadResponse xmlns:ns1="urn:dictionary:com.chargepoint.webservices">
 <responseCode>100</responseCode>
 <responseText>API input request executed successfully.</responseText>
 <numStations></numStations>
 <groupName></groupName>
 <sgLoad></sgLoad>
 <stationData>
 <stationID>1:33923</stationID>
 <stationName>ALCOGARSTATIONS / ALCOPARK 8 -005</stationName><Address>165 13th St, Oakland, California, 94612, United States</Address>
 <stationLoad>3.314</stationLoad>
 <Port>
 <portNumber>1</portNumber>
 <userID></userID>
 <credentialID></credentialID>
 <shedState>0</shedState>
 <portLoad>0.000</portLoad>
 <allowedLoad>0.000</allowedLoad>
 <percentShed>0</percentShed>
 </Port>
 <Port>
 <portNumber>2</portNumber>
 <userID>664719</userID>
 <credentialID>CNCP0000481668</credentialID>
 <shedState>0</shedState>
 <portLoad>3.314</portLoad>
 <allowedLoad>0.000</allowedLoad>
 <percentShed>0</percentShed>
 </Port>
 </stationData>
</ns1:getLoadResponse>

Sample shedLoad XML query to set the allowed load on a port to 3.0kw.

<ns1:shedLoad>
 <shedQuery>
 <shedStation>
 <stationID>1:123456</stationID>
 <Ports>
 <Port>
 <portNumber>1</portNumber>
 <allowedLoadPerPort>3.0</allowedLoadPerPort>
 </Port>
 </Ports>
 </shedStation>
 <timeInterval/>
 </shedQuery>
 </ns1:shedLoad>

getAlarms, clearAlarms

The getAlarms query returns a list of all alarms since last cleared. The driver interface will only return
data for the most recent alarm, if present. While the getAlarm query provides various station identifying
attributes, these will be made available through registers associated with the getStations API. If an alarm is
not specific to a particular port, it will be associated with all Chargestation ports and available through any
of its device instances.

Write True to clearAlarms to submit the clearAlarms query to the chargestation. It will clear alarms
across all ports on that Chargestation.

getAlarms, clearAlarms

	Volttron Point Name

	Attribute Name

	Register Name

	Port #

	Type

	Units

	Starting Value

	Writable

	Notes

	alarmType

	alarmType

	AlarmRegister

	
	string

	
	
	FALSE

	eg. ‘GFCI Trip’

	alarmTime

	alarmTime

	AlarmRegister

	
	datetime

	
	
	FALSE

	

	clearAlarms

	clearAlarms

	AlarmRegister

	
	int

	
	0

	TRUE

	Sends the clearAlarms query when set to True

<Alarms>
 <stationID>1:33973</stationID>
 <stationName>ALCOGARSTATIONS / ALCOPARK 8 -003</stationName>
 <stationModel>CT2100-HD-CCR</stationModel>
 <orgID>1:ORG07225</orgID>
 <organizationName>Alameda County</organizationName>
 <stationManufacturer></stationManufacturer>
 <stationSerialNum>115110013418</stationSerialNum>
 <portNumber></portNumber>
 <alarmType>Reachable</alarmType>
 <alarmTime>2016-09-26T12:19:16Z</alarmTime>
 <recordNumber>1</recordNumber>
</Alarms>

getStationRights

Returns the name of the stations rights profile. A station may have multiple station rights profiles, each associated
with a different station group ID. For this reason, the stationRightsProfile register will return a dictionary of
(sgID, name) pairs. Since this is a Chargestation level attribute, it will be returned for all ports.

getStationRights

	Volttron Point Name

	Attribute Name

	Register Name

	Port #

	Type

	Units

	Starting Value

	Writable

	Notes

	stationRightsProfile

	stationRightsProfile

	StationRightsRegister

	
	dictionary

	
	
	FALSE

	Dictionary of sgID, rights name tuples.

<rightsData>
 <sgID>39491</sgID>
 <sgName>AlcoPark 8</sgName>
 <stationRightsProfile>network_manager</stationRightsProfile>
 <stationData>
 <stationID>1:34003</stationID>
 <stationName>ALCOGARSTATIONS / ALCOPARK 8 -004</stationName>
 <stationSerialNum>115110013369</stationSerialNum>
 <stationMacAddr>000D:6F00:0154:F1FC</stationMacAddr>
 </stationData>
</rightsData>
<rightsData>
 <sgID>58279</sgID>
 <sgName>AlcoGarageStations</sgName>
 <stationRightsProfile>network_manager</stationRightsProfile>
 <stationData>
 <stationID>1:34003</stationID>
 <stationName>ALCOGARSTATIONS / ALCOPARK 8 -004</stationName>
 <stationSerialNum>115110013369</stationSerialNum>
 <stationMacAddr>000D:6F00:0154:F1FC</stationMacAddr>
 </stationData>
</rightsData>

getChargingSessionData

Like getAlarms, this query returns a list of session data. The driver interface implementation will make the
last session data available.

getChargingSessionData

	Volttron Point Name

	Attribute Name

	Register Name

	Port #

	Type

	Units

	Starting Value

	Writable

	Notes

	sessionID

	sessionID

	ChargingSessionRegister

	1

	string

	
	
	FALSE

	

	startTime

	startTime

	ChargingSessionRegister

	1

	datetime

	
	
	FALSE

	

	endTime

	endTime

	ChargingSessionRegister

	1

	datetime

	
	
	FALSE

	

	Energy

	Energy

	ChargingSessionRegister

	1

	float

	
	
	FALSE

	

	rfidSerialNumber

	rfidSerialNumber

	ChargingSessionRegister

	1

	string

	
	
	FALSE

	

	driverAccountNumber

	driverAccountNumber

	ChargingSessionRegister

	1

	string

	
	
	FALSE

	

	driverName

	driverName

	ChargingSessionRegister

	1

	string

	
	
	FALSE

	

<ChargingSessionData>
 <stationID>1:34003</stationID>
 <stationName>ALCOGARSTATIONS / ALCOPARK 8 -004</stationName>
 <portNumber>2</portNumber>
 <Address>165 13th St, Oakland, California, 94612, United States</Address>
 <City>Oakland</City>
 <State>California</State>
 <Country>United States</Country>
 <postalCode>94612</postalCode>
 <sessionID>53068029</sessionID>
 <Energy>12.120572</Energy>
 <startTime>2016-10-25T15:53:35Z</startTime>
 <endTime>2016-10-25T20:14:46Z</endTime>
 <userID>452777</userID>
 <recordNumber>1</recordNumber>
 <credentialID>490178743</credentialID>
</ChargingSessionData>

getStations

This API call returns a complete description of the Chargestation in 40 fields. This information is essentially
static and will change infrequently. It should not be scraped on a regular basis. The list of attributes will be
included in the registry CSV but are only listed here:

stationID, stationManufacturer, stationModel, portNUmber, stationName, stationMacAddr, stationSerialNum, Address, City,
State, Country, postalCode, Lat, Long, Reservable, Level, Mode, Connector, Voltage, Current, Power, numPorts, Type,
startTime, endTime, minPrice, maxPrice, unitPricePerHour, unitPricePerSession, unitPricePerKWh, unitPricePerHourThereafter,
sessionTime, Description, mainPhone, orgID, organizationName, sgID, sgName, currencyCode

Engineering Discussion

Questions

	Allowed python-type - We propose a register with a python-type of dictionary. Is this OK?

	Scrape Interval - Scrape all should not return all registers defined in the CSV, we propose fine grained
control with a scrape-interval on each register. Response: ok to add extra settings to registry but don’t worry
about publishing static data with every scrape

	Data currency - Since devices are likely to share api calls, at least across ports, we need to think about the
currency of the data and possibly allowing this to be a configurable parameter or derived from the scrape interval
. Response: add to CSV with default values if not present

Performance

Web service calls across the internet will be significantly slower than typical VOLTTRON Bacnet or Modbus devices. It
may be prohibitively expensive for each Chargepoint sub-agent instance to make individual requests on behalf of
its own EVSE+port. We will need to examine the possibility of making a single request for all active Chargestations
and sharing that information across driver instances. This could be done through a separate agent that regularly
queries the Chargepoint network and makes the data available to each sub-agent via an RPC call.

3rd Party Library Dependencies

The Chargepoint driver implementation will depend on one additional 3rd part library that is not part of a standard
VOLTTRON installation:

https://bitbucket.org/jurko/suds

Is there a mechanism for drivers to specify their own requirements.txt ?

Driver installation and configuration documentation can reference requirement.txt

DNP3 Driver

VOLTTRON’s DNP3 driver enables the use of DNP3 [https://en.wikipedia.org/wiki/DNP3] (Distributed Network Protocol)
communications, reading and writing points via a DNP3 Outstation.

In order to use a DNP3 driver to read and write point data, VOLTTRON’s DNP3 Agent must also
be configured and running. All communication between the VOLTTRON Outstation and a
DNP3 Master happens through the DNP3 Agent.

For information about the DNP3 Agent, please see the DNP3 Platform Specification.

Requirements

The DNP3 driver requires the PyDNP3 package. This package can be installed in an activated environment with:

pip install pydnp3

Driver Configuration

There is one argument for the “driver_config” section of the DNP3 driver configuration file:

	dnp3_agent_id - ID of VOLTTRON’s DNP3Agent.

Here is a sample DNP3 driver configuration file:

{
 "driver_config": {
 "dnp3_agent_id": "dnp3agent"
 },
 "campus": "campus",
 "building": "building",
 "unit": "dnp3",
 "driver_type": "dnp3",
 "registry_config": "config://dnp3.csv",
 "interval": 15,
 "timezone": "US/Pacific",
 "heart_beat_point": "Heartbeat"
}

A sample DNP3 driver configuration file can be found in the VOLTTRON repository
in services/core/MasterDriverAgent/example_configurations/test_dnp3.config.

DNP3 Registry Configuration File

The driver’s registry configuration file, a CSV [https://en.wikipedia.org/wiki/Comma-separated_values] file,
specifies which DNP3 points the driver will read and/or write. Each row configures a single DNP3 point.

The following columns are required for each row:

	Volttron Point Name - The name used by the VOLTTRON platform and agents to refer to the point.

	Group - The point’s DNP3 group number.

	Index - The point’s index number within its DNP3 data type (which is derived from its DNP3 group number).

	Scaling - A factor by which to multiply point values.

	Units - Point value units.

	Writable - TRUE or FALSE, indicating whether the point can be written by the driver (FALSE = read-only).

Consult the DNP3 data dictionary for a point’s Group and Index values. Point
definitions in the data dictionary are by agreement between the DNP3 Outstation and Master.
The VOLTTRON DNP3Agent loads the data dictionary of point definitions from the JSON file
at “point_definitions_path” in the DNP3Agent’s config file.

A sample data dictionary is available in services/core/DNP3Agent/dnp3/mesa_points.config.

Point definitions in the DNP3 driver’s registry should look something like this:

DNP3

	Volttron Point Name

	Group

	Index

	Scaling

	Units

	Writable

	DCHD.WTgt

	41

	65

	1.0

	NA

	FALSE

	DCHD.WTgt-In

	30

	90

	1.0

	NA

	TRUE

	DCHD.WinTms

	41

	66

	1.0

	NA

	FALSE

	DCHD.RmpTms

	41

	67

	1.0

	NA

	FALSE

A sample DNP3 driver registry configuration file is available
in services/core/MasterDriverAgent/example_configurations/dnp3.csv.

Ecobee Driver

The Ecobee driver is an implementation of a VOLTTRON driver framework Interface.
In this case, the Master Driver issues commands to the Ecobee driver to collect data from and send control signals to
Ecobee’s remote web API [https://www.ecobee.com/home/developer/api/introduction/index.shtml]

Note

Reading the driver framework and driver configuration documentation prior to following this guide will help the user
to understand drivers, driver communication, and driver configuration files.

This guide covers:

	Creating an Ecobee application via the web interface

	Creating an Ecobee driver configuration file, including finding the user’s Ecobee API key and Ecobee thermostat serial
number

	Creating an Ecobee registry configuration file

	Installing the Master Driver and loading Ecobee driver and registry configurations

	Starting the driver and viewing Ecobee data publishes

Ecobee Application

Connecting the Ecobee driver to the Ecobee API requires configuring your account with an Ecobee application.

	Log into the Ecobee site [https://ecobee.com/]

	Click on the “hamburger” icon on the right to open the account menu, then click “Developer”

[image: ../../_images/ecobee_developer_menu.png]

	On the bottom-left corner of the screen that appears, click “Create New”

[image: ../../_images/ecobee_create_app.png]

	Fill out the name, summary, and description forms as desired. Click “Authorization Method” and from the drop-down
that appears, select “ecobee PIN” (this will enable an extra layer of authentication to protect your account)

	Record the API key for the Application from the Developer menu

[image: ../../_images/ecobee_api_key.png]
From Ecobee authenication docs [https://www.ecobee.com/home/developer/api/examples/ex1.shtml]

Configuration File

The Ecobee driver uses two configuration files, a driver configuration which sets the parameters of the behavior of the
driver, and registry configuration which instructs the driver on how to interact with each point.

This is an example driver configuration:

{
 "driver_config": {
 "API_KEY": "abc123",
 "DEVICE_ID": 8675309
 },
 "driver_type": "ecobee",
 "registry_config":"config://campus/building/ecobee.csv",
 "interval": 180,
 "timezone": "UTC"
}

The driver configuration works as follows:

	config field

	description

	driver_config

	this section specifies values used by the driver agent during operation

	API_KEY

	This is the User’s API key. This must be obtained by the user from the Ecobee web UI and provided
in this part of the configuration. Notes on how to do this will be provided below.

	DEVICE_ID

	This is the device number of the Ecobee thermostat the driver is responsible for operating. This
must be obtained by the user from the Ecobee web UI. Notes on how to do this will be provided
below.

	driver_type

	This value should match the name of the python file which contains the interface class
implementation for the Ecobee driver and should not change.

	registry_config

	This should a user specified path of the form “config://<path>. It is recommended to use the
device topic string following “devices” with the file extension
(“config://<campus>/<building?/ecobee.csv”)to help the user keep track of configuration pairs in
the store. This value must be used when storing the config (see installation step below).

	interval

	This should specify the time in seconds between publishes to the message bus by the Master Driver
for the Ecobee driver (Note: the user can specify an interval for the Ecobee driver which is
shorter than 180 seconds, however Ecobee API data is only updated at 180 second intervals, so old
data will be published if a scrape occurs between updates.)

	timezone

	Timezone to use for publishing timestamps. This value should match the
timezone from the Ecobee device [https://bit.ly/2Bvnols]

Note

Values for API_KEY and DEVICE_ID must be obtained by the user. DEVICE_ID should be added as an integer
representation of the thermostat’s serial number.

Getting API Key

Ecobee API keys require configuring an application using the Ecobee web UI. For more information on configuring an
application and obtaining the API key, please refer to the Ecobee Application heading in
this documentation.

Finding Device Identifier

To find your Ecobee thermostat’s device identifier:

	Log into the Ecobee customer portal [https://www.ecobee.com/consumerportal/index.html]

	From the Home screen click “About My Ecobee”

	The thermostat identifier is the serial number listed on the About screen

Registry Configuration

This file specifies how data is read from Ecobee API response data as well as how points are set via the Master Driver
and actuator.

It is likely that more points may be added to obtain additional data, but barring implementation changes by Ecobee it is
unlikely that the values in this configuration will need to change substantially, as most thermostats provide the
same range of data in a similar format.

This is an example registry configuration:

	Point Name

	Volttron Point Name

	Units

	Type

	Writable

	Readable

	Default Value

	Notes

	fanMinOnTime

	fanMinOnTime

	seconds

	setting

	True

	True

	
	

	hvacMode

	hvacMode

	seconds

	setting

	True

	True

	
	

	humidity

	humidity

	%

	setting

	False

	True

	
	

	coolHoldTemp

	coolHoldTemp

	degF

	hold

	True

	False

	
	

	heatHoldTemp

	heatHoldTemp

	degF

	hold

	True

	False

	
	

	actualTemperature

	actualTemperature

	degF | hold

	False

	True

	
	

This configuration works as follows:

	config field

	description

	Point Name

	Name of a point as it appears in Ecobee response data (example below)

	Volttron Point Name

	Name of a point as a user would like it to be displayed in data publishes to the message bus

	Units

	Unit of measurement specified by remote API

	Type

	The Ecobee driver registry configuration supports “setting” and “hold” register types, based
on how the data is represented in Ecobee response data (example below)

	Writable

	Whether or not the point is able to be written to. This may be determined by what Ecobee
allows, and by the operation of Ecobee’s API (to set an Ecobee cool/heat hold, cool/HoldTemp
is used, but to read other data points are used and therefore are not writable; this is a
quirk of Ecobee’s API)

	Readable

	Whether or not the point is able to be read as specified. This may be determined by what
Ecobee allows, and by the operation of Ecobee’s API (to set an Ecobee cool/heat hold,
cool/HoldTemp is used, however the requested hold values are represented as desiredCool/Heat
in Ecobee’s response data; this is a quirk of Ecobee’s API)

	Default Value

	Used to send device defaults to the Ecobee API, this is optional.

	Notes

	Any user specified notes, this is optional

An example registry configuration containing all points from the development device is available in the
examples/configurations/drivers/ecobee.csv file in the VOLTTRON repository.

For additional explanation on the quirks of Ecobee’s readable/writable points, visit:
https://www.ecobee.com/home/developer/api/documentation/v1/functions/SetHold.shtml

Installation

The following instructions make up the minimal steps required to set up an instance of the Ecobee driver on the VOLTTRON
platform and connect it to the Ecobee remote API:

	Create a directory using the path $VOLTTRON_ROOT/configs and create two files, ecobee.csv and ecobee.config.
Copy the registry config to the ecobee.csv file and the driver config to the ecobee.config file. Modify the
API_KEY and DEVICE_ID fields from the driver config with your own API key and device serial number.

	If the platform has not been started:

./start-volttron

	Be sure that the environment has been activated - you should see (volttron) next to <user>@<host> in your terminal
window. To activate an environment, use the following command.

source env/bin/activate

	Install a Master Driver if one is not yet installed

python scripts/install-agent.py --agent-source services/core/MasterDriverAgent --config \
examples/configurations/drivers/master-driver.agent --tag platform.driver

	Load the driver configuration into the configuration store (“vctl config list platform.driver” can be used to show
installed configurations)

vctl config store platform.driver devices/campus/building/ecobee $VOLTTRON_ROOT/configs/ecobee.config

	Load the driver’s registry configuration into the configuration store

vctl config store platform.driver campus/building/ecobee.csv $VOLTTRON_ROOT/configs/ecobee.csv --csv

	Start the master driver

vctl start platform.driver

At this point, the master driver will start, configure the driver agent, and data should start to publish on the publish
interval.

Note

If starting the driver for the first time, or if the authorization which is managed by the driver is out of date,
the driver will perform some additional setup internally to authenticate the driver with the Ecobee API. This stage
will require the user enter a pin provided in the volttron.log file to the Ecobee web UI. The Ecobee driver has
a wait period of 60 seconds to allow users to enter the pin code into the Ecobee UI. Instructions for pin
verification follow.

PIN Verification steps:

	Obtain the pin from the VOLTTRON logs. The pin is a 4 character long string in the logs flanked by 2 rows of
asterisks

[image: ../../_images/ecobee_pin.png]

	Log into the Ecobee UI [https://www.ecobee.com/consumerportal/index.html#/login] . After logging in, the
customer dashboard will be brought up, which features a series of panels (where the serial number was found for
device configuration) and a “hamburger” menu.

[image: ../../_images/ecobee_console.png]

	Add the application: Click the “hamburger” icon which will display a list of items in a panel that becomes
visible on the right. Click “My Apps”, then “Add application”. A text form will appear, enter the pin provided in
VOLTTRON logs here, then click “validate” and “add application.

[image: ../../_images/ecobee_verify_pin.png]

This will complete the pin verification step.

Ecobee Driver Usage

At the configured interval, the master driver will publish a JSON object
with data obtained from Ecobee based on the provided configuration files.

To view the publishes in the volttron.log file, install and start a ListenerAgent:

python scripts/install-agent.py -s examples/ListenerAgent

The following is an example publish:

'Status': [''],
 'Vacations': [{'coolHoldTemp': 780,
 'coolRelativeTemp': 0,
 'drRampUpTemp': 0,
 'drRampUpTime': 3600,
 'dutyCyclePercentage': 255,
 'endDate': '2020-03-29',
 'endTime': '08:00:00',
 'fan': 'auto',
 'fanMinOnTime': 0,
 'heatHoldTemp': 660,
 'heatRelativeTemp': 0,
 'holdClimateRef': '',
 'isCoolOff': False,
 'isHeatOff': False,
 'isOccupied': False,
 'isOptional': True,
 'isTemperatureAbsolute': True,
 'isTemperatureRelative': False,
 'linkRef': '',
 'name': 'Skiing',
 'occupiedSensorActive': False,
 'running': False,
 'startDate': '2020-03-15',
 'startTime': '20:00:00',
 'type': 'vacation',
 'unoccupiedSensorActive': False,
 'vent': 'off',
 'ventilatorMinOnTime': 5}],
 'actualTemperature': 720,
 'desiredCool': 734,
 'desiredHeat': 707,
 'fanMinOnTime': 0,
 'humidity': '36',
 'hvacMode': 'off'},
 {'Programs': {'type': 'custom', 'tz': 'UTC', 'units': None},
 'Status': {'type': 'list', 'tz': 'UTC', 'units': None},
 'Vacations': {'type': 'custom', 'tz': 'UTC', 'units': None},
 'actualTemperature': {'type': 'integer', 'tz': 'UTC', 'units': 'degF'},
 'coolHoldTemp': {'type': 'integer', 'tz': 'UTC', 'units': 'degF'},
 'desiredCool': {'type': 'integer', 'tz': 'UTC', 'units': 'degF'},
 'desiredHeat': {'type': 'integer',S 'tz': 'UTC', 'units': 'degF'},
 'fanMinOnTime': {'type': 'integer', 'tz': 'UTC', 'units': 'seconds'},
 'heatHoldTemp': {'type': 'integer', 'tz': 'UTC', 'units': 'degF'},
 'humidity': {'type': 'integer', 'tz': 'UTC', 'units': '%'},
 'hvacMode': {'type': 'bool', 'tz': 'UTC', 'units': 'seconds'}}]

Individual points can be obtained via JSON RPC on the VOLTTRON Platform.
In an agent:

self.vip.rpc.call("platform.driver", "get_point", <device topic>, <kwargs>)

Set_point Conventions

To set points using the Ecobee driver, it is recommended to use the actuator
agent. Explanations of the actuation can be found in the VOLTTRON readthedocs
and example agent code can be found in the CsvDriverAgent (
examples/CSVDriver/CsvDriverAgent/agent.py in the VOLTTRON repository)

Setting values for Vacations and Programs requires understanding Vacation and
Program object structure for Ecobee.

Documentation for Vacation structure can be found here:
https://www.ecobee.com/home/developer/api/documentation/v1/functions/CreateVacation.shtml

Documentation for Program structure can be found here:
https://www.ecobee.com/home/developer/api/examples/ex11.shtml

When using set_point for program, specifying a program structure will create a
new program. Otherwise, if the user has not specified resume_all, Ecobee will
resume the next program on the program stack. If resume_all, Ecobee will resume
all programs on the program stack.

For all other points, the corresponding integer, string, boolean, etc. value may
be sent.

Versioning

The Ecobee driver has been tested using the May 2019 API release as well as device firmware version 4.5.73.24

IEEE 2030.5 (SEP 2.0) Driver

Communicating with IEEE 2030.5 devices requires that the IEEE 2030.5 Agent is configured and running.
All device communication happens through this agent. For information about the IEEE 2030.5 Agent,
please see IEEE 2030.5 Agent docs.

Driver Config

There are two arguments for the driver_config section of the IEEE 2030.5 device configuration file:

	sfdi - Short-form device ID of the IEEE 2030.5 device.

	ieee2030_5_agent_id - ID of VOLTTRON’s IEEE 2030.5 agent.

Here is a sample IEEE 2030.5 device configuration file:

{
 "driver_config": {
 "sfdi": "097935300833",
 "IEEE2030_5_agent_id": "iee2030_5agent"
 },
 "campus": "campus",
 "building": "building",
 "unit": "IEEE2030_5",
 "driver_type": "ieee2030_5",
 "registry_config": "config://ieee2030_5.csv",
 "interval": 15,
 "timezone": "US/Pacific",
 "heart_beat_point": "Heartbeat"
}

A sample IEEE 2030.5 driver configuration file can be found in the VOLTTRON repository
in services/core/MasterDriverAgent/example_configurations/test_ieee2030_5_1.config.

Registry Configuration

For a description of IEEE 2030.5 registry values, see IEEE 2030.5 DER Agent.

A sample IEEE 2030.5 registry configuration file can be found in the VOLTTRON repository
in services/core/MasterDriverAgent/example_configurations/ieee2030_5.csv.

View the IEEE 2030.5 agent specification document to learn more about IEEE 2030.5 and
the IEEE 2030.5 agent and driver.

Modbus Driver

VOLTTRON’s modbus driver supports the Modbus over TCP/IP protocol only. For Modbus RTU support, see VOLTTRON’s
Modbus-TK driver <Modbus-TK-Driver>.

About Modbus protocol [https://en.wikipedia.org/wiki/Modbus]

Modbus Driver Configuration

Requirements

The Modbus driver requires the pymodbus package. This package can be installed in an activated environment with:

pip install pymodbus

Alternatively this requirement can be installed using bootstrap.py with the --drivers
option:

python3 bootstrap.py --drivers

Driver Configuration

There are three arguments for the driver_config section of the device configuration file:

	device_address - IP Address of the device.

	port - Port the device is listening on. Defaults to 502 which is the standard port for Modbus devices.

	slave_id - Slave ID of the device. Defaults to 0. Use 0 for no slave.

The remaining values are as follows:

Here is an example device configuration file:

{
 "driver_config": {"device_address": "10.1.1.2",
 "port": 502,
 "slave_id": 5},
 "driver_type": "modbus",
 "registry_config":"config://registry_configs/hvac.csv",
 "interval": 60,
 "timezone": "UTC",
 "heart_beat_point": "heartbeat"
}

A sample MODBUS configuration file can be found in the VOLTTRON repository in
examples/configurations/drivers/modbus.config

Modbus Registry Configuration File

The registry configuration file is a CSV [https://en.wikipedia.org/wiki/Comma-separated_values] file. Each row
configures a point on the device.

The following columns are required for each row:

	Volttron Point Name - The name by which the platform and agents running on the platform will refer to this
point. For instance, if the Volttron Point Name is HeatCall1 (and using the example device configuration above)
then an agent would use pnnl/isb2/hvac1/HeatCall1 to refer to the point when using the RPC interface of the
actuator agent.

	Units - Used for meta data when creating point information on the historian.

	Modbus Register - A string representing how to interpret the data register and how to read it from the device.
The string takes two forms:

	“BOOL” for coils and discrete inputs.

	A format string for the Python struct module. See
the Python3 Struct docs [http://docs.python.org/3/library/struct.html] for full documentation. The
supplied format string must only represent one value. See the documentation of your device to determine how to
interpret the registers. Some Examples:

	“>f” - A big endian 32-bit floating point number.

	“<H” - A little endian 16-bit unsigned integer.

	“>l” - A big endian 32-bit integer.

	Writable - Either TRUE or FALSE. Determines if the point can be written to. Only points labeled
TRUE can be written to through the ActuatorAgent.

	Point Address - Modbus address of the point. Cannot include any offset value, it must be the exact value of
the address.

	Mixed Endian - (Optional) Either TRUE or FALSE. For mixed endian values. This will reverse the order
of the Modbus registers that make up this point before parsing the value or writing it out to the device. Has no
effect on bit values.

The following column is optional:

	Default Value - The default value for the point. When the point is reverted by an agent it will change back
to this value. If this value is missing it will revert to the last known value not set by an agent.

Any additional columns will be ignored. It is common practice to include a Point Name or Reference Point Name to
include the device documentation’s name for the point and Notes and Unit Details for additional information
about a point.

The following is an example of a Modbus registry configuration file:

Catalyst 371

	Reference Point Name

	Volttron Point Name

	Units

	Units Details

	Modbus Register

	Writable

	Point Address

	Default Value

	Notes

	CO2Sensor

	ReturnAirCO2

	PPM

	0.00-2000.00

	>f

	FALSE

	1001

	
	CO2 Reading 0.00-2000.0 ppm

	CO2Stpt

	ReturnAirCO2Stpt

	PPM

	1000.00 (default)

	>f

	TRUE

	1011

	1000

	Setpoint to enable demand control ventilation

	Cool1Spd

	CoolSupplyFanSpeed1

	%

	0.00 to 100.00 (75 default)

	>f

	TRUE

	1005

	75

	Fan speed on cool 1 call

	Cool2Spd

	CoolSupplyFanSpeed2

	%

	0.00 to 100.00 (90 default)

	>f

	TRUE

	1007

	90

	Fan speed on Cool2 Call

	Damper

	DamperSignal

	%

	0.00 - 100.00

	>f

	FALSE

	1023

	
	Output to the economizer damper

	DaTemp

	DischargeAirTemperature

	F

	(-)39.99 to 248.00

	>f

	FALSE

	1009

	
	Discharge air reading

	ESMEconMin

	ESMDamperMinPosition

	%

	0.00 to 100.00 (5 default)

	>f

	TRUE

	1013

	5

	Minimum damper position during the energy savings mode

	FanPower

	SupplyFanPower

	kW

	0.00 to 100.00

	>f

	FALSE

	1015

	
	Fan power from drive

	FanSpeed

	SupplyFanSpeed

	%

	0.00 to 100.00

	>f

	FALSE

	1003

	
	Fan speed from drive

	HeatCall1

	HeatCall1

	On / Off

	on/off

	BOOL

	FALSE

	1113

	
	Status indicator of heating stage 1 need

	HeartBeat

	heartbeat

	On / Off

	on/off

	BOOL

	FALSE

	1114

	
	Status indicator of heating stage 2 need

A sample Modbus registry file can be found
here [https://raw.githubusercontent.com/VOLTTRON/volttron/c57569bd9e71eb32afefe8687201d674651913ed/examples/configurations/drivers/catalyst371.csv]
or in the VOLTTRON repository in examples/configurations/drivers/catalyst371.csv

Modbus TK Driver

VOLTTRON’s Modbus-TK driver, built on the Python Modbus-TK library, is an alternative to the original VOLTTRON modbus
driver. Unlike the original modbus driver, the Modbus-TK driver supports Modbus RTU as well as Modbus over TCP/IP.

About Modbus protocol [https://en.wikipedia.org/wiki/Modbus]

The Modbus-TK driver introduces a map library and configuration builder, intended as a way to streamline configuration
file creation and maintenance.

Warning

Currently the modbus_tk library is not able to make connections from 2 masters on one host to 2 slaves
on one host - this will will prevent a single platform from being able to communicate to 2 slaves on IP as each
instance of a Modbus_Tk driver creates a new Modbus master.
Issue on Modbus_Tk Github [https://github.com/ljean/modbus-tk/issues/124].

Modbus-TK Driver Configuration

The Modbus-TK driver is mostly backward-compatible with the parameter definitions in the original Modbus driver’s
configuration (.config and .csv files). If the config file’s parameter names use the Modbus driver’s name conventions,
they are translated to the Modbus-TK name conventions, e.g. a Modbus CSV file’s Point Address is interpreted as a
Modbus-TK “Address”. Backward-compatibility exceptions are:

	If the config file has no port, the default is 0, not 502.

	If the config file has no slave_id, the default is 1, not 0.

Requirements

The Modbus-TK driver requires the modbus-tk package. This package can be installed in an
activated environment with:

pip install modbus-tk

Alternatively this requirement can be installed using bootstrap.py with the --drivers
option:

python3 bootstrap.py --drivers

Driver Configuration

The driver_config section of a Modbus-TK device configuration file supports a variety of parameter definitions,
but only device_address is required:

	name (Optional) - Name of the device. Defaults to “UNKNOWN”.

	device_type (Optional) - Name of the device type. Defaults to “UNKNOWN”.

	device_address (Required) - IP Address of the device.

	port (Optional) - Port the device is listening on. Defaults to 0 (no port). Use port 0 for RTU transport.

	slave_id (Optional) - Slave ID of the device. Defaults to 1. Use ID 0 for no slave.

	baudrate (Optional) - Serial (RTU) baud rate. Defaults to 9600.

	bytesize (Optional) - Serial (RTU) byte size: 5, 6, 7, or 8. Defaults to 8.

	parity (Optional) - Serial (RTU) parity: none, even, odd, mark, or space. Defaults to none.

	stopbits (Optional) - Serial (RTU) stop bits: 1, 1.5, or 2. Defaults to 1.

	xonxoff (Optional) - Serial (RTU) flow control: 0 or 1. Defaults to 0.

	addressing (Optional) - Data address table: offset, offset_plus, or address. Defaults to offset.

	address: The exact value of the address without any offset value.

	offset: The value of the address plus the offset value.

	offset_plus: The value of the address plus the offset value plus one.

	: If an offset value is to be added, it is determined based on a point’s properties in the CSV file:

	Type=bool, Writable=TRUE: 0

	Type=bool, Writable=FALSE: 10000

	Type!=bool, Writable=TRUE: 30000

	Type!=bool, Writable=FALSE: 40000

	endian (Optional) - Byte order: big or little. Defaults to big.

	write_multiple_registers (Optional) - Write multiple coils or registers at a time. Defaults to true.

	If write_multiple_registers is set to false, only register types unsigned short (uint16) and boolean (bool)
are supported. The exception raised during the configure process.

	register_map (Optional) - Register map csv of unchanged register variables. Defaults to registry_config csv.

Sample Modbus-TK configuration files are checked into the VOLTTRON repository in
services/core/MasterDriverAgent/master_driver/interfaces/modbus_tk/maps.

Here is a sample TCP/IP Modbus-TK device configuration:

{
 "driver_config": {
 "device_address": "10.1.1.2",
 "port": "5020",
 "register_map": "config://modbus_tk_test_map.csv"
 },
 "driver_type": "modbus_tk",
 "registry_config": "config://modbus_tk_test.csv",
 "interval": 60,
 "timezone": "UTC",
 "heart_beat_point": "heartbeat"
}

Here is a sample RTU Modbus-TK device configuration, using all default settings:

{
 "driver_config": {
 "device_address": "/dev/tty.usbserial-AL00IEEY",
 "register_map": "config://modbus_tk_test_map.csv"
 },
 "driver_type": "modbus_tk",
 "registry_config":"config://modbus_tk_test.csv",
 "interval": 60,
 "timezone": "UTC",
 "heart_beat_point": "heartbeat"
}

Here is a sample RTU Modbus-TK device configuration, with completely-specified settings:

{
 "driver_config": {
 "device_address": "/dev/tty.usbserial-AL00IEEY",
 "port": 0,
 "slave_id": 2,
 "name": "watts_on",
 "baudrate": 115200,
 "bytesize": 8,
 "parity": "none",
 "stopbits": 1,
 "xonxoff": 0,
 "addressing": "offset",
 "endian": "big",
 "write_multiple_registers": true,
 "register_map": "config://watts_on_map.csv"
 },
 "driver_type": "modbus_tk",
 "registry_config": "config://watts_on.csv",
 "interval": 120,
 "timezone": "UTC"
}

Modbus-TK Register Map CSV File

Modbus TK requires an additional registry configuration file compared to the paradigm of most other drivers. The
registry map file is an analogue to the typical registry configuration file. The
registry configuration file is a simple file which maps device point names to user
specified point names.

The registry map file is a CSV [https://en.wikipedia.org/wiki/Comma-separated_values] file.
Each row configures a register definition on the device.

	Register Name (Required) - The field name in the modbus client. This field is distinct and unchangeable.

	Address (Required) - The point’s modbus address. The addressing option in the driver configuration
controls whether this is interpreted as an exact address or an offset.

	Type (Required) - The point’s data type: bool, string[length], float, int16, int32, int64, uint16,
uint32, or uint64.

	Units (Optional) - Used for metadata when creating point information on a historian. Default is an
empty string.

	Writable (Optional) - TRUE/FALSE. Only points for which Writable=TRUE can be updated by a VOLTTRON agent.
Default is FALSE.

	Default Value (Optional) - The point’s default value. If it is reverted by an agent, it changes back
to this value. If this value is missing, it will revert to the last known value not set by an agent.

	Transform (Optional) - Scaling algorithm: scale(multiplier), scale_int(multiplier), scale_reg(register_name),
scale_reg_power10(register_name), scale_decimal_int_signed(multiplier), mod10k(reverse),
mod10k64(reverse), mod10k48(reveres) or none. Default is an empty string.

	Table (Optional) - Standard modbus table name defining how information is stored in slave device.
There are 4 different tables:

	discrete_output_coils: read/write coil numbers 1-9999

	discrete_input_contacts: read only coil numbers 10001-19999

	analog_input_registers: read only register numbers 30001-39999

	analog_output_holding_registers: read/write register numbers 40001-49999

If this field is empty, the modbus table will be defined by type and writable fields. By that, when user
sets read only for read/write coils/registers or sets read/write for read only coils/registers, it will select
wrong table, and therefore raise exception.

	Mixed Endian (Optional) - TRUE/FALSE. If Mixed Endian is set to TRUE, the order of the Modbus registers will
be reversed before parsing the value or writing it out to the device. By setting mixed endian, transform must be
None (no op).
Defaults to FALSE.

	Description (Optional) - Additional information about the point. Default is an empty string.

Any additional columns are ignored.

Sample Modbus-TK registry map CSV files are checked into the VOLTTRON repository in
services/core/MasterDriverAgent/master_driver/interfaces/modbus_tk/maps.

Here is a sample Modbus-TK registry map:

	Register Name

	Address

	Type

	Units

	Writable

	Default Value

	Transform

	Table

	unsigned_short

	0

	uint16

	None

	TRUE

	0

	scale(10)

	analog_output_holding_registers

	unsigned_int

	1

	uint32

	None

	TRUE

	0

	scale(10)

	analog_output_holding_registers

	unsigned_long

	3

	uint64

	None

	TRUE

	0

	scale(10)

	analog_output_holding_registers

	sample_short

	7

	int16

	None

	TRUE

	0

	scale(10)

	analog_output_holding_registers

	sample_int

	8

	int32

	None

	TRUE

	0

	scale(10)

	analog_output_holding_registers

	sample_float

	10

	float

	None

	TRUE

	0.0

	scale(10)

	analog_output_holding_registers

	sample_long

	12

	int64

	None

	TRUE

	0

	scale(10)

	analog_output_holding_registers

	sample_bool

	16

	bool

	None

	TRUE

	False

	
	analog_output_holding_registers

	sample_str

	17

	string[12]

	None

	TRUE

	hello world!

	
	analog_output_holding_registers

Modbus-TK Registry Configuration

The registry configuration file is a CSV [https://en.wikipedia.org/wiki/Comma-separated_values] file.
Each row configures a point on the device.

	Volttron Point Name (Required) - The name by which the platform and agents refer to the point. For instance,
if the Volttron Point Name is HeatCall1, then an agent would use my_campus/building2/hvac1/HeatCall1 to refer
to the point when using the RPC interface of the actuator agent.

	Register Name (Required) - The field name in the modbus client. It must be matched with the field name from
register_map.

Any additional columns will override the existed fields from register_map.

Sample Modbus-TK registry CSV files are checked into the VOLTTRON repository
in services/core/MasterDriverAgent/master_driver/interfaces/modbus_tk/maps.

Here is a sample Modbus-TK registry configuration with defined register_map:

	Volttron Point Name

	Register Name

	unsigned short

	unsigned_short

	unsigned int

	unsigned_int

	unsigned long

	unsigned_long

	sample short

	sample_short

	sample int

	sample_int

	sample float

	sample_float

	sample long

	sample_long

	sample bool

	sample_bool

	sample str

	sample_str

Modbus-TK Driver Maps Repository

To help facilitate the creation of VOLTTRON device configuration entries (.config files) for Modbus-TK devices, a
library of device type definitions is now maintained in
services/core/MasterDriverAgent/master_driver/interfaces/modbus_tk/maps/maps.yaml. A command-line tool (described
below under MODBUS TK Config Command Tool) uses the contents of maps.yaml while generating .config files.

Each device type definition in maps.yaml consists of the following properties:

	name (Required) - Name of the device type (see the driver_config parameters).

	file (Required) - The name of the CSV file that defines all of the device type’s supported points,
e.g. watts_on.csv.

	description (Optional) - A description of the device type.

	addressing (Optional) - Data address type: offset, offset_plus, or address (see the driver_config parameters).

	endian (Optional) - Byte order: big or little (see the driver_config parameters).

	write_multiple_registers (Optional) - Write multiple registers at a time. Defaults to true.

A device type definition is a template for a device configuration. Some additional data must be supplied when a specific
device’s configuration is generated. In particular, the device_address must be supplied.

A sample maps.yml file is checked into the VOLTTRON repository in
services/core/MasterDriverAgent/master_driver/interfaces/modbus_tk/maps/maps.yaml.

Here is a sample maps.yaml file:

- name: modbus_tk_test
 description: Example of reading selected points for Modbus-TK driver testing
 file: modbus_tk_test_map.csv
 addressing: offset
 endian: little
 write_multiple_registers: true
- name: watts_on
 description: Read selected points from Elkor WattsOn meter
 file: watts_on_map.csv
 addressing: offset
- name: ion6200
 description: ION 6200 meter
 file: ion6200_map.csv
- name: ion8600
 description: ION 8600 meter
 file: ion8600_map.csv

Modbus-TK Config Command Tool

config_cmd.py is a command-line tool for creating and maintaining VOLTTRON driver configurations. The tool
runs from the command line:

$ cd services/core/MasterDriverAgent/master_driver/interfaces/modbus_tk/maps
$ python config_cmd.py

config_cmd.py supports the following commands:

	help - List all commands.

	quit - Quit the command-line tool.

	list_directories - List all setup directories, with an option to edit their paths.

	By default, all directories are in the VOLTTRON repository
in services/core/MasterDriverAgent/master_driver/interfaces/modbus_tk/maps.

	It is important to use the correct directories when adding/editing device types and driver configs,
and when loading configurations into VOLTTRON.

	map_dir: directory in which maps.yaml is stored.

	config_dir: directory in which driver config files are stored.

	csv_dir: directory in which registry config CSV files are stored.

	edit_directories - Add/Edit map directory, driver config directory, and/or CSV config directory.
Press <Enter> if no change is needed. Exits if the directory does not exist.

	list_device_type_description - List all device type descriptions in maps.yaml.
Option to edit device type descriptions.

	list_all_device_types - List all device type information in maps.yaml. Option to add more device types.

	device_type - List information for a selected device type. Option to select another device type.

	add_device_type - Add a device type to maps.yaml. Option to add more than one device type.
Each device type includes its name, CSV file, description, addressing, and endian, as explained
in MODBUS-TK Driver Maps. If an invalid value is entered for addressing or endian,
the default value is used instead.

	edit_device_type - Edit an existing device type. If an invalid value is entered for addressing or endian,
the previous value is left unchanged.

	list_drivers - List all driver config names in config_dir.

	driver_config <driver_name> - Get a driver config from config_dir.
Option to select the driver if no driver is found with that name.

	add_driver_config <driver_name> - Add/Edit <config_dir>/<driver name>.config.
Option to select the driver if no driver is found with that name. Press <Enter> to exit.

	load_volttron - Load a driver config and CSV into VOLTTRON. Option to add the config or CSV file
to config_dir or to csv_dir. VOLTTRON must be running when this command is used.

	delete_volttron_config - Delete a driver config from VOLTTRON. VOLTTRON must be running
when this command is used.

	delete_volttron_csv - Delete a registry csv config from VOLTTRON. VOLTTRON must be running
when this command is used.

The config_cmd.py module is checked into the VOLTTRON repository as
services/core/MasterDriverAgent/master_driver/interfaces/modbus_tk/config_cmd.py.

Obix Driver

Obix Driver Configuration

VOLTTRON’s uses Obix’s restful interface to facilitate communication.

This driver does not handle reading data from the history section of the interface. If the user wants data published
from the management systems historical data use the Obix History agent.

Driver Configuration

There are three arguments for the driver_config section of the device configuration file:

	url - URL of the Obix remote API interface

	username - User’s username for the Obix remote API

	password - Users’ password corresponding to the username

Here is an example device configuration file:

{
 "driver_config": {"url": "http://example.com/obix/config/Drivers/Obix/exports/",
 "username": "username",
 "password": "password"},
 "driver_type": "obix",
 "registry_config":"config://registry_configs/obix.csv",
 "interval": 30,
 "timezone": "UTC"
}

A sample Obix configuration file can be found in the VOLTTRON repository in
examples/configurations/drivers/obix.config

Obix Registry Configuration File

The registry configuration file is a CSV [https://en.wikipedia.org/wiki/Comma-separated_values] file. Each row
configures a point on the device.

The following columns are required for each row:

	Volttron Point Name - The name by which the platform and agents running on the platform will refer to this
point. For instance, if the Volttron Point Name is HeatCall1 then an agent would use <device topic>/HeatCall1
to refer to the point when using the RPC interface of the actuator agent.

	Obix Point Name - Name of the point on the Obix interface. Escaping of spaces and dashes for use with the
interface is handled internally.

	Obix Type - One of bool, int, or real

	Units - Used for meta data when creating point information on the historian.

	Writable - Either TRUE or FALSE. Determines if the point can be written to. Only points labeled
TRUE can be written to through the ActuatorAgent. This can be used to protect points that should not be
accessed by the platform.

The following column is optional:

	Default Value - The default value for the point. When the point is reverted by an agent it will change back to
this value. If this value is missing it will revert to the last known value not set by an agent.

Any additional columns will be ignored. It is common practice to include a Point Name or Reference Point Name to
include the device documentation’s name for the point and Notes and Unit Details for additional information
about a point.

The following is an example of a Obix registry configuration file:

Obix

	Volttron Point Name

	Obix Point Name

	Obix Type

	Units

	Writable

	Notes

	CostEL

	CostEL

	real

	dollar

	FALSE

	Precision: 2

	CostELBB

	CostELBB

	real

	dollar

	FALSE

	Precision: 2

	CDHEnergyHeartbeat

	CDHEnergyHeartbeat

	real

	null

	FALSE

	

	ThermalFollowing

	ThermalFollowing

	bool

	
	FALSE

	

	CDHTestThermFollow

	CDHTestThermFollow

	bool

	
	FALSE

	

	CollegeModeFromCDH

	CollegeModeFromCDH

	real

	null

	FALSE

	Precision: 0, Min: 3.0, Max: 3.0

	HospitalModeFromCDH

	HospitalModeFromCDH

	real

	null

	FALSE

	Precision: 0, Min: 3.0, Max: 3.0

	HomeModeFromCDH

	HomeModeFromCDH

	real

	null

	FALSE

	Precision: 0, Min: 3.0, Max: 3.0

	CostNG

	CostNG

	real

	null

	FALSE

	Precision: 2

	CollegeBaseloadSPFromCDH

	CollegeBaseloadSPFromCDH

	real

	kilowatt

	FALSE

	Precision: 0

	CollegeImportSPFromCDH

	CollegeImportSPFromCDH

	real

	kilowatt

	FALSE

	Precision: 0

	HospitalImportSPFromCDH

	HospitalImportSPFromCDH

	real

	kilowatt

	FALSE

	Precision: 0

	HospitalBaseloadSPFromCDH

	HospitalBaseloadSPFromCDH

	real

	kilowatt

	FALSE

	Precision: 0

	HomeImportSPFromCDH

	HomeImportSPFromCDH

	real

	kilowatt

	FALSE

	Precision: 0

	ThermalFollowingAlarm

	ThermalFollowingAlarm

	bool

	
	FALSE

	

A sample Obix configuration can be found in the VOLTTRON repository in examples/configurations/drivers/obix.csv

Automatic Obix Configuration File Creation

A script that will automatically create both a device and register configuration file for a site is located in the
repository at scripts/obix/get_obix_driver_config.py.

The utility is invoked with the command:

python get_obix_driver_config.py <url> <registry_file> <driver_file> -u <username> -p <password>

If either the registry_file or driver_file is omitted the script will output those files to stdout.

If either the username or password arguments are left out the script will ask for them on the command line before
proceeding.

The registry file produced by this script assumes that the Volttron Point Name and the Obix Point Name have the same
value. Also, it is assumed that all points should be read only. Users are expected to fix this as appropriate.

The Energy Detective Meter Driver

The TED-Pro is an energy monitoring system that can measure energy consumption of multiple mains and supports
sub-metering of individual circuits. This driver connects to a TED Pro Energy Control Center (ECC) and can collect
information from multiple Measuring Transmitting Units (MTUs) and Spyder sub-metering devices connected to the ECC.

Configuration

The TED Pro device interface is configured as follows. You’ll need the ip address or hostname of the ECC on a network
segment accessible from the VOLTTRON instance, if configured to use a port other than 80, you can provide it as shown
below, following a colon after the host address.

{
 "driver_type": "ted_meter",
 "driver_config": {
 "device_address": "192.168.1.100:8080",
 "username": "username",
 "password": "password",
 "scrape_spyder": true,
 "track_totalizers": true
 }
}

Parameters

	username - Username if the TED Pro is configured with Basic Authentication

	password - Password if the TED Pro is configured with Basic Authentication

	device_address - Hostname or IP address of the TED Pro ECC, a non-standard port can be included if needed

	scrape_spyder - Default true, enables or disables collection of the sub-metering data from spyder devices
connected to the TED Pro

	track_totalizers - Default true, enables or disables tracking of lifetime totals in the VOLTTRON Driver

Note

The TED Pro does not expose its internal lifetime “totalized” metering, instead offering month to date (MTD)
and daily totals (TDY). Using the “track_totalizers” setting, the ted-meter driver will attempt to maintain
monotonically increasing lifetime totalizers. To do so, it must retain state regarding the running total and
the last read value. The driver makes use of the VOLTTRON Config subsystem to store this state. To reset these
totals, delete the 1state/ted_meter/<device_path>1 config from the master driver config store and restart the
master driver.

Note

This driver does not make use of the registry config. Because it is able to determine the configuration
of the TED Pro Device via the API, it simply creates registers for each data source on the TED Pro

Note

This driver is internally aware of the appropriate HayStack Tags for its registers, however, the Master Driver makes
no provision for publishing those tags during a scrape. Therefore, integration of the tagging data is left to the
end user.

Examples

[image: TED Pro showing spyder outputs]

The above configuration in the TED will result in the following scrape from the ted-meter driver on the message bus:

[
 {
 'mtu-1/load_kva': 0.271,
 'mtu-1/load_kw': 0.203,
 'mtu-1/phase_angle': 195,
 'mtu-1/phase_current-a': '0',
 'mtu-1/phase_current-b': '0',
 'mtu-1/phase_current-c': '0',
 'mtu-1/phase_voltage-a': '0',
 'mtu-1/phase_voltage-b': '0',
 'mtu-1/phase_voltage-c': '0',
 'mtu-1/power_factor': 0.749,
 'mtu-1/voltage': 121.30000000000001,
 'spyder-1/AHU/load': 0.0,
 'spyder-1/AHU/mtd': 0.0,
 'spyder-1/AHU/mtd_totalized': 0.0,
 'spyder-1/C/U/load': 0.0,
 'spyder-1/C/U/mtd': 0.0,
 'spyder-1/C/U/mtd_totalized': 0.0,
 'spyder-1/Fridge/load': 0.0,
 'spyder-1/Fridge/mtd': 0.056,
 'spyder-1/Fridge/mtd_totalized': 0.056,
 'spyder-1/HW/load': 0.0,
 'spyder-1/HW/mtd': 0.14400000000000002,
 'spyder-1/HW/mtd_totalized': 0.14400000000000002,
 'spyder-1/Toaster/load': 0.0,
 'spyder-1/Toaster/mtd': 0.24,
 'spyder-1/Toaster/mtd_totalized': 0.24,
 'system/mtd': 0.652,
 'system/mtd_totalized': 0.652
 },
 {
 'mtu-1/load_kva': {'type': 'integer', 'tz': u'', 'units': 'kVA'},
 'mtu-1/load_kw': {'type': 'integer', 'tz': u'', 'units': 'kW'},
 'mtu-1/phase_angle': {'type': 'integer', 'tz': u'', 'units': 'degrees'},
 'mtu-1/phase_current-a': {'type': 'integer', 'tz': u'', 'units': 'Amps'},
 'mtu-1/phase_current-b': {'type': 'integer', 'tz': u'', 'units': 'Amps'},
 'mtu-1/phase_current-c': {'type': 'integer', 'tz': u'', 'units': 'Amps'},
 'mtu-1/phase_voltage-a': {'type': 'integer', 'tz': u'', 'units': 'Volts'},
 'mtu-1/phase_voltage-b': {'type': 'integer', 'tz': u'', 'units': 'Volts'},
 'mtu-1/phase_voltage-c': {'type': 'integer', 'tz': u'', 'units': 'Volts'},
 'mtu-1/power_factor': {'type': 'integer', 'tz': u'', 'units': 'ratio'},
 'mtu-1/voltage': {'type': 'integer', 'tz': u'', 'units': 'Volts'},
 'spyder-1/AHU/load': {'type': 'integer', 'tz': u'', 'units': 'kW'},
 'spyder-1/AHU/mtd': {'type': 'integer', 'tz': u'', 'units': 'kWh'},
 'spyder-1/AHU/mtd_totalized': {'type': 'integer', 'tz': u'', 'units': 'kWh'},
 'spyder-1/C/U/load': {'type': 'integer', 'tz': u'', 'units': 'kW'},
 'spyder-1/C/U/mtd': {'type': 'integer', 'tz': u'', 'units': 'kWh'},
 'spyder-1/C/U/mtd_totalized': {'type': 'integer', 'tz': u'', 'units': 'kWh'},
 'spyder-1/Fridge/load': {'type': 'integer', 'tz': u'', 'units': 'kW'},
 'spyder-1/Fridge/mtd': {'type': 'integer', 'tz': u'', 'units': 'kWh'},
 'spyder-1/Fridge/mtd_totalized': {'type': 'integer', 'tz': u'', 'units': 'kWh'},
 'spyder-1/HW/load': {'type': 'integer', 'tz': u'', 'units': 'kW'},
 'spyder-1/HW/mtd': {'type': 'integer', 'tz': u'', 'units': 'kWh'},
 'spyder-1/HW/mtd_totalized': {'type': 'integer', 'tz': u'', 'units': 'kWh'},
 'spyder-1/Toaster/load': {'type': 'integer', 'tz': u'', 'units': 'kW'},
 'spyder-1/Toaster/mtd': {'type': 'integer', 'tz': u'', 'units': 'kWh'},
 'spyder-1/Toaster/mtd_totalized': {'type': 'integer', 'tz': u'', 'units': 'kWh'},
 'system/mtd': {'type': 'integer', 'tz': u'', 'units': 'kWh'},
 'system/mtd_totalized': {'type': 'integer', 'tz': u'', 'units': 'kWh'}
 }
]

Message Bus

The VOLTTRON message bus is the mechanism responsible for enabling communication between agents, drivers, and platform
instances. The message bus supports communication using the Publish/Subscribe Paradigm and
JSON RPC.
Currently VOLTTRON may be configured to use either Zero MQ or RabbitMQ messaging software to perform messaging.

To standardize message bus communication, VOLTTRON implements VIP - VOLTTRON Interconnect Protocol. VIP defines
patterns for pub/sub communication as well as JSON-RPC, and allows for the creation of agent communication subsystems.

For more information on messaging, VIP, multi-platform communication and more, please explore the message bus
documentation linked below:

Message Bus Topics

	Messaging and Topics
	Introduction

	Topics
	In VOLTTRON

	Controller Agent Topics

	VOLTTRON™ Interconnect Protocol
	Remote Procedure Calls
	Exporting Methods

	Calling exported methods
	Inspection
	VCTL RPC Commands

	Implementation

	VIP Known Identities

	VIP Authentication
	Default Encryption

	Peer Authentication

	Configuring Agents
	URL-style Parameters

	Platform Configuration

	Example Setup

	VIP Authorization
	Single Capability

	Multiple Capabilities

	Capability with parameter restriction
	Protecting Pub/Sub Topics

	Example

	Regular Expressions

	VIP Enhancements
	VOLTTRON Message Bus Guiding Principles:

	Agent VIP IDENTITY Assignment Specification
	What is a VIP IDENTITY

	Runtime

	Agent Implementation

	Packaging

	Installation
	Installation Default VIP IDENTITY

	VIP IDENTITY Conflicts During Installation

	VIP IDENTITY Conflicts During Runtime

	Auto Numbering With Non-Default VIP IDENTITYs

	Script Features

	Security/Privacy

	Constraints and Limitations

	Design Overview
	What Problems does VIP Address?

	ZeroMQ
	Why ZeroMQ?

	VIP is a routing protocol

	Extensible Security

	ZeroMQ Compatibility

	Message Format and Version Detection

	Formal Specification
	Architecture

	Message Format

	User ID

	Socket Types

	Routing Identities

	Error Handling

	Subsystems
	The hello Subsystem

	The ping Subsystem

	Discovery

	Example Exchanges
	Example of hello Request

	Example of ping Subsystem

	Reference Implementation

	RabbitMQ Based VOLTTRON
	Configuration

	RPC In RabbitMQ VOLTTRON

	PUBSUB In RabbitMQ VOLTTRON
	Further Work

	RabbitMQ Management Tool Integrated Into VOLTTRON
	RabbitMQ Overview
	Authentication in RabbitMQ

	Management Plugin

	Deployments

	Message Bus Plugin Framework
	Message Bus Refactor

	Connection class

	Platform Level Changes

	Agent Core Changes

	Compatibility Between VOLTTRON Instances Running On Different Message Buses

	Authentication And Authorization With RabbitMQ Message Bus
	Authentication In RabbitMQ VOLTTRON
	SSL in RabbitMQ VOLTTRON
	Authorization in RabbitMQ VOLTTRON

	Multi-Platform Communication
	Configuration

	Setup Mode For Automatic Authentication

	Manual Configuration of External Platform Information
	PubSub Communication Between Remote Platforms
	Functional Capabilities
	Routing Service

	KeyDiscovery Service

	Messages for Routing Service

	Messages for PubSub communication

	API
	Methods for Routing Service

	Methods for PubSubService

	Methods for agent pubsub subsystem

	Multi-Platform RPC Communication
	Calling External Platform RPC Method

	Distributed RabbitMQ Brokers
	Clustering

	Federation

	Federated Exchange

	Federated Queue

	Shovel

	Agent communication to Remote RabbitMQ instance
	Configuration

	remote-agent on local-instance
	Approving a CSR Request

	Denying a CSR Request

Messaging and Topics

Introduction

Agents in VOLTTRON™ communicate with each other using a publish/subscribe mechanism built on the Zero MQ or RabbitMQ
Python libraries. This allows for great flexibility as topics can be created dynamically and the messages sent can be
any format as long as the sender and receiver understand it. An agent with data to share publishes to a topic, then
any agents interested in that data subscribe to that topic.

While this flexibility is powerful, it also could also lead to confusion if some standard is not followed. The current
conventions for communicating in the VOLTTRON are:

	Topics and subtopics follow the format: topic/subtopic/subtopic

	Subscribers can subscribe to any and all levels. Subscriptions to topic will include messages for the base topic
and all subtopics. Subscriptions to topic/subtopic1 will only receive messages for that subtopic and any
children subtopics. Subscriptions to empty string (“”) will receive ALL messages. This is not recommended.

Agents should set the From header. This will allow agents to filter on the To message sent back.

Topics

In VOLTTRON

	alerts - Base topic for alerts published by agents and subsystems, such as agent health alerts

	analysis - Base topic for analytics being used with building data

	config - Base topic for managing agent configuration

	devices - Base topic for data being published by drivers

	datalogger - Base topic for agents wishing to record time series data

	heartbeat - Topic for publishing periodic “heartbeat” or “keep-alive”

	market - Base topics for market agent communication

	record - Base topic for agents to record data in an arbitrary format

	weather - Base topic for polling publishes of weather service agents

Note

Other more specific topics may exist for specific agents or purposes. Please review the documentation for the
specific feature for more information.

Controller Agent Topics

See the documentation for the Actuator Agent.

VOLTTRON™ Interconnect Protocol

This document specifies VIP, the VOLTTRON™ Interconnect Protocol. The use case for VIP is to provide communications
between agents, controllers, services, and the supervisory platform in an abstract fashion so that additional
protocols can be built and used above VIP. VIP defines how peers connect to the router and the messages they
exchange.

	Name: github.com/VOLTTRON/volttron/wiki/VOLTTRON-Interconnect-Protocol

	Editor: Brandon Carpenter <brandon (dot) carpenter (at) pnnl (dot) gov>

	State: draft

	See also: ZeroMQ [http://zeromq.org], ZMTP [http://rfc.zeromq.org/spec:23/ZMTP], CurveZMQ [http://rfc.zeromq.org/spec:26/CURVEZMQ], ZAP [http://rfc.zeromq.org/spec:27/ZAP.]

VIP Topics

	Remote Procedure Calls
	Exporting Methods

	Calling exported methods
	Inspection
	VCTL RPC Commands

	Implementation

	VIP Known Identities

	VIP Authentication
	Default Encryption

	Peer Authentication

	Configuring Agents
	URL-style Parameters

	Platform Configuration

	Example Setup

	VIP Authorization
	Single Capability

	Multiple Capabilities

	Capability with parameter restriction
	Protecting Pub/Sub Topics

	Example

	Regular Expressions

	VIP Enhancements
	VOLTTRON Message Bus Guiding Principles:

	Agent VIP IDENTITY Assignment Specification
	What is a VIP IDENTITY

	Runtime

	Agent Implementation

	Packaging

	Installation
	Installation Default VIP IDENTITY

	VIP IDENTITY Conflicts During Installation

	VIP IDENTITY Conflicts During Runtime

	Auto Numbering With Non-Default VIP IDENTITYs

	Script Features

	Security/Privacy

	Constraints and Limitations

Design Overview

What Problems does VIP Address?

When VOLTTRON agents, controllers, or other entities needed to exchange data, they previously used the first generation
pub/sub messaging mechanism and ad-hoc methods to set up direct connections. While the pub/sub messaging is easy to
implement and use, it suffers from several limitations:

	It requires opening two listening sockets: one each for publishing and subscribing.

	There is no trivial way to prevent message spoofing.

	There is no trivial way to enable private messaging

	It is not ideal for peer-to-peer communications.

These limitations have severe security implications. For improved security in VOLTTRON, the communications protocol
must provide a method for secure data exchange that is intuitive and simple to implement and use.

Many messaging platforms already provides many of the building blocks to implement encrypted and authenticated
communications over a shared socket. They include a socket type implementing the router pattern. What remains is a
protocol built on the ZeroMQ and/or RabbitMQ to provide a single connection point, secure message passing, and retain
the ability for entities to come and go as they please.

VIP is VOLTTRON protocol implementation targeting the limitations above.

ZeroMQ

Why ZeroMQ?

Rather than reinvent the wheel, VIP makes use of many features already implemented in ZeroMQ, including ZAP and CurveMQ.
While VIP doesn’t require the use of ZAP or CurveMQ, their use substantially improves security by encrypting traffic
over public networks and limiting connections to authenticated peers.

ZeroMQ also provides reliable transports with built-in framing, automatic reconnection, in-process zero-copy message
passing, abstractions for underlying protocols, and so much more. While some of these features create other pain
points, they are minimal compared with the effort of either reimplementing or cobbling together libraries.

VIP is a routing protocol

VIP uses the ZeroMQ router pattern. Specifically, the router binds a ROUTER socket and peers connect using a DEALER or
ROUTER socket. Unless the peer is connecting a single socket to multiple routers, using the DEALER socket is easiest,
but there are instances where using a ROUTER is more appropriate. One must just exercise care to include the proper
address envelope to ensure proper routing.

Extensible Security

VIP makes no assumptions about the security mechanisms used. It works equally well over encrypted or unencrypted channels. Any connection-level authentication and encryption is handled by ZAP. Message-level authentication can be implemented in the protocols and services using VIP or by utilizing message properties set in ZAP replies.

ZeroMQ Compatibility

For enhanced security, VOLTTRON recommends libzmq version 4.1 or greater, however, most features of VIP are available
with older versions. The following is an incomplete list of core features available with recent versions of libzmq.

	Version 3.2:

	Basic, unauthenticated, unencrypted routing

	Use ZMQ_ROUTER_BEHAVIOR socket option instead of ZMQ_ROUTER_MANDATORY

	Version 4.0:

	Adds authentication and encryption via ZAP

	Version 4.1:

	Adds message properties allowing correlating authentication tokens to messages

Message Format and Version Detection

VIP uses a simple, multi-frame format for its messages. The first one (for peers) or two (for router) frames contain
the delivery address(es) and are follow immediately by the VIP signature VIP1. The first characters of the
signature are used to match the protocol and the last character digit indicates the protocol version, which will be
incremented as the protocol is revised. This allows for fail-fast behavior and backward compatibility while being
simple to implement in any language supported by ZeroMQ.

Formal Specification

Architecture

VIP defines a message-based dialog between a router that transfers data between peers. The router and peers
SHALL communicate using the following socket types and transports:

	The router SHALL use a ROUTER socket.

	Peers SHALL use a DEALER or ROUTER socket.

	The router SHALL bind to one or more endpoints using inproc, tcp, or ipc address types.

	Peers SHALL connect to these endpoints.

	There MAY be any number of peers.

Message Format

A routing exchange SHALL consist of a peer sending a message to the router followed by the router receiving the message
and sending it to the destination peer.

Messages sent to the router by peers SHALL consist of the following message frames:

	The recipient, which SHALL contain the socket identity of the destination peer.

	The protocol signature, which SHALL contain the four octets “VIP1”.

	The user id, which SHALL be an implementation-defined value.

	The request id, which SHALL contain an opaque binary blob.

	The subsystem, which SHALL contain a string.

	The data, which SHALL be zero or more subsystem-specific opaque frames.

Messages received from a peer by the router will automatically have a sender frame prepended to the message by the
ROUTER socket. When the router forwards the message, the sender and recipient fields are swapped so that the recipient
is in the first frame and the sender is in the second frame. The recipient frame is automatically stripped by the
ROUTER socket during delivery. Peers using ROUTER sockets must prepend the message with an intermediary frame, which
SHALL contain the identity of a router socket.

Messages received from the router by peers SHALL consist of the following message frames:

	The sender, which SHALL contain the socket identity of the source peer.

	The protocol signature, which SHALL contain the four octets “VIP1”.

	The user id, which MAY contain a UTF-8 encoded string.

	The request id, which SHALL contain an opaque binary blob.

	The subsystem, which SHALL contain a non-empty string.

	The data, which SHALL be zero or more subsystem-specific opaque frames.

The various fields have these meanings:

	sender: the ZeroMQ DEALER or ROUTER identity of the sending (source) peer.

	recipient: the ZeroMQ DEALER or ROUTER identity of the recipient (destination) peer.

	intermediary: the ZeroMQ ROUTER identity of the intermediary router.

	user id: VIP authentication metadata set in the authenticator. See the discussion below for more information on this
value.

	request id: the meaning of this field is defined by the sending peer. Replies SHALL echo the request id without
modifying it.

	subsystem: this specifies the peer subsystem the data is intended for. The length of a subsystem name SHALL NOT
exceed 255 characters and MUST only contain ASCII characters.

	data: provides the data for the given subsystem. The number of frames required is defined by each subsystem.

User ID

The value in the user id frame depends on the implementation and the version of ZeroMQ. If ZAP is used with libzmq
4.1.0 or newer, peers should send an empty string for the user id and the ZAP authenticator will replace it with an
authentication token which receiving peers may use to authorize access. If ZAP is not used or a version of libzmq is
used which lacks support for retrieving the user id metadata, an authentication subsystem may be used to authenticate
peers. The authentication subsystem SHALL provide peers with private tokens that must be sent with each message in the
user id frame and which the router will substitute with a public token before forwarding. If the message cannot be
authenticated, the user id received by peers SHALL be a zero-length string.

Socket Types

Peers communicating via the router will typically use DEALER sockets and should not require additional handling.
However, a DEALER peer may only connect to a single router. Peers may use ROUTER sockets to connect to multiple
endpoints, but must prepend the routing ID of the destination.

When using a DEALER socket:

	A peer SHALL not send in intermediary address.

	A peer SHALL connect to a single endpoint.

When using a ROUTER socket:

	A peer SHALL prepend the intermediary routing ID of to the message frames.

	A peer MAY connect to multiple endpoints.

Routing Identities

Routing identities are set on a socket using the ZMQ_IDENTITY socket option and MUST be set on both ROUTER and DEALER
sockets. The following additional requirements are placed on the use of peer identities:

	Peers SHALL set a valid identity rather than rely on automatic identity generation.

	The router MAY drop messages with automatically generated identities, which begin with the zero byte (‘0’).

A zero length identity is invalid for peers and is, therefore, unroutable. It is used instead to address the router
itself.

	Peers SHALL use a zero length recipient to address the router.

	Messages sent from the router SHALL have a zero length sender address.

Error Handling

The documented default behavior of ZeroMQ ROUTER sockets when entering the mute state (when the send buffer is full) is
to silently discard messages without blocking. This behavior, however, is not consistently observed. Quietly discarding
messages is not the desired behavior anyway because it prevents peers from taking appropriate action to the error
condition.

	Routers SHALL set the ZMQ_SNDTIMEO socket option to 0.

	Routers SHALL forward EAGAIN errors to sending peers.

It is also the default behavior of ROUTER sockets to silently drop messages addressed to unknown peers.

	Routers SHALL set the ZMQ_ROUTER_MANDATORY socket option.

	Routers SHALL forward EHOSTUNREACH errors to sending peers, unless the recipient address matches the sender.

Most subsystems are optional and some way of communicating unsupported subsystems to peers is needed.

	The error code 93, EPROTONOSUPPORT, SHALL be returned to peers to indicate unsupported or unimplemented subsystems.

The errors above are reported via the error subsystem. Other errors MAY be reported via the error subsystem, but subsystems SHOULD provide mechanisms for reporting subsystem-specific errors whenever possible.

An error message must contain the following:

	The recipient frame SHALL contain the socket identity of the original sender of the message.

	The sender frame SHALL contain the socket identity of the reporting entity, usually the router.

	The request ID SHALL be copied from the from the message which triggered the error.

	The subsystem frame SHALL be the 5 octets ‘error’.

	The first data frame SHALL be a string representation of the error number.

	The second data frame SHALL contain a UTF-8 string describing the error.

	The third data frame SHALL contain the identity of the original recipient, as it may differ from the reporter.

	The fourth data frame SHALL contain the subsystem copied from the subsystem field of the offending message.

Subsystems

Peers may support any number of communications protocols or subsystems. For instance, there may be a remote procedure
call (RPC) subsystem which defines its own protocol. These subsystems are outside the scope of VIP and this document
with the exception of the hello and ping subsystems.

	A router SHALL implement the hello subsystem.

	All peers and routers SHALL implement the ping subsystem.

The hello Subsystem

The hello subsystem provides one simple RPC-style routine for peers to probe the router for version and identity
information.

A peer hello request message must contain the following:

	The recipient frame SHALL have a zero length value.

	The request id MAY have an opaque binary value.

	The subsystem SHALL be the 5 characters “hello”.

	The first data frame SHALL be the five octets ‘hello’ indicating the operation.

A peer hello reply message must contain the following:

	The sender frame SHALL have a zero length value.

	The request id SHALL be copied unchanged from the associated request.

	The subsystem SHALL be the 7 characters “hello”.

	The first data frame SHALL be the 7 octets ‘welcome’.

	The second data frame SHALL be a string containing the router version number.

	The third data frame SHALL be the router’s identity blob.

	The fourth data frame SHALL be the peer’s identity blob.

The hello subsystem can help a peer with the following tasks:

	Test that a connection is established.

	Discover the version of the router.

	Discover the identity of the router.

	Discover the identity of the peer.

	Discover authentication metadata.

For instance, if a peer will use a ROUTER socket for its connections, it must first know the identity of the router.
The peer might first connect with a DEALER socket, issue a hello, and use the returned identity to then connect the
ROUTER socket.

The ping Subsystem

The ping subsystem is useful for testing the presence of a peer and the integrity and latency of the connection.
All endpoints, including the router, must support the ping subsystem.

A peer ping request message must contain the following:

	The recipient frame SHALL contain the identity of the endpoint to query.

	The request id MAY have an opaque binary value.

	The subsystem SHALL be the 4 characters “ping”.

	The first data frame SHALL be the 4 octets ‘ping’.

	There MAY be zero or more additional data frames containing opaque binary blobs.

A ping response message must contain the following:

	The sender frame SHALL contain the identity of the queried endpoint.

	The request id SHALL be copied unchanged from the associated request.

	The subsystem SHALL be the 4 characters “ping”.

	The first data frame SHALL be the 4 octets ‘pong’.

	The remaining data frames SHALL be copied from the ping request unchanged, starting with the second data frame.

Any data can be included in the ping and should be returned unchanged in the pong, but limited trust should be placed in
that data as it is possible a peer might modify it against the direction of this specification.

Discovery

VIP does not define how to discover peers or routers. Typical options might be to hard code the router address in peers
or to pass it in via the peer configuration. A well known (i.e. statically named) directory service might be used to
register connected peers and allow for discovery by other peers.

Example Exchanges

These examples show the messages as sent on the wire as sent or received by peers using DEALER sockets. The messages
received or sent by peers or routers using ROUTER sockets will have an additional address at the start. We do not show
the frame sizes or flags, only frame contents.

Example of hello Request

This shows a hello request sent by a peer, with identity “alice”, to a connected router, with identity “router”.

+-+
| | Empty recipient frame
+-+----+
| VIP1 | Signature frame
+-+----+
| | Empty user ID frame
+-+----+
| 0001 | Request ID, for example "0001"
+------++
| hello | Subsystem, "hello" in this case
+-------+
| hello | Operation, "hello" in this case
+-------+

This example assumes a DEALER socket. If a peer uses a ROUTER socket, it SHALL prepend an additional frame containing
the router identity, similar to the following example.

This shows the example request received by the router:

+-------+
| alice | Sender frame, "alice" in this case
+-+-----+
| | Empty recipient frame
+-+----+
| VIP1 | Signature frame
+-+----+
| | Empty user ID frame
+-+----+
| 0001 | Request ID, for example "0001"
+------++
| hello | Subsystem, "hello" in this case
+-------+
| hello | Operation, "hello" in this case
+-------+

This shows an example reply sent by the router:

+-------+
| alice | Recipient frame, "alice" in this case
+-+-----+
| | Empty sender frame
+-+----+
| VIP1 | Signature frame
+-+----+
| | Empty authentication metadata in user ID frame
+-+----+
| 0001 | Request ID, for example "0001"
+------++
| hello | Subsystem, "hello" in this case
+-------+-+
| welcome | Operation, "welcome" in this case
+-----+---+
| 1.0 | Version of the router
+-----+--+
| router | Router ID, "router" in this case
+-------++
| alice | Peer ID, "alice" in this case
+-------+

This shows an example reply received by the peer:

+-+
| | Empty sender frame
+-+----+
| VIP1 | Signature frame
+-+----+
| | Empty authentication metadata in user ID frame
+-+----+
| 0001 | Request ID, for example "0001"
+------++
| hello | Subsystem, "hello" in this case
+-------+-+
| welcome | Operation, "welcome" in this case
+-----+---+
| 1.0 | Version of the router
+-----+--+
| router | Router ID, "router" in this case
+-------++
| alice | Peer ID, "alice" in this case
+-------+

Example of ping Subsystem

This shows a ping request sent by the peer “alice” to the peer “bob” through the router “router”.

+-----+
| bob | Recipient frame, "bob" in this case
+-----++
| VIP1 | Signature frame
+-+----+
| | Empty user ID frame
+-+----+
| 0002 | Request ID, for example "0002"
+------+
| ping | Subsystem, "ping" in this case
+------+
| ping | Operation, "ping" in this case
+------+-----+
| 1422573492 | Data, a single frame in this case (Unix timestamp)
+------------+

This shows the example request received by the router:

+-------+
| alice | Sender frame, "alice" in this case
+-----+-+
| bob | Recipient frame, "bob" in this case
+-----++
| VIP1 | Signature frame
+-+----+
| | Empty user ID frame
+-+----+
| 0002 | Request ID, for example "0002"
+------+
| ping | Subsystem, "ping" in this case
+------+
| ping | Operation, "ping" in this case
+------+-----+
| 1422573492 | Data, a single frame in this case (Unix timestamp)
+------------+

This shows the example request forwarded by the router:

+-----+
| bob | Recipient frame, "bob" in this case
+-----+-+
| alice | Sender frame, "alice" in this case
+------++
| VIP1 | Signature frame
+-+----+
| | Empty authentication metadata in user ID frame
+-+----+
| 0002 | Request ID, for example "0002"
+------+
| ping | Subsystem, "ping" in this case
+------+
| ping | Operation, "ping" in this case
+------+-----+
| 1422573492 | Data, a single frame in this case (Unix timestamp)
+------------+

This shows the example request received by “bob”:

+-------+
| alice | Sender frame, "alice" in this case
+------++
| VIP1 | Signature frame
+-+----+
| | Empty authentication metadata in user ID frame
+-+----+
| 0002 | Request ID, for example "0002"
+------+
| ping | Subsystem, "ping" in this case
+------+
| ping | Operation, "ping" in this case
+------+-----+
| 1422573492 | Data, a single frame in this case (Unix timestamp)
+------------+

If “bob” were using a ROUTER socket, there would be an additional frame prepended to the message containing the router
identity, “router” in this case.

This shows an example reply from “bob” to “alice”

+-------+
| alice | Recipient frame, "alice" in this case
+------++
| VIP1 | Signature frame
+-+----+
| | Empty user ID frame
+-+----+
| 0002 | Request ID, for example "0002"
+------+
| ping | Subsystem, "ping" in this case
+------+
| pong | Operation, "pong" in this case
+------+-----+
| 1422573492 | Data, a single frame in this case (Unix timestamp)
+------------+

The message would make its way back through the router in a similar fashion to the request.

Reference Implementation

Reference VIP router: https://github.com/VOLTTRON/volttron/blob/master/volttron/platform/vip/router.py

Reference VIP peer: https://github.com/VOLTTRON/volttron/blob/master/volttron/platform/vip/socket.py

Remote Procedure Calls

Remote procedure calls (RPC) is a feature of VOLTTRON Interconnect Protocol VIP. VIP includes the
ability to create new point-to-point protocols, called subsystems, enabling the implementation of
JSON-RPC 2.0 [http://www.jsonrpc.org/specification]. This provides a simple method for agent authors to write
methods and expose or export them to other agents, making request-reply or notify communications patterns as
simple as writing and calling methods.

Exporting Methods

The export() method, defined on the RPC subsystem class, is used to mark a method as remotely accessible. This
export() method has a dual use:

	The class method can be used as a decorator to statically mark methods when the agent class is defined.

	The instance method dynamically exports methods, and can be used with methods not defined on the agent
class.

Each take an optional export name argument, which defaults to the method name. Here are the two export method
signatures:

Instance method:

RPC.export(method, name=None)

Class method:

RPC.export(name=None)

And here is an example agent definition using both methods:

from volttron.platform.vip import Agent, Core, RPC

def add(a, b):
 '''Add two numbers and return the result'''
 return a + b

class ExampleAgent(Agent):
 @RPC.export
 def say_hello(self, name):
 '''Build and return a hello string'''
 return 'Hello, %s!' % (name,)

 @RPC.export('say_bye')
 def bye(self, name):
 '''Build and return a goodbye string'''
 return 'Goodbye, %s.' % (name,)

 @Core.receiver('setup')
 def onsetup(self, sender, **kwargs):
 self.vip.rpc.export('add')

Calling exported methods

The RPC subsystem provides three methods for calling exported RPC methods:

RPC.call(peer, method, *args, **kwargs)

Call the remote method exported by peer with the given arguments. Returns a gevent AsyncResult object.

RPC.batch(peer, requests)

Batch call remote methods exported by peer. requests must be an iterable of 4-tuples
(notify, method, args, kwargs), where notify is a boolean indicating whether this is a notification or standard
call, method is the method name, args is a list and kwargs is a dictionary. Returns a list of AsyncResult
objects for any standard calls. Returns None if all requests were notifications.

RPC.notify(peer, method, *args, **kwargs)

Send a one-way notification message to peer by calling method without returning a result.

Here are some examples:

self.vip.rpc.call(peer, 'say_hello', 'Bob').get()
results = self.vip.rpc.batch(peer, [(False, 'say_bye', 'Alice', {}), (True, 'later', [], {})])
self.vip.rpc.notify(peer, 'ready')

Inspection

A list of methods is available by calling the inspect method. Additional information can be returned for any method
by appending .inspect to the method name. Here are a couple examples:

self.vip.rpc.call(peer, 'inspect') # Returns a list of exported methods
self.vip.rpc.call(peer, 'say_hello.inspect') # Return metadata on say_hello method

VCTL RPC Commands

There are two rpc subcommands available through vctl, list and code.

The list subcommand displays all of the agents that have a peer
connection to the instance and which methods are available from
each of these agents.

vctl rpc list
 config.store
 delete_config
 get_configs
 manage_delete_config
 manage_delete_store
 manage_get
 manage_get_metadata
 manage_list_configs
 manage_list_stores
 manage_store
 set_config
 .
 .
 .

 platform.historian
 get_aggregate_topics
 get_topic_list
 get_topics_by_pattern
 get_topics_metadata
 get_version
 insert
 query
 volttron.central
 get_publickey
 is_registered

If a single agent is specified, it will list all methods available for that agent.

vctl rpc list platform.historian
 platform.historian
 get_aggregate_topics
 get_topic_list
 get_topics_by_pattern
 get_topics_metadata
 get_version
 insert
 query

If the -v option is selected, all agent subsystem rpc methods will be displayed
for each selected agent as well.

vctl rpc list -v platform.historian
 platform.historian
 get_aggregate_topics
 get_topic_list
 get_topics_by_pattern
 get_topics_metadata
 get_version
 insert
 query
 agent.version
 health.set_status
 health.get_status
 health.get_status_json
 health.send_alert
 heartbeat.start
 heartbeat.start_with_period
 heartbeat.stop
 heartbeat.restart
 heartbeat.set_period
 config.update
 config.initial_update
 auth.update

If an agent is specified, and then a method (or methods) are specified,
all parameters associated with the method(s) will be output.

vctl rpc list platform.historian get_version query
 platform.historian
 get_version
 Parameters:
 query
 Parameters:
 topic:
 {'kind': 'POSITIONAL_OR_KEYWORD', 'default': None}
 start:
 {'kind': 'POSITIONAL_OR_KEYWORD', 'default': None}
 end:
 {'kind': 'POSITIONAL_OR_KEYWORD', 'default': None}
 agg_type:
 {'kind': 'POSITIONAL_OR_KEYWORD', 'default': None}
 agg_period:
 {'kind': 'POSITIONAL_OR_KEYWORD', 'default': None}
 skip:
 {'kind': 'POSITIONAL_OR_KEYWORD', 'default': 0}
 count:
 {'kind': 'POSITIONAL_OR_KEYWORD', 'default': None}
 order:
 {'kind': 'POSITIONAL_OR_KEYWORD', 'default': 'FIRST_TO_LAST'}

By adding the ‘-v’ option to this stage, the doc-string description
of the method will be displayed along with the method and parameters if available.

vctl rpc list -v platform.historian get_version
 platform.historian
 get_version
 Documentation:
 RPC call to get the version of the historian

 :return: version number of the historian used
 :rtype: string

 Parameters:

vctl rpc code
vctl rpc list <peer identity>
vctl rpc list <peer identity> <method>
vctl rpc list -v <peer identity>
vctl rpc list -v <peer identity> <method>
vctl rpc code -v
vctl rpc code <peer identity>
vctl rpc code <peer identity> <method>

The code subcommand functions similarly to list, except that it will output the code
to be used in an agent when writing an rpc call. Any available parameters are included
as a list in the line of code where the parameters will need to be provided. These will
need to be modified based on the use case.

vctl rpc code
 self.vip.rpc.call(config.store, delete_config, ['config_name', 'trigger_callback', 'send_update']).get()
 self.vip.rpc.call(config.store, get_configs).get()
 self.vip.rpc.call(config.store, manage_delete_config, ['args', 'kwargs']).get()
 self.vip.rpc.call(config.store, manage_delete_store, ['args', 'kwargs']).get()
 self.vip.rpc.call(config.store, manage_get, ['identity', 'config_name', 'raw']).get()
 self.vip.rpc.call(config.store, manage_get_metadata, ['identity', 'config_name']).get()
 self.vip.rpc.call(config.store, manage_list_configs, ['identity']).get()
 self.vip.rpc.call(config.store, manage_list_stores).get()
 self.vip.rpc.call(config.store, manage_store, ['args', 'kwargs']).get()
 self.vip.rpc.call(config.store, set_config, ['config_name', 'contents', 'trigger_callback', 'send_update']).get()
 .
 .
 .
 self.vip.rpc.call(platform.historian, get_aggregate_topics).get()
 self.vip.rpc.call(platform.historian, get_topic_list).get()
 self.vip.rpc.call(platform.historian, get_topics_by_pattern, ['topic_pattern']).get()
 self.vip.rpc.call(platform.historian, get_topics_metadata, ['topics']).get()
 self.vip.rpc.call(platform.historian, get_version).get()
 self.vip.rpc.call(platform.historian, insert, ['records']).get()
 self.vip.rpc.call(platform.historian, query, ['topic', 'start', 'end', 'agg_type', 'agg_period', 'skip', 'count', 'order']).get()
 self.vip.rpc.call(volttron.central, get_publickey).get()
 self.vip.rpc.call(volttron.central, is_registered, ['address_hash', 'address']).get()

As with rpc list, the code subcommand can be filtered based on the vip identity and/or the method(s).

vctl rpc code platform.historian
 self.vip.rpc.call(platform.historian, get_aggregate_topics).get()
 self.vip.rpc.call(platform.historian, get_topic_list).get()
 self.vip.rpc.call(platform.historian, get_topics_by_pattern, ['topic_pattern']).get()
 self.vip.rpc.call(platform.historian, get_topics_metadata, ['topics']).get()
 self.vip.rpc.call(platform.historian, get_version).get()
 self.vip.rpc.call(platform.historian, insert, ['records']).get()
 self.vip.rpc.call(platform.historian, query, ['topic', 'start', 'end', 'agg_type', 'agg_period', 'skip', 'count', 'order']).get()

vctl rpc code platform.historian query
 self.vip.rpc.call(platform.historian, query, ['topic', 'start', 'end', 'agg_type', 'agg_period', 'skip', 'count', 'order']).get()

Implementation

See the RPC module [https://github.com/VOLTTRON/volttron/blob/develop/volttron/platform/vip/agent/subsystems/rpc.py]
for implementation details.

Also see Multi-Platform RPC Communication and RPC in RabbitMQ for
additional resources.

VIP Known Identities

It is critical for systems to have known locations for receiving resources and services from in a networked environment.
The following table details the vip identities that are reserved for VOLTTRON specific usage.

	VIP Identity

	Sphere of Influence

	Notes

	platform

	Platform

	

	platform.agent

	Platform

	The PlatformAgent is responsible for this identity. It is used to allow the VolttronCentralAgent to control and individual platform.

	volttron.central

	Multi-Network

	The default identity for a VolttronCentralAgent. The PlatformAgent by default will use this as it’s manager, but can be overridden in the configuration file of individual agents.

	platform.historian

	platform

	An individual platform may have many historians available to it, however the only one that will be available through Volttron Central by default will be called this. Note that this does not require a specific type of historian, just that it’s VIP Identity.

	control

	platform

	Control is used to control the individual platform. From the command line when issuing any volttron-ctl operations or when using Volttron Central.

	pubsub

	platform

	Pub/Sub subsystem router

	platform.actuator

	actuator

	Agent which coordinates sending control commands to devices.

	config.store

	platform

	The configuration subsystem service agent on the platform.

	platform.driver

	devices

	The default identity for the Master Driver Agent.

VIP Authentication

VIP (VOLTTRON Interconnect Protocol) authentication is
implemented in the auth module and extends
the ZeroMQ Authentication Protocol
ZAP [http://rfc.zeromq.org/spec:27] to VIP by including the ZAP
User-Id in the VIP payload, thus allowing peers to authorize access
based on ZAP credentials. This document does not cover ZAP in any
detail, but its understanding is fundamental to securely configuring
ZeroMQ. While this document will attempt to instruct on securely
configuring VOLTTRON for use on the Internet, it is recommended that the
ZAP documentation also be consulted.

Default Encryption

By default, ZeroMQ operates in plain-text mode, without any sort of
encryption. While this is okay for in-process and interprocess
communications, via UNIX domain sockets, it is insecure for any kind of
inter-network communications, especially when traffic must traverse the
Internet. Therefore, VOLTTRON automatically generates an encryption key
and enables CurveMQ [http://rfc.zeromq.org/spec:26] by default on
all TCP connections.

To see VOLTTRON’s public key run the vctl auth serverkey command.
For example:

(volttron)[user@home]$ volttron-ctl auth serverkey
FSG7LHhy3v8tdNz3gK35G6-oxUcyln54pYRKu5fBJzU

Peer Authentication

ZAP defines a method for verifying credentials exchanged when a
connection is initially established. The authentication mechanism
provides three main pieces of information useful for authentication:

	domain: a name assigned to a locally bound address (to which peers
connect)

	address: the remote address of the peer

	credentials: includes the authentication method and any associated
credentials

During authentication, VOLTTRON checks these pieces against a list of
accepted peers defined in a file, called the “auth file” in this
document. This JSON-formatted file is located at
$VOLTTRON_HOME/auth.json and must have a matching entry in the allow
list for remote connections to be accepted.

The auth file should not be modified directly.
To change the auth file, use vctl auth subcommands: add,
list, remove, and update. (Run vctl auth --help
for more details and see the
authentication commands documentation.)

Here are some example entries:

(volttron)[user@home]$ vctl auth list

INDEX: 0
{
 "domain": null,
 "user_id": "platform",
 "roles": [],
 "enabled": true,
 "mechanism": "CURVE",
 "capabilities": [],
 "groups": [],
 "address": null,
 "credentials": "k1C9-FPRAVjL-cH1iQqAJaCHUNVXaAlkVc7EqK0u9mI",
 "comments": "Automatically added by platform on start"
}

INDEX: 2
{
 "domain": null,
 "user_id": "platform.sysmon",
 "roles": [],
 "enabled": true,
 "mechanism": "CURVE",
 "capabilities": [],
 "groups": [],
 "address": null,
 "credentials": "5UD_GTk5dM2g4pk8d1-wM-BYgt4RAKiHf4SnT_YU6jY",
 "comments": "Automatically added on agent install"
}

Note:
If using regular expressions in the “address” portion, denote this
with “/”. Backslashes must be escaped “".

This is a valid regular expression: "/192\\.168\\.1\\..*/"

These are invalid:
"/192\.168\.1\..*/", "/192\.168\.1\..*", "192\\.168\\.1\\..*"

When authenticating, the credentials are checked. If
they don’t exist or don’t match, authentication fails. Otherwise, if
domain and address are not present (or are null), authentication
succeeds. If address and/or domain exist, they must match as well for
authentication to succeed.

CURVE
credentials include the remote peer’s public key. Watching the INFO
level log output of the auth module can help determine the required
values for a specific peer.

Configuring Agents

A remote agent must know the platform’s public key (also called the
server key) to successfully authenticate. This server key can be
passed to the agent’s __init__ method in the serverkey
parameter, but in most scenarios it is preferable to add the server key
to the known-hosts file.

URL-style Parameters

VOLTTRON extends ZeroMQ’s address scheme by
supporting URL-style parameters for configuration. The following
parameters are supported when connecting:

	serverkey: encoded public key of remote server

	secretkey: agent’s own private/secret key

	publickey: agent’s own public key

	ipv6: instructs ZeroMQ to attempt to use IPv6

Note:
Although these parameters are still supported they should rarely
need to be specified in the VIP-address URL.
Agent
key stores and the
known-hosts file are automatically
used when possible.

Platform Configuration

By default, the platform only listens on the local IPC VIP socket.
Additional addresses may be bound using the --vip-address option,
which can be provided multiple times to bind multiple addresses. Each
VIP address should follow the standard ZeroMQ convention of prefixing
with the socket type (ipc:// or tcp://) and may include any of the
following additional URL parameters:

	domain: domain name to associate with this endpoint (defaults to
“vip”)

	secretkey: alternate private/secret key (defaults to generated key
for tcp://)

	ipv6: instructs ZeroMQ to attempt to use IPv6

Example Setup

Suppose agent A needs to connect to a remote platform B.
First, agent A must know platform B’s public key
(the server key) and platform B’s IP address (including port).
Also, platform B needs to know agent A’s public key
(let’s say it is HOVXfTspZWcpHQcYT_xGcqypBHzQHTgqEzVb4iXrcDg).

Given these values, a user on agent A’s platform adds platform
B’s information to the known-hosts file.

At this point agent A has all the infomration needed to connect to
platform B, but platform B still needs to add an authentication entry
for agent A.

If agent A tried to connect to platform B at this point both parties
would see an error. Agent A would see an error similar to:

No response to hello message after 10 seconds.
A common reason for this is a conflicting VIP IDENTITY.
Shutting down agent.

Platform B (if started with -v or -vv) will show an error:

2016-10-19 14:21:20,934 () volttron.platform.auth INFO: authentication failure: domain='vip', address='127.0.0.1', mechanism='CURVE', credentials=['HOVXfTspZWcpHQcYT_xGcqypBHzQHTgqEzVb4iXrcDg']

Agent A failed to authenticat to platform B because the platform
didn’t have agent A’s public in the authentication list.

To add agent A’s public key, a user on platform B runs:

(volttron)[user@platform-b]$ volttron-ctl auth add
domain []:
address []:
user_id []: Agent-A
capabilities (delimit multiple entries with comma) []:
roles (delimit multiple entries with comma) []:
groups (delimit multiple entries with comma) []:
mechanism [CURVE]:
credentials []: HOVXfTspZWcpHQcYT_xGcqypBHzQHTgqEzVb4iXrcDg
comments []:
enabled [True]:

Now if agent A can successfully connect to platform B, and platform
B’s log will show:

2016-10-19 14:26:16,446 () volttron.platform.auth INFO: authentication success: domain='vip', address='127.0.0.1', mechanism='CURVE', credentials=['HOVXfTspZWcpHQcYT_xGcqypBHzQHTgqEzVb4iXrcDg'], user_id='Agent-A'

For a more details see the authentication walk-through.

VIP Authorization

VIP authentication and authorization go hand in hand. When an agent authenticates to a
VOLTTRON platform that agent proves its identity to the platform. Once authenticated, an agent is allowed to connect to
the message bus. VIP authorization is about giving a platform owner the ability to limit
the capabilities of authenticated agents.

There are two parts to authorization:

	Required capabilities (specified in agent’s code)

	Authorization entries (specified via volttron-ctl auth commands)

The following example will walk through how to specify required capabilities and grant those capabilities in
authorization entries.

Single Capability

For this example suppose there is a temperature agent that can read and set the temperature of a particular room. The
agent author anticipates that building managers will want to limit which agents can set the temperature.

In the temperature agent, a required capability is specified by using the RPC.allow decorator:

@RPC.export
def get_temperature():
 ...

@RPC.allow('CAP_SET_TEMP')
@RPC.export
def set_temperature(temp):
 ...

In the code above, any agent can call the get_temperature method, but only agents with the CAP_SET_TEMP
capability can call set_temperature.

Note

Capabilities are arbitrary strings. This example follows the general style used for Linux capabilities, but it is
up to the agent author.

Now that a required capability has been specified, suppose a VOLTTRON platform owner wants to allow a specific agent,
say Alice Agent, to set the temperature.

The platform owner runs vctl auth add to add new authorization entries or vctl auth update to update an existing
entry. If Alice Agent is installed on the platform, then it already has an authorization entry. Running
vctl auth list shows the existing entries:

...
INDEX: 3
{
 "domain": null,
 "user_id": "AliceAgent",
 "roles": [],
 "enabled": true,
 "mechanism": "CURVE",
 "capabilities": [],
 "groups": [],
 "address": null,
 "credentials": "JydrFRRv-kdSejL6Ldxy978pOf8HkWC9fRHUWKmJfxc",
 "comments": null
}
...

Currently AliceAgent cannot set the temperature because it does not have the CAP_SET_TEMP capability. To grant this
capability the platform owner runs vctl auth update 3:

(For any field type "clear" to clear the value.)
domain []:
address []:
user_id [AliceAgent]:
capabilities (delimit multiple entries with comma) []: CAP_SET_TEMP
roles (delimit multiple entries with comma) []:
groups (delimit multiple entries with comma) []:
mechanism [CURVE]:
credentials [JydrFRRv-kdSejL6Ldxy978pOf8HkWC9fRHUWKmJfxc]:
comments []:
enabled [True]:
updated entry at index 3

Now Alice Agent can call set_temperature via RPC. If other agents try to call that method they will get the
following exception:

error: method "set_temperature" requires capabilities set(['CAP_SET_TEMP']),
but capability list [] was provided

Multiple Capabilities

Expanding on the temperature-agent example, the set_temperature method can require agents to have multiple
capabilities:

@RPC.allow(['CAP_SET_TEMP', 'CAP_FOO_BAR'])
@RPC.export
def set_temperature():
 ...

This requires an agent to have both the CAP_SET_TEMP and the CAP_FOO_BAR capabilities. Multiple capabilities can
also be specified by using multiple RPC.allow decorators:

@RPC.allow('CAP_SET_TEMP')
@RPC.allow('CAN_FOO_BAR')
@RPC.export
def temperature():
 ...

Capability with parameter restriction

Capabilities can also be used to restrict access to a rpc method only with certain parameter values. For example, if
Agent A exposes a method bar which accepts parameter x.

AgentA’s capability enabled exported RPC method:

@RPC.export
@RPC.allow('can_call_bar')
def bar(self, x):
 return 'If you can see this, then you have the required capabilities'

You can restrict access to Agent A’s bar method to Agent B with x=1. To add this auth entry use the
vctl auth add command as show below:

vctl auth add --capabilities '{"test1_cap2":{"x":1}}' --user_id AgentB --credential vELQORgWOUcXo69DsSmHiCCLesJPa4-CtVfvoNHwIR0

The auth.json file entry for the above command would be:

{
 "domain": null,
 "user_id": "AgentB",
 "roles": [],
 "enabled": true,
 "mechanism": "CURVE",
 "capabilities": {
 "test1_cap2": {
 "x": 1
 }
 },
 "groups": [],
 "address": null,
 "credentials": "vELQORgWOUcXo69DsSmHiCCLesJPa4-CtVfvoNHwIR0",
 "comments": null
}

Parameter values can also be regular expressions:

(volttron)volttron@volttron1:~/git/myvolttron$ vctl auth add
domain []:
address []:
user_id []:
capabilities (delimit multiple entries with comma) []: {'test1_cap2':{'x':'/.*'}}
roles (delimit multiple entries with comma) []:
groups (delimit multiple entries with comma) []:
mechanism [CURVE]:
credentials []: vELQORgWOUcXo69DsSmHiCCLesJPa4-CtVfvoNHwIR0
comments []:
enabled [True]:
added entry domain=None, address=None, mechanism='CURVE', credentials=u'vELQORgWOUcXo69DsSmHiCCLesJPa4-CtVfvoNHwIR0', user_id='b22e041d-ec21-4f78-b32e-ab7138c22373'

The auth.json file entry for the above command would be:

{
 "domain": null,
 "user_id": "90f8ef35-4407-49d8-8863-4220e95974c7",
 "roles": [],
 "enabled": true,
 "mechanism": "CURVE",
 "capabilities": {
 "test1_cap2": {
 "x": "/.*"
 }
 },
 "groups": [],
 "address": null,
 "credentials": "vELQORgWOUcXo69DsSmHiCCLesJPa4-CtVfvoNHwIR0",
 "comments": null
}

Protecting Pub/Sub Topics

VIP authorization enables VOLTTRON platform owners to protect pub/sub topics. More
specifically, a platform owner can limit who can publish to a given topic. This protects subscribers on that platform
from receiving messages (on the protected topic) from unauthorized agents.

Example

To protect a topic, add the topic name to $VOLTTRON_HOME/protected_topics.json. For example, the following
protected-topics file declares that the topic foo is protected:

{
 "write-protect": [
 {"topic": "foo", "capabilities": ["can_publish_to_foo"]}
]
}

Note

The capability name can_publish_to_foo is not special; It can be any string, but it is easier to manage
capabilities with meaningful names.

Now only agents with the capability can_publish_to_foo can publish to the topic foo. To add this capability to
authenticated agents, run vctl auth update (or volttron-ctl auth add for new authentication entries), and enter
can_publish_to_foo in the capabilities field:

capabilities (delimit multiple entries with comma) []: can_publish_to_foo

Agents that have the can_publish_to_foo capabilities can publish to topic foo. That is, such agents can call:

self.vip.pubsub.publish('pubsub', 'foo', message='Here is a message')

If unauthorized agents try to publish to topic foo they will get an exception:

to publish to topic "foo" requires capabilities ['can_publish_to_foo'], but capability list [] was provided

Regular Expressions

Topic names in $VOLTTRON_HOME/protected_topics.json can be specified as regular expressions. In order to use a
regular expression, the topic name must begin and end with a “/”. For example:

{
 "write-protect": [
 {"topic": "/foo/*.*/", "capabilities": ["can_publish_to_foo"]}
]
}

This protects topics such as foo/bar and foo/anything.

VIP Enhancements

When creating VIP for VOLTTRON 3.0 we wanted to address two security concerns and one user request:

	Security Concern 1: Agents can spoof each other on the VOLTTRON message bus and fake messages.

	Security Concern 2: Agents can subscribe to topics that they are not authorized to subscribe to.

	User Request 1: Several users requested means to transfer large
amounts of data between agents without using the message bus.

VOLTTRON Interconnect Protocol (VIP) was created to address these issues but unfortunately, it broke the easy to use
pub-sub messaging model of VOLTTRON. Additionally to use the security features of VOLTTRON in 3.0 code has become an
ordeal especially when multiple platforms are concerned. Finally, VIP has introduced the requirement for knowledge of
specific other platforms to agents written by users in order to be able to communicate. The rest of this memo focuses
on defining the way VOLTTRON message bus will work going forward indefinitely and should be used as the guiding
principles for any future work on VIP and VOLTTRON.

VOLTTRON Message Bus Guiding Principles:

	
All communications between two or more different VOLTTRON platforms MUST go through the VIP Router. Said another
way, a user agent (application) should have NO capability to reach out to an agent on a different VOLTTRON
platform directly.

All communications between two or more VOLTTRON platforms must be in the form of topics on the message bus. Agents
MUST not use a distinct platform address or name to communicate via a direct connection between two platforms.

	VOLTTRON will use two TCP ports. One port is used to extend VIP across platforms. A second port is used for the
VOLTTRON discovery protocol (more on this to come on a different document). VIP will establish bi-directional
communication via a single TCP port.

	In order to solve the bootstrapping problem that CurveMQ has punted on, we will modify VIP to operate similar
(behaviorally) to SSH.

	On a single VOLTTRON platform, the platform’s public key will be made available via an API so that all agents will be
able to communicate with the platform. Additionally, the behavior of the platform will be changed so that agents on
the same platform will automatically be added to the auth.json file. No more need for user to add the agents
manually to the file. The desired behavior is similar to how SSH handles known_hosts.

Note

This behavior still addresses the security request 1 & 2.

	When connecting VOLTTRON platforms, VOLTTRON Discovery Protocol (VDP) will be used to discover the other platforms
public key to establish the router to router connection. Note that since we BANNED agent to agent communication
between two platforms, we have prevented an “O(N^2)” communication pattern and key bootstrapping problem.

	Authorization determines what agents are allowed to access what topics. Authorization MUST be managed by the
VOLTTRON Central platform on a per organization basis. It is not recommended to have different authorization
profiles on different VOLTTRON instances belonging to the same organization.

	VOLTTRON message bus uses topics such as and will adopt an information model agreed upon by the VOLTTRON community
going forward. Our initial information model is based on the OpenEIS schema going forward. A different document
will describe the information model we have adopted going forward. All agents are free to create their own topics
but the VOLTTRON team (going forward) will support the common VOLTTRON information model and all agents developed by
PNNL will be converted to use the new information model.

	Two connected VOLTTRON systems will exchange a list of available topics via the message router. This will allow each
VIP router to know what topics are available at what VOLTTRON platform.

	Even though each VOLTTRON platform will have knowledge of what topics are available around itself, no actual messages
will be forwarded between VOLTTRON platforms until an agent on a specific platform subscribes to a topic. When an
agent subscribes to a topic that has a publisher on a different VOLTTRON platform, the VIP router will send a request
to its peer routers so that the messages sent to that topic will be forwarded. There will be cases (such as clean
energy transactive project) where the publisher to a topic may be multiple hops away. In this case, the subscribe
request will be sent towards the publisher through other VIP routers. In order to find the most efficient path, we
may need to keep track of the total number of hops (in terms of number of VIP routers).

	The model described in steps 5/6/7 applies to data collection. For control applications, VOLTTRON team only allows
control actions to be originated from the VOLTTRON instance that is directly connected to that controlled device.
This decision is made to increase the robustness of the control agent and to encourage truly distributed applications
to be developed.

	Direct agent to agent communication will be supported by creation of an ephemeral topic under the topic hierarchy.
Our measurements have shown repeatedly that the overhead of using the ZeroMQ message pub/sub is minimal and has zero
impact on communications throughput.

In summary, by making small changes to the way VIP operates, I believe that we can significantly increase the usability
of the platform and also correct the mixing of two communication platforms into VIP. VOLTTRON message bus will return
to being a pub/sub messaging system going forward. Direct agent to agent communication will be supported through the
message bus.

Agent VIP IDENTITY Assignment Specification

This document explains how an agent obtains it’s VIP IDENTITY, how the platform sets an agent’s VIP IDENTITY at startup,
and what mechanisms are available to the user to set the VIP IDENTITY for any agent.

What is a VIP IDENTITY

A VIP IDENTITY is a platform instance unique identifier for agents. The IDENTITY is used to route messages from one
Agent through the VOLTTRON router to the recipient Agent. The VIP IDENTITY provides a consistent, user defined, and
human readable character set to build a VIP IDENTITY. VIP IDENTITIES should be composed of both upper and lowercase
letters, numbers and the following special characters.

Runtime

The primary interface for obtaining a VIP IDENTITY at runtime is via the runtime environment of the agent. At startup
the utility function vip_main shall check for the environment variable AGENT_VIP_IDENTITY. If the
AGENT_VIP_IDENTITY environment variable is not set then the vip_main function will fall back to a supplied
identity argument. vip_main will pass the appropriate identity argument to the agent constructor. If no identity is
set the Agent class will create a random VIP IDENTITY using python’s uuid4 function.

An agent that inherits from the platform’s base Agent class can get it’s current VIP IDENTITY by retrieving the value of
self.core.identity.

The primary use of the ‘identity’ argument to vip_main is for agent development. For development it allows agents to
specify a default VIP IDENTITY when run outside the platform. As platform Agents are not started via vip_main they
will simply receive their VIP IDENTITY via the identity argument when they are instantiated. Using the identity
argument of the Agent constructor to set the VIP IDENTITY via agent configuration is no longer supported.

At runtime the platform will set the environment variable AGENT_VIP_IDENTITY to the value set at installation time.

Agents not based on the platform’s base Agent should set their VIP IDENTITY by setting the identity of the ZMQ socket
before the socket connects to the platform. If the agent fails to set it’s VIP IDENTITY via the ZMQ socket it will be
selected automatically by the platform. This platform chosen ID is currently not discoverable to the agent.

Agent Implementation

If an Agent has a preferred VIP IDENTITY (for example the Master Driver Agent prefers to use “platform.driver”) it may
specify this as a default packed value. This is done by including a file named IDENTITY containing only the desired VIP
IDENTITY in ASCII plain text in the same directory at the setup.py file for the Agent. This will cause the packaged
agent wheel to include an instruction to set the VIP IDENTITY at installation time.

This value may be overridden at packaging or installation time.

Packaging

An Agent may have it’s VIP IDENTITY configured when it is packaged. The packaged value may be used by the platform to
set the AGENT_VIP_IDENTITY environment variable for the agent process.

The packaged VIP IDENTITY may be overridden at installation time. This overrides any preferred VIP IDENTITY of the
agent. This will cause the packaged agent wheel to include an instruction to set the VIP IDENTITY at installation time.

To specify the VIP IDENTITY when packaging use the --vip-identity option when running volttron-pkg package.

Installation

An agent may have it’s VIP IDENTITY configured when it is installed. This overrides any VIP IDENTITY specified when the
agent was packaged.

To specify the VIP IDENTITY when packaging use the --vip-identity option when running volttron-ctl install.

Installation Default VIP IDENTITY

If no VIP IDENTITY has been specified by installation time the platform will assign one automatically.

The platform uses the following template to generate a VIP IDENTITY:

"{agent_name}_{n}"

{agent_name} is substituted with the name of the actual agent such as listeneragent-0.1

{n} is a number to make VIP IDENTITY unique. {n} is set to the first unused number (starting from 1) for all
installed instances of an agent. e.g. If there are 2 listener agents installed and the first (VIP IDENTITY
listeneragent-0.1_1) is uninstalled leaving the second (VIP IDENTITY “listeneragent-0.1_2”), a new listener agent will
receive the VIP IDENTITY “listeneragent-0.1_1” when installed. The next installed listener will receive a VIP IDENTITY
of “listeneragent-0.1_3”.

The # sign is used to prevent confusing the agent version number with the installed instance number.

If an agent is repackaged with a new version number it is treated as a new agent and the number will start again from 1.

VIP IDENTITY Conflicts During Installation

If an agent is assigned a VIP IDENTITY besides the default value given to it by the platform it is possible for VIP IDENTITY conflicts to exist between installed agents. In this case the platform rejects the installation of an agent with a conflicting VIP IDENTITY and reports an error to the user.

VIP IDENTITY Conflicts During Runtime

In the case where agents are not started through the platform (usually during development or when running standalone
agents) it is possible to encounter a VIP IDENTITY conflict during runtime. In this case the first agent to use a VIP
IDENTITY will function as normal. Subsequent agents will still connect to the ZMQ socket but will be silently rejected
by the platform router. The router will not route any message to that Agent. Agents using the platforms base Agent
will detect this automatically during the initial handshake with the platform. This condition will shutdown the Agent
with an error indicating a VIP IDENTITY conflict as the most likely cause of the problem.

Auto Numbering With Non-Default VIP IDENTITYs

It is possible to use the auto numbering mechanism that the default VIP IDENTITY scheme uses. Simply include the string
{n} somewhere in the requested VIP IDENTITY and it will be replaced with a number in the same manner as the default
VIP IDENTITY is. Python string.format() escaping rules apply. See this question on StackOverflow. [http://stackoverflow.com/questions/5466451/how-can-i-print-a-literal-characters-in-python-string-and-also-use-format]

Script Features

The scripts/install-agent.py script supports specifying the desired VIP IDENTITY using the -i (or
--vip-identity) <identity> option

Security/Privacy

Currently, much like the TAG file in an installed agent, there is nothing to stop someone from modifying the
IDENTITY file in the installed agent.

Constraints and Limitations

Currently there is no way for an agent based on the platform base Agent class to recover from a VIP IDENTITY conflict.
This case only affects developers and a very tiny minority of users and is reported via an error message, there
are currently no plans to fix it.

RabbitMQ Based VOLTTRON

RabbitMQ VOLTTRON uses the Pika library for the RabbitMQ message bus implementation. To install Pika, it is
recommended to use the VOLTTRON bootstrap.py script:

python3 bootstrap.py --rabbitmq

Configuration

To setup a VOLTTRON instance to use the RabbitMQ message bus, we need to first configure VOLTTRON to use the RabbitMQ
message library. The contents of the RabbitMQ configuration file should follow the pattern below.

Path: $VOLTTRON_HOME/rabbitmq_config.yml

#host parameter is mandatory parameter. fully qualified domain name
host: mymachine.pnl.gov

mandatory. certificate data used to create root ca certificate. Each volttron
instance must have unique common-name for root ca certificate
certificate-data:
 country: 'US'
 state: 'Washington'
 location: 'Richland'
 organization: 'PNNL'
 organization-unit: 'VOLTTRON Team'
 # volttron1 has to be replaced with actual instance name of the VOLTTRON
 common-name: 'volttron1_root_ca'
#
optional parameters for single instance setup
#
virtual-host: 'volttron' # defaults to volttron

use the below four port variables if using custom rabbitmq ports
defaults to 5672
amqp-port: '5672'

defaults to 5671
amqp-port-ssl: '5671'

defaults to 15672
mgmt-port: '15672'

defaults to 15671
mgmt-port-ssl: '15671'

defaults to true
ssl: 'true'

defaults to ~/rabbitmq_server/rabbbitmq_server-3.7.7
rmq-home: "~/rabbitmq_server/rabbitmq_server-3.7.7"

Each VOLTTRON instance resides within a RabbitMQ virtual host. The name of the virtual host needs to be unique per
VOLTTRON instance if there are multiple virtual instances within a single host/machine. The hostname needs to be able
to resolve to a valid IP. The default port of an AMQP port without authentication is 5672 and with authentication
it is 5671. The default management HTTP port without authentication is 15672 and with authentication is 15671.
These needs to be set appropriately if the default ports are not used.

The ‘ssl’ flag indicates if SSL based authentication is required or not. If set to True, information regarding SSL
certificates needs to be also provided. SSL based authentication is described in detail in
Authentication And Authorization With RabbitMQ Message Bus.

To configure the VOLTTRON instance to use RabbitMQ message bus, run the following command:

vcfg --rabbitmq single [optional path to rabbitmq_config.yml]

At the end of the setup process, a RabbitMQ broker is setup to use the configuration provided. A new topic exchange for
the VOLTTRON instance is created within the configured virtual host.

On platform startup, VOLTTRON checks for the type of message bus to be used. If using the RabbitMQ message bus, the
RabbitMQ platform router is instantiated. The RabbitMQ platform router:

	Connects to RabbitMQ broker (with or without authentication)

	Creates a VIP queue and binds itself to the “VOLTTRON” exchange with binding key <instance-name>.router. This
binding key makes it unique across multiple VOLTTRON instances in a single machine as long as each instance has a
unique instance name.

	Handles messages intended for router module such as hello, peerlist, query etc.

	Handles “unrouteable” messages - Messages which cannot be routed to any destination agent are captured and an error
message indicating “Host Unreachable” error is sent back to the caller.

	Disconnects from the broker when the platform shuts down.

When any agent is installed and started, the Agent Core checks for the type of message bus used. If it is RabbitMQ
message bus then:

	It creates a RabbitMQ user for the agent

	If SSL based authentication is enabled, client certificates for the agent is created

	Connect to the RabbitQM broker with appropriate connection parameters

	Creates a VIP queue and binds itself to the “VOLTTRON” exchange with binding key <instance-name>.<agent identity>

	Sends and receives messages using Pika library methods.

	Checks for the type of subsystem in the message packet that it receives and calls the appropriate subsystem message
handler.

	Disconnects from the broker when the agent stops or platform shuts down.

RPC In RabbitMQ VOLTTRON

The agent functionality remain unchanged regardless of the underlying message bus used, meaning they can continue to use
the same RPC interfaces without any change.

[image: ../../../_images/rpc.png]
Consider two agents with VIP identities “agent_a” and “agent_b” connected to VOLTTRON platform
with instance name “volttron1”. Agent A and B each have a VIP queue with binding key volttron1.agent_a”
and “volttron1.agent_b”. Following is the sequence of operation when Agent A wants to make RPC
call to Agent B:

	Agent A makes a RPC call to Agent B.

agent_a.vip.rpc.call("agent_b", set_point, "point_name", 2.5)

	RPC subsystem wraps this call into a VIP message object and sends it to Agent B.

	The VOLTTRON exchange routes the message to Agent B as the destination routing in the VIP message object matches with
the binding key of Agent B.

	Agent Core on Agent B receives the message, unwraps the message to find the subsystem type and calls the RPC
subsystem handler.

	RPC subsystem makes the actual RPC call set_point() and gets the result. It then wraps into VIP message object and
sends it back to the caller.

	The VOLTTRON exchange routes it to back to Agent A.

	Agent Core on Agent A calls the RPC subsystem handler which in turn hands over the RPC result to Agent A application.

PUBSUB In RabbitMQ VOLTTRON

The agent functionality remains unchanged irrespective of the platform using ZeroMQ based pubsub or
RabbitMQ based pubsub, i.e. agents continue to use the same PubSub interfaces and use the same topic
format delimited by “/”. Since RabbitMQ expects binding key to be delimited by ‘.’, RabbitMQ PUBSUB
internally replaces ‘/’ with “.”. Additionally, all agent topics are converted to
_pubsub__.<instance_name>.<remainder of topic> to differentiate them from the main Agent VIP queue binding.

[image: ../../../_images/pubsub.png]
Consider two agents with VIP identities “agent_a” and “agent_b” connected to VOLTTRON platform
with instance name “volttron1”. Agent A and B each have a VIP queue with binding key “volttron1.agent_a”
and “volttron1.agent_b”. Following is the sequence of operation when Agent A subscribes to a topic and Agent B
publishes to same the topic:

	Agent B makes subscribe call for topic “devices”.

agent_b.vip.pubsub.subscribe("pubsub", prefix="devices", callback=self.onmessage)

	Pubsub subsystem creates binding key from the topic __pubsub__.volttron1.devices.#

	It creates a queue internally and binds the queue to the VOLTTRON exchange with the above binding key.

	Agent B is publishing messages with topic: “devices/hvac1”.

agent_b.vip.pubsub.publish("pubsub", topic="devices/hvac1", headers={}, message="foo").

	PubSub subsystem internally creates a VIP message object and publishes on the VOLTTRON exchange.

	RabbitMQ broker routes the message to Agent B as routing key in the message matches with the binding key of the topic
subscription.

	The pubsub subsystem unwraps the message and calls the appropriate callback method of Agent A.

If agent wants to subscribe to topic from remote instances, it uses:

agent.vip.subscribe('pubsub', 'devices.hvac1', all_platforms=True)

It is internally set to __pubsub__.*.<remainder of topic>

Further Work

The Pubsub subsystem for the ZeroMQ message bus performs O(N) comparisons where N is the number of unique subscriptions.
The RabbitMQ Topic Exchange was enhanced in version 2.6.0 to reduce the overhead of additional unique subscriptions to
almost nothing in most cases. We speculate they are using a tree structure to store the binding keys which would reduce
the search time to O(1) in most cases and O(ln) in the worst case. The VOLTTRON PubSub with ZeroMQ could be updated to
match this performance scalability with some effort.

RabbitMQ Management Tool Integrated Into VOLTTRON

Some of the important native RabbitMQ control and management commands are now integrated with the
:ref`volttron-ctl <Platform-Commands>` (vctl) utility. Using volttron-ctl’s RabbitMQ management utility, we can
control and monitor the status of RabbitMQ message bus:

vctl rabbitmq --help
usage: vctl command [OPTIONS] ... rabbitmq [-h] [-c FILE] [--debug]
 [-t SECS]
 [--msgdebug MSGDEBUG]
 [--vip-address ZMQADDR]
 ...
subcommands:

 add-vhost add a new virtual host
 add-user Add a new user. User will have admin privileges
 i.e,configure, read and write
 add-exchange add a new exchange
 add-queue add a new queue
 list-vhosts List virtual hosts
 list-users List users
 list-user-properties
 List users
 list-exchanges add a new user
 list-exchange-properties
 list exchanges with properties
 list-queues list all queues
 list-queue-properties
 list queues with properties
 list-bindings list all bindings with exchange
 list-federation-parameters
 list all federation parameters
 list-shovel-parameters
 list all shovel parameters
 list-policies list all policies
 remove-vhosts Remove virtual host/s
 remove-users Remove virtual user/s
 remove-exchanges Remove exchange/s
 remove-queues Remove queue/s
 remove-federation-parameters
 Remove federation parameter
 remove-shovel-parameters
 Remove shovel parameter
 remove-policies Remove policy

For information about using RabbitMQ in multi-platform deployments, view the docs

RabbitMQ

	RabbitMQ Overview
	Authentication in RabbitMQ

	Management Plugin

	Deployments

	Message Bus Plugin Framework
	Message Bus Refactor

	Connection class

	Platform Level Changes

	Agent Core Changes

	Compatibility Between VOLTTRON Instances Running On Different Message Buses

	Authentication And Authorization With RabbitMQ Message Bus
	Authentication In RabbitMQ VOLTTRON
	SSL in RabbitMQ VOLTTRON
	Authorization in RabbitMQ VOLTTRON

RabbitMQ Overview

Note

Some of the RabbitMQ summary/overview documentation and supporting images added here are taken from the
RabbitMQ official documentation [https://www.rabbitmq.com/documentation.html].

RabbitMQ is the most popular messaging library with over 35,000 production deployments. It is highly scalable, easy to
deploy, runs on many operating systems and cloud environments. It supports many kinds of distributed deployment
methodologies such as clusters, federation and shovels.

RabbitMQ uses Advanced Message Queueing Protocol (AMQP) and works on the basic producer consumer model. A consumer is
a program that consumes/receives messages and producer is a program that sends the messages. Following are some
important definitions that we need to know before we proceed.

	Queue - Queues can be considered like a post box that stores messages until consumed by the consumer. Each consumer
must create a queue to receives messages that it is interested in receiving. We can set properties to the queue
during it’s declaration. The queue properties are:

	Name - Name of the queue

	Durable - Flag to indicate if the queue should survive broker restart.

	Exclusive - Used only for one connection and it will be removed when connection is closed.

	Auto-queue - Flag to indicate if auto-delete is needed. The queue is deleted when last consumer un-subscribes from
it.

	Arguments - Optional, can be used to set message TTL (Time To Live), queue limit etc.

	Bindings - Consumers bind the queue to an exchange with binding keys or routing patterns. Producers send messages and
associate them with a routing key. Messages are routed to one or many queues based on a pattern matching between a
message routing key and binding key.

	Exchanges - Exchanges are entities that are responsible for routing messages to the queues based on the routing
pattern/binding key used. They look at the routing key in the message when deciding how to route messages to queues.
There are different types of exchanges and one must choose the type of exchange depending on the application design
requirements

	Fanout - It blindly broadcasts the message it receives to all the queues it knows.

	Direct - Here, the message is routed to a queue if the routing key of the message exactly matches the binding key
of the queue.

	Topic - Here, the message is routed to a queue based on pattern matching of the routing key with the binding key.
The binding key and the routing key pattern must be a list of words delimited by dots, for example,
“car.subaru.outback” or “car.subaru.*”, “car.#”. A message sent with a particular routing key will be delivered
to all the queues that are bound with a matching binding key with some special rules as

‘*’ (star) - can match exactly one word in that position.
‘#’ (hash) - can match zero or more words

	Headers - If we need more complex matching then we can add a header to the message with all the attributes set to
the values that need to be matched. The message is considered matching if the values of the attributes in the
header is equal to that of the binding. The Header exchange ignores the routing key.

We can set some properties of the exchange during it’s declaration.

	Name - Name of the exchange

	Durable - Flag to indicate if the exchange should survive broker restart.

	Auto-delete - Flag indicates if auto-delete is needed. If set to true, the exchange is deleted when the last queue
is unbound from it.

	Arguments - Optional, used by plugins and broker-specific features

Lets use an example to understand how they all fit together. Consider an example where there are four consumers
(Consumer 1 - 4) interested in receiving messages matching the pattern “green”, “red” or “yellow”. In this example, we
are using a direct exchange that will route the messages to the queues only when there is an exact match of the routing
key of the message with the binding key of the queues. Each of the consumers declare a queue and bind the queue to the
exchange with a binding key of interest. Lastly, we have a producer that is continuously sending messages to exchange
with routing key “green”. The exchange will check for an exact match and route the messages to only Consumer 1 and
Consumer 3.

[image: ../../../_images/rabbitmq_exchange.png]
For more information about queues, bindings, exchanges, please refer to the
RabbitMQ tutorial [https://www.rabbitmq.com/getstarted.html].

Authentication in RabbitMQ

By default RabbitMQ supports SASL PLAIN authentication with username and password. RabbitMQ supports other SASL
authentication mechanisms using plugins. In VOLTTRON we use one such external plugin based on x509 certificates
(https://github.com/rabbitmq/rabbitmq-auth-mechanism-ssl). This authentication is based on a technique called
public key cryptography which consists of a key pair - a public key and a private key. Data that has been encrypted
with a public key can only be decrypted with the corresponding private key and vice versa. The owner of key pair makes
the public key available and keeps the private confidential. To send a secure data to a receiver, a sender encrypts the
data with the receiver’s public key. Since only the receiver has access to his own private key only the receiver can
decrypted. This ensures that others, even if they can get access to the encrypted data, cannot decrypt it. This is how
public key cryptography achieves confidentiality.

A digital certificate is a digital file that is used to prove ownership of a public key. Certificates act like
identification cards for the owner/entity. Certificates are therefore crucial to determine that a sender is using the
right public key to encrypt the data in the first place. Digital Certificates are issued by Certification
Authorities(CA). Certification Authorities fulfill the role of the Trusted Third Party by accepting Certificate
applications from entities, authenticating applications, issuing Certificates and maintaining status information about
the Certificates issued. Each CA has its own public private key pair and its public key certificate is called a root CA
certificate. The CA attests to the identity of a Certificate applicant when it signs the Digital Certificate using its
private key.

In x509 based authentication, a signed certificate is presented instead of username/password for authentication and if
the server recognizes the the signer of the certificate as a trusted CA, accepts and allows the connection. Each
server/system can maintain its own list of trusted CAs (i.e. list of public certificates of CAs). Certificates signed
by any of the trusted CA would be considered trusted. Certificates can also be signed by intermediate CAs that are in
turn signed by a trusted.

This section only provides a brief overview about the SSL based authentication. Please refer to the vast material
available online for detailed description. Some useful links to start:

	https://en.wikipedia.org/wiki/Public-key_cryptography

	https://robertheaton.com/2014/03/27/how-does-https-actually-work/

Management Plugin

The RabbitMQ-management plugin provides an HTTP-based API for management and monitoring of RabbitMQ nodes and clusters,
along with a browser-based UI and a command line tool, rabbitmqadmin. The management interface allows you to:

	Create, Monitor the status and delete resources such as virtual hosts, users, exchanges, queues etc.

	Monitor queue length, message rates and connection information and more

	Manage users and add permissions (read, write and configure) to use the resources

	Manage policies and runtime parameters

	Send and receive messages (for trouble shooting)

For more detailed information about the management plugin, please refer to RabbitMQ documentation on the
Management Plugin [https://www.rabbitmq.com/management.html].

Deployments

The platform installation docs describe performing first time setup for single machine
RabbitMQ deployments.

See the multi-platform RabbitMQ docs for setting up shovel or federation in
multi-platform RabbitMQ deployments.

Message Bus Plugin Framework

The message bus plugin framework aims to decouple the VOLTTRON specific code from
the message bus implementation without compromising the existing features of the
platform. The concept of the plugin framework is similar to that used in historian
or driver framework i.e, we should be easily able to support multiple message buses
and be able to use any of them by following few installation and setup steps.

Message Bus Refactor

	It consists of five components

	
	New connection class per message bus

	Extensions to platform router functionality

	Extensions to core agent functionality

	A proxy agent for each message bus to support backward compatibility

	Authentication related changes

Connection class

	A connection class that has methods to handle

	
	Connection to new message bus.

	Set properties such as message transmission rate, send/receive buffer sizes, open socket limits etc.

	Send/receive messages from the underlying layer.

	Error handling functionality.

	Disconnect from the message bus

Platform Level Changes

A new message bus flag is introduced to indicate the type of message bus used by the
platform. If no message bus flag is added in the platform config file, the platform
uses default ZeroMQ based message bus.

Path of the config: $VOLTTRON_HOME/config

[volttron]
vip-address = tcp://127.0.0.1:22916
instance-name = volttron1
message-bus = rmq

Please note, the valid message types are ‘zmq’ and ‘rmq’.

On startup, platform checks for the type of message bus and creates appropriate router module.
Please note, ZeroMQ router functionality remains unchanged. However, a new router module
with limited functionality is added for RabbitMQ message bus. The actual routing of
messages is handed over to the RabbitMQ broker and router module will only handle some of the
necessary subsystem messages such as “hello”, “peerlist”, “query” etc. If a new message bus needs
to be added then the complexity of the router module depends on whether the messaging library uses
a broker based or broker less (as in case of ZeroMQ) protocol.

Agent Core Changes

The application specific code of the agent remains unchanged. The agent core functionality is
modified to check the type of message bus and connect to and use the appropriate message bus.
On startup, the agent Core checks the type of message bus, connects to appropriate message bus
and routes messages to appropriate subsystem. All subsystem messages are encapsulated inside a
message bus agnostic VIP message object. If a new message bus needs to be added, then we would
have to extend the Agent Core to connect to new message bus.

Compatibility Between VOLTTRON Instances Running On Different Message Buses

All the agents connected to local platform uses the same message bus that the platform is
connected to. But if we need agents running on different platforms with different message
buses to communicate with each other then we need some kind of proxy entity or bridge that
establishes the connection, handles the message routing and performs the message translation
between the different message formats. To achieve that, we have a proxy agent that acts as a
bridge between the local message bus and remote message bus. The role of the proxy agent is to

	Maintain connections to internal and external message bus.

	Route messages from internal to external platform.

	Route messages from external to internal platform.

[image: ../../../_images/proxy_router.png]
The above figure shows three VOLTTRON instances with V1 connected to ZMQ message bus, V2 connected
to RMQ message bus and V3 connected to XYZ (some message bus of the future) and all three want to
connect to each other. Then V2 and V3 will have proxy agents that get connected to the local bus
and to the remote bus and forward messages from one to another.

Authentication And Authorization With RabbitMQ Message Bus

Authentication In RabbitMQ VOLTTRON

RabbitMQ VOLTTRON uses SSL based authentication, rather than the default username and password authentication. VOLTTRON
adds SSL based configuration entries into the rabbitmq.conf file during the setup process. The necessary SSL
configurations can be seen by running the following command:

cat ~/rabbitmq_server/rabbitmq_server-3.7.7/etc/rabbitmq/rabbitmq.conf

The configurations required to enable SSL:

listeners.ssl.default = 5671
ssl_options.cacertfile = VOLTTRON_HOME/certificates/certs/volttron1-trusted-cas.crt
ssl_options.certfile = VOLTTRON_HOME/certificates/certs/volttron1-server.crt
ssl_options.keyfile = VOLTTRON_HOME/certificates/private/volttron1-server.pem
ssl_options.verify = verify_peer
ssl_options.fail_if_no_peer_cert = true

Parameter explanations

	listeners.ssl.default: port for listening for SSL connections

	ssl_options.cacertfile: path to trusted Certificate Authorities (CA)

	ssl_options.certfile: path to server public certificate

	ssl_options.keyfile: path to server’s private key

	ssl_options.verify: whether verification is enabled

	ssl_options.fail_if_no_peer_cert: upon client’s failure to provide certificate, SSL connection either rejected (true)
or accepted (false)

	auth_mechanisms.1: type of authentication mechanism. EXTERNAL means SSL authentication is used

SSL in RabbitMQ VOLTTRON

To configure RabbitMQ-VOLTTRON to use SSL based authentication, we need to add SSL configuration in rabbitmq_config.yml.

mandatory. fully qualified domain name for the system
host: mymachine.pnl.gov

mandatory. certificate data used to create root ca certificate. Each volttron
instance must have unique common-name for root ca certificate
certificate-data:
 country: 'US'
 state: 'Washington'
 location: 'Richland'
 organization: 'PNNL'
 organization-unit: 'VOLTTRON Team'
 # volttron1 has to be replaced with actual instance name of the VOLTTRON instance
 common-name: 'volttron1_root_ca'

virtual-host: 'volttron' # defaults to volttron

use the below four port variables if using custom rabbitmq ports
defaults to 5672
amqp-port: '5672'

defaults to 5671
amqp-port-ssl: '5671'

defaults to 15672
mgmt-port: '15672'

defaults to 15671
mgmt-port-ssl: '15671'

defaults to true
ssl: 'true'

defaults to ~/rabbitmq_server/rabbbitmq_server-3.7.7
rmq-home: "~/rabbitmq_server/rabbitmq_server-3.7.7"

The parameters of interest for SSL based configuration are

	certificate-data: subject information needed to create certificates

	ssl: Flag set to ‘true’ for SSL based authentication

	amqp-port-ssl: Port number for SSL connection (defaults to 5671)

	mgmt-port-ssl: Port number for HTTPS management connection (defaults to 15671)

We can then configure the VOLTTRON instance to use SSL based authentication with the below command:

vcfg –rabbitmq single <optional path to rabbitmq_config.yml>

When one creates a single instance of RabbitMQ, the following is created / re-created in the VOLTTRON_HOME/certificates
directory:

	Public and private certificates of root Certificate Authority (CA)

	Public and private (automatically signed by the CA) server certificates needed by RabbitMQ broker

	Admin certificate for the RabbitMQ instance

	Public and private (automatically signed by the CA) certificates for VOLTTRON platform service agents.

	Trusted CA certificate

The public files can be found at VOLTTRON_HOME/certificates/certs and the private files can be found
at VOLTTRON_HOME/certificates/private. The trusted-cas.crt file is used to store
the root CAs of all VOLTTRON instances that the RabbitMQ server has to connected to. The trusted CA is only created
once, but can be updated. Initially, the trusted CA is a copy of the the root CA file,
but when an external VOLTTRON instance needs to be connected to an instance, the external VOLTTRON instance’s root CA
will be appended to this file in order for the RabbitMQ broker to trust the new connection.

[image: ../../../_images/rmq_server_ssl_certs.png]
Every RabbitMQ has a single self signed root ca and server certificate signed by the root CA. This is created during
VOLTTRON setup and the RabbitMQ server is configured and started with these two certificates. Every time an agent is
started, the platform automatically creates a pair of public-private certificates for that agent that is signed by the
same root CA. When an agent communicates with the RabbitMQ message bus it presents it’s public certificate and private
key to the server and the server validates if it is signed by a root CA it trusts – ie., the root certificate it was
started with. Since there is only a single root CA for one VOLTTRON instance, all the agents in this instance can
communicate with the message bus over SSL.

For information about using SSL with multi-platform RabbitMQ deployments, view the
docs

Authorization in RabbitMQ VOLTTRON

To be implemented in VOLTTRON at a later date.

For more detailed information about access control, please refer to RabbitMQ documentation
Access Control [https://www.rabbitmq.com/access-control.html].

Multi-Platform Communication

To connect to remote VOLTTRON platforms, we would need platform discovery information of the remote platforms. This
information contains the platform name, VIP address and serverkey of the remote platforms and we need to provide this
as part of multi-platform configuration.

Configuration

The configuration and authentication for multi-platform connection can be setup either manually or by running the
platforms in set up mode. Both the setups are described below.

Setup Mode For Automatic Authentication

Note

It is necessary for each platform to have a web server if running in setup mode.

For ease of use and to support multi-scale deployment, the process of obtaining the platform discovery information and
authenticating the new platform connection is automated. We can now bypass the manual process of adding auth keys
(i.e., either by using the volttron-ctl utility or directly updating the auth.json config file).

A config file containing list of web addresses (one for each platform) need to be made available in VOLTTRON_HOME
directory.

Name of the file: external_address.json

Directory path: Each platform’s VOLTTRON_HOME directory.

For example: /home/volttron/.volttron1

Contents of the file:

[
"http://<ip1>:<port1>",
"http://<ip2>:<port2>",
"http://<ip3>:<port3>",

]

We then start each VOLTTRON platform with setup mode option in this way.

volttron -vv -l volttron.log --setup-mode&

Each platform will obtain the platform discovery information of the remote platform that it is trying to connect through
a HTTP discovery request and store the information in a configuration file
($VOLTTRON_HOME/external_platform_discovery.json). It will then use the VIP address and serverkey to connect to the
remote platform. The remote platform shall authenticate the new connection and store the auth keys (public key) of the
connecting platform for future use.

The platform discovery information will be stored in VOLTTRON_HOME directory and looks like below:

Name of config file: external_platform_discovery.json

Contents of the file:

{"<platform1 name>": {"vip-address":"tcp://<ip1>:<vip port1>",
 "instance-name":"<platform1 name>",
 "serverkey":"<serverkey1>"
 },
 "<platform2 name>": {"vip-address":"tcp://<ip2>:<vip port2>",
 "instance-name":"<platform2 name>",
 "serverkey":"<serverkey2>"
 },
 "<platform3 name>": {"vip-address":"tcp://<ip3>:<vip port3>",
 "instance-name":"<platform3 name>",
 "serverkey":"<serverkey3>"
 },

}

Each platform will use this information for future connections.

Once the keys have been exchanged and stored in the auth module, we can restart all the VOLTTRON platforms in normal
mode.

./stop-volttron
./start-volttron

Manual Configuration of External Platform Information

Platform discovery configuration file can also be built manually and it needs to be added inside VOLTTRON_HOME
directory of each platform.

Name of config file: external_platform_discovery.json

Contents of the file:

{"<platform1 name>": {"vip-address":"tcp://<ip1>:<vip port1>",
 "instance-name":"<platform1 nam>",
 "serverkey":"<serverkey1>"
 },
 "<platform2 name>": {"vip-address":"tcp://<ip2>:<vip port2>",
 "instance-name":"<platform2 name>",
 "serverkey":"<serverkey2>"
 },
 "<platform3 name>": {"vip-address":"tcp://<ip3>:<vip port3>",
 "instance-name":"<platform3 name>",
 "serverkey":"<serverkey3>"
 },

}

With this configuration, platforms can be started in normal mode.

./start-volttron

For external platform connections to be authenticated, we would need to add the credentials of the connecting platforms
in each platform using the volttron-ctl auth utility. For more details
Agent authentication walk-through.

See also

Multi-Platform Walk-through

Multi-platform Message Bus Topics

	PubSub Communication Between Remote Platforms
	Functional Capabilities
	Routing Service

	KeyDiscovery Service

	Messages for Routing Service

	Messages for PubSub communication

	API
	Methods for Routing Service

	Methods for PubSubService

	Methods for agent pubsub subsystem

	Multi-Platform RPC Communication
	Calling External Platform RPC Method

	Distributed RabbitMQ Brokers
	Clustering

	Federation

	Federated Exchange

	Federated Queue

	Shovel

	Agent communication to Remote RabbitMQ instance
	Configuration

	remote-agent on local-instance
	Approving a CSR Request

	Denying a CSR Request

PubSub Communication Between Remote Platforms

This document describes pubsub communication between different platforms. The goal of this specification is to improve
forward historians forwarding local PubSub messages to remote platforms. Agents interested in receiving PubSub
messages from external platforms will not need to have a forward historian running on the source platform to forward
PubSub messages to the interested destination platforms; The VIP router will now do all the work. It shall use the
Routing Service to internally manage connections with external VOLTTRON platforms and use the PubSubService for the
actual inter-platform PubSub communication.

For future:

This specification will need to be extended to support PubSub communication between platforms that are
multiple hops away. The VIP router of each platform shall need to maintain a routing table and use it to forward pubsub
messages to subscribed platforms that are multiple hops away. The routing table shall contain shortest path to each
destination platform.

Functional Capabilities

	Each VOLTTRON platform shall have a list of other VOLTTRON platforms that it has to connect to in a config file.

	Routing Service of each platform connects to other platforms on startup.

	The Routing Service in each platform is responsible for connecting to (and also initiating reconnection if required),
monitoring and disconnecting from each external platform. The function of the Routing Service is explained in detail
in the Routing Service section.

	Platform to platform PubSub communication shall be using VIP protocol with the subsystem frame set to “pubsub”.

	The PubSubService of each VOLTTRON platform shall maintain a list of local and external subscriptions.

	Each VIP router sends its list of external subscriptions to other connected platforms in the following cases:

	On startup

	When a new subscription is added

	When an existing subscription is removed

	When a new platform gets connected

	When a remote platform disconnection is detected, all stale subscriptions related to that platform shall be removed.

	Whenever an agent publishes a message to a specific topic, the PubSubService on the local platform first checks the
topic against its list of local subscriptions. If a local subscription exists, it sends the publish message to
corresponding local subscribers.

	The PubSubService shall also check the topic against list of external subscriptions. If an external subscription
exists, it shall use the Routing Service to send the publish message to the corresponding external platform.

	Whenever a router receives messages from other platform, it shall check the destination platform in the incoming
message.

	If the destination platform is the local platform, it hand overs the publish message to the PubSubService which
checks the topic against list of external subscriptions. If an external subscription matches, the PubSubService
forwards the message to all the local subscribers subscribed to that topic.

	If the destination platform is not the local platform, it discards the message.

Routing Service

	The Routing Service shall maintain connection status (CONNECTING, CONNECTED, DISCONNECTED etc.) for each external
platform.

	In order to establish connection with an external VOLTTRON platform, the server key of the remote platform is needed.
The Routing Service shall connect to an external platform once it obtains the server key for that platform from the
KeyDiscoveryService.

	The Routing Service shall exchange “hello”/”welcome” handshake messages with the newly connected remote platform to
confirm the connection. It shall use VIP protocol with the subsystem frame set to “routing_table” for the handshake
messages.

	Routing Service shall monitor the connection status and inform the PubSubService whenever a remote platform gets
connected/disconnected.

For Future:

	Each VIP router shall exchange its routing table with its connected platforms on startup and whenever a new platform
gets connected or disconnected.

	The router shall go through each entry in the routing table that it received from other platforms and calculate the
shortest, most stable path to each remote platform. It then sends the updated routing table to other platforms for
adjustments in the forwarding paths (in their local routing table) if any.

	Whenever a VIP router detects a new connection, it adds an entry into the routing table and sends updated routing
table to its neighboring platforms. Each router in the other platforms shall update and re-calculate the forwarding
paths in its local routing table and forward to rest of the platforms.

	Similarly, whenever a VIP router detects a remote platform disconnection, it deletes the entry in the routing table
for that platform and forwards the routing table to other platforms to do the same.

KeyDiscovery Service

	Each platform tries to obtain the platform discovery information - platform name, VIP address and server key of
remote VOLTTRON platforms through HTTP discovery service at startup.

	If unsuccessful, it shall make regular attempts to obtain discovery information until successful.

	The platform discovery information shall then be sent to the Routing Service using VIP protocol with subsystem
frame set to “routing_table”.

Messages for Routing Service

Below are example messages that are applicable to the Routing Service.

	Message sent by KeyDiscovery Service containing the platform discovery information (platform name, VIP address and
server key) of a remote platform

+-+
| | Empty recipient frame
+-+----+
| VIP1 | Signature frame
+-+----+
| | Empty user ID frame
+-+----+
| 0001 | Request ID, for example "0001"
+---------------+
| routing_table | Subsystem, "routing_table"
+---------------+----------------+
| normalmode_platform_connection | Type of operation, "normalmode_platform_connection"
+--------------------------------+
| platform discovery information |
| of external platform | platform name, VIP address and server key of external platform
+--------------------------------+
| platform name | Remote platform for which the server key belongs to.
+---------------------+

Handshake messages between two newly connected external VOLTTRON platform to confirm successful connection.

	Message from initiating platform

+-+
| | Empty recipient frame
+-+----+
| VIP1 | Signature frame
+-+----+
| | Empty user ID frame
+-+----+
| 0001 | Request ID, for example "0001"
+--------------++
| routing_table | Subsystem, "routing_table"
+---------------+
| hello | Operation, "hello"
+--------+
| hello | Hello handshake request frame
+--------+------+
| platform name | Platform initiating a "hello"
+---------------+

	Reply message from the destination platform

+-+
| | Empty recipient frame
+-+----+
| VIP1 | Signature frame
+-+----+
| | Empty user ID frame
+-+----+
| 0001 | Request ID, for example "0001"
+--------------++
| routing_table | Subsystem, "routing_table"
+--------+------+
| hello | Operation, "hello"
+--------++
| welcome | Welcome handshake reply frame
+---------+-----+
| platform name | Platform sending reply to "hello"
+---------------+

Messages for PubSub communication

The VIP routers of each platform shall send PubSub messages between platforms using VIP protocol message semantics.
Below is an example of external subscription list message sent by VOLTTRON platform V1 router to VOLTTRON platform
V2.

+-+
| | Empty recipient frame
+-+----+
| VIP1 | Signature frame
+-+---------+
|V1 user id | Empty user ID frame
+-+---------+
| 0001 | Request ID, for example "0001"
+-------++
| pubsub | Subsystem, "pubsub"
+-------------+-+
| external_list | Operation, "external_list" in this case
+---------------+
| List of |
| subscriptions | Subscriptions dictionary consisting of VOLTTRON platform id and list of topics as
+---------------+ key - value pairings, for example: { "V1": ["devices/rtu3"]}

This shows an example of an external publish message sent by the router of VOLTTRON platform V2 to VOLTTRON platform
V1.

+-+
| | Empty recipient frame
+-+----+
| VIP1 | Signature frame
+-+---------+
|V1 user id | Empty user ID frame
+-+---------+
| 0001 | Request ID, for example "0001"
+-------++
| pubsub | Subsystem, "pubsub"
+------------------+
| external_publish | Operation, "external_publish" in this case
+------------------+
| topic | Message topic
+------------------+
| publish message | Actual publish message frame
+------------------+

API

Methods for Routing Service

	external_route() - This method receives message frames from external platforms, checks the subsystem frame and
redirects to appropriate subsystem (routing table, pubsub) handler. It shall run within a separate thread and get
executed whenever there is a new incoming message from other platforms.

	setup() - This method initiates socket connections with all the external VOLTTRON platforms configured in the config
file. It also starts monitor thread to monitor connections with external platforms.

	handle_subsystem(frames) - Routing Service subsytem handler to handle serverkey message from KeyDiscoveryService and
“hello/welcome” handshake message from external platforms.

	send_external(instance_name, frames) - This method sends input message to specified VOLTTRON platform/instance.

	register(type, handler) - Register method for PubSubService to register for connection and disconnection events.

	disconnect_external_instances(instance_name) - Disconnect from specified VOLTTRON platform.

	close_external_connections() - Disconnect from all external VOLTTRON platforms.

	get_connected_platforms() - Return list of connected platforms.

Methods for PubSubService

	external_platform_add(instance_name) - Send external subscription list to newly connected external VOLTTRON
platform.

	external_platform_drop(instance_name) - Remove all subscriptions for the specified VOLTTRON platform

	update_external_subscriptions(frames) - Store/Update list of external subscriptions as per the subscription list
provided in the message frame.

	_distribute_external(frames) - Publish the message all the external platforms that have subscribed to the topic. It
uses send_external_pubsub_message() of router to send out the message.

	external_to_local_publish(frames) - This method retrieves actual message from the message frame, checks the message
topic against list of external subscriptions and sends the message to corresponding subscribed agents.

Methods for agent pubsub subsystem

To subscribe to topics from a remote platform, the subscribing agent has to add an additional input parameter -
all_platforms to the pubsub subscribe method.

	subscribe(peer, prefix, callback, bus=’‘, all_platforms=False) - The existing ‘subscribe’ method is modified to
include optional keyword argument - ‘all_platforms’. If ‘all_platforms’ is set to True, the agent is subscribing to
topic from local publisher and from external platform publishers.

self.vip.pubsub.subscribe('pubsub', 'foo', self.on_match, all_platforms=True)

There is no change in the publish method pf PubSub subsystem. If all the configurations are correct and the publisher
agent on the remote platform is publishing message to topic=``foo``, then the subscriber agent will start receiving
those messages.

Multi-Platform RPC Communication

Multi-Platform RPC communication allows an agent on one platform to make RPC call on an agent in another platform
without having to setup connection to the remote platform directly. The connection will be internally managed
by the VOLTTRON platform router module. Please refer here
Multi-Platform Communication Setup) for more details regarding setting up of
Multi-Platform connections.

Calling External Platform RPC Method

If an agent in one platform wants to use an exported RPC method of an agent in another platform, it has to provide the
platform name of the remote platform when using RPC subsystem call/notify method.

Here is an example:

self.vip.rpc.call(peer, 'say_hello', 'Bob', external_platform='platform2').get()
self.vip.rpc.notify(peer, 'ready', external_platform='platform2')

Here, ‘platform2’ is the platform name of the remote platform.

Distributed RabbitMQ Brokers

RabbitMQ allows multiple distributed RabbitMQ brokers to be connected in three different ways - with clustering, with
federation and using shovel. We take advantage of these built-in plugins for multi-platform VOLTTRON communication. For
more information about the differences between clustering, federation, and shovel, please refer to the RabbitMQ
documentation on Distributed RabbitMQ brokers [https://www.rabbitmq.com/distributed.html].

Clustering

Clustering connects multiple brokers residing in multiple machines to form a single logical broker. It is used in
applications where tight coupling is necessary i.e, where each node shares the data and knows the state of all other
nodes in the cluster. A new node can connect to the cluster through a peer discovery mechanism if configured to do so
in the RabbitMQ config file. For all the nodes to be connected together in a cluster, it is necessary for them to share
the same Erlang cookie and be reachable through it’s DNS hostname. A client can connect to any one of the nodes in the
cluster and perform any operation (to send/receive messages from other nodes etc.), the nodes will route the operation
internally. In case of a node failure, clients should be able to reconnect to a different node, recover their topology
and continue operation.

Note

This feature is not integrated into VOLTTRON, but we hope to support it in the future. For more detailed
information about clustering, please refer to RabbitMQ documentation on the
Clustering plugin [https://www.rabbitmq.com/clustering.html].

Federation

Federation plugin is used in applications that does not require as much of tight coupling as clustering. Federation has
several useful features:

	Loose coupling - The federation plugin can transmit messages between brokers (or clusters) in different administrative
domains:

	they may have different users and virtual hosts;

	they may run on different versions of RabbitMQ and Erlang.

	WAN friendliness - They can tolerate network intermittent connectivity.

	Specificity - Not everything needs to be federated (made available to other brokers); There can be local-only
components.

	Scalability - Federation does not require O(n2) connections for n brokers, so it scales better.

The federation plugin allows you to make exchanges and queues federated. A federated exchange or queue can receive
messages from one or more upstreams (remote exchanges and queues on other brokers). A federated exchange can route
messages published upstream to a local queue. A federated queue lets a local consumer receive messages from an upstream
queue.

Before we move forward, let’s define upstream and downstream servers.

	Upstream server - The node that is publishing some message of interest

	Downstream server - The node connected to a different broker that wants to receive messages from the upstream server

A federation link needs to be established from downstream server to the upstream server. The data flows in single
direction from upstream server to downstream server. For bi-directional data flow, we would need to create federation
links on both the nodes.

We can receive messages from upstream server to downstream server by either making an exchange or a queue federated.

For more detailed information about federation, please refer to RabbitMQ documentation
Federation plugin [https://www.rabbitmq.com/federation.html].

Federated Exchange

When we make an exchange on the downstream server federated, the messages published to the upstream exchanges are
copied to the federated exchange, as though they were published directly to it.

[image: ../../../../_images/federation.png]
The above figure explains message transfer using federated exchange. The box on the right acts as the downstream server
and the box on the left acts as the upstream server. A federation/upstream link is established between the downstream
server and the upstream server by using the federation management plugin.

An exchange on the downstream server is made federated using federation policy configuration. The federated exchange
only receives the messages for which it has subscribed. An upstream queue is created on the upstream server with a
binding key same as subscription made on the federated exchange. For example, if an upstream server is publishing
messages with binding key “foo” and a client on the downstream server is interested in receiving messages of the
binding key “foo”, then it creates a queue and binds the queue to the federated with the same binding key. This binding
is sent to the upstream and the upstream queue binds to the upstream exchange with that key.

Publications to either exchange may be received by queues bound to the federated exchange, but publications
directly to the federated exchange cannot be received by queues bound to the upstream exchange.

For more information about federated exchanges and different federation topologies, please read about
Federated Exchanges [https://www.rabbitmq.com/federated-exchanges.html].

Federated Queue

Federated queue provides a way of balancing load of a single queue across nodes or clusters. A federated queue lets a
local consumer receive messages from an upstream queue. A typical use would be to have the same “logical” queue
distributed over many brokers. Such a logical distributed queue is capable of having higher capacity than a single
queue. A federated queue links to other upstream queues.

A federation or upstream link needs to be created like before and a federated queue needs to be setup on the downstream
server using federation policy configuration. The federated queue will only retrieve messages when it has run out of
messages locally, it has consumers that need messages, and the upstream queue has “spare” messages that are not being
consumed.

For more information about federated queues, please read about
Federated Queues [https://www.rabbitmq.com/federated-queues.html].

Shovel

The Shovel plugin allows you to reliably and continually move messages from a source in one
broker to destination in another broker. A shovel behaves like a well-written client application in that it:

	connects to it’s source and destination broker

	consumes messages from the source queue

	re-publishes messages to the destination if the messages match the routing key.

The Shovel plugin uses an Erlang client under the hood. In the case of shovel, apart from configuring the hostname,
port and virtual host of the remote node, we will also have to provide a list of routing keys that we want to forward to
the remote node. The primary advantages of shovels are:

	Loose coupling - A shovel can move messages between brokers (or clusters) in different administrative domains:
* they may have different users and virtual hosts;
* they may run on different versions of RabbitMQ and Erlang.

	WAN friendliness - They can tolerate network intermittent connectivity.

Shovels are also useful in cases where one of the nodes is behind NAT. We can setup shovel on the node behind NAT to
forward messages to the node outside NAT. Shovels do not allow you to adapt to subscriptions like a federation link and
we need to a create a new shovel per subscription.

For more detailed information about shovel, please refer to RabbitMQ documentation on the
Shovel plugin [https://www.rabbitmq.com/shovel.html].

Agent communication to Remote RabbitMQ instance

Communication between two RabbitMQ based VOLTTRON instances must be done using SSL certificate based authentication.
Non SSL based authentication will not be supported for communication to remote RabbitMQ based VOLTTRON instances.
A VOLTTORN instance that wants to communicate with a remote instance should first request a SSL certificate that is
signed by the remote instance. To facilitate this process there will be a web based server API for requesting, listing,
approving and denying certificate requests. This api will be exposed via the MasterWebService and will be available
to any RabbitMQ based VOLTTRON instance with SSL enabled. This API will be tested and used in the following agents:

	ForwarderAgent

	DataPuller

	VolttronCentralPlatform

For the following document we will assume we have two instances a local-instance and remote-volttron-instance.
The remote-volttron-instance will be configured to allow certificate requests to be sent to it from the
local-instance. A remote-agent running in local-instance will attempt to establish a connection to the
remote-volttron-instance

Configuration

Both volttron-server and volttron-client must be configured for RabbitMQ message bus with SSL using the step described
at Installing Volttron.

In addition the remote-volttron-instance configuration file must have a https bind-web-address specified in the
instance config file. Below is an example config file with bind-web-address. Restart volttron after editing the config
file

[volttron]
message-bus = rmq
vip-address = tcp://127.0.0.1:22916
bind-web-address = https://volttron1:8443
instance-name = volttron1

By default the bind-web-address parameter will use the MasterWebService agent’s certificate and private key.
Both private and public key are necessary in order to bind the port to the socket for incoming connections. This key
pair is auto generated for RabbitMQ based VOLTTRON at the time of platform startup. Users can provide a different
certificate and private key to be used for the bind-web-address by specifying web-ssl-cert and web-ssl-key in the
config file. Below is an example config file with the additional entries

[volttron]
message-bus = rmq
vip-address = tcp://127.0.0.1:22916
bind-web-address = https://volttron1:8443
instance-name = volttron1
web-ssl-cert = /path/to/cert/cert.pem
web-ssl-key = /path/to/cert/key.pem

Note

	The /etc/hosts file should be modified in order for the dns name to be used for the bound address.

remote-agent on local-instance

The auth subsystem of the volttron architecture is how a remote-agent on local instance will connect to the remote
volttron instance.

The following is a code snippet from the remote-agent to connect to the remote volttron instance.

...
value = self.vip.auth.connect_remote_platform(address)

The above function call will return an agent that connects to the remote instance only after the request is approved
by an administrator of the remote instance. It is up to the agent to repeat calling connect_remote_platform
periodically until an agent object is obtained.

Approving a CSR Request

The following diagram shows the sequence of events when an access request is approved by the administrator of remote
volttron instance. In this case, the volttron-client agent will get a Agent object that is connected to the
remote instance. The diagram shows the client agent repeating the call to connect_remote_platform until the return
value is not None.

[image: CSR Approval]

Denying a CSR Request

The following diagram shows the sequence of events when an access request is denied by the administrator. The client
agent repeats the call to connect_remote_platform until the return value is not None. When the remote instance’s
administrator denies a access request, the auth subsystem will raise an alert and shutdown the agent.

[image: CSR Denied]

Follow walk-through in Multi-Platform Multi-Bus Walk-through for setting up
different combinations of multi-bus multi-platform setup using CSR.

VOLTTRON Control

The base platform functionality focuses on the agent lifecycle, management of the platform itself, and security. This
section describes how to use the commands included with VOLTTRON to configure and control the platform, agents and
drivers.

	Platform Commands
	VOLTTRON Platform Command
	volttron Optional Arguments

	Agent Options

	volttron-ctl Commands
	vctl Optional Arguments

	Commands
	vctl auth Subcommands

	vctl certs Subcommands

	vctl config Subcommands

	vctl rpc Subcommands

	vpkg Commands
	vpkg Optional Arguments

	Subcommands

	volttron-cfg Commands
	vcfg Optional Arguments

	Agent Control Commands
	Agent Packaging

	Agent Configuration

	Agent Installation and Removal
	Tagging Agents
	Example

	Agent Control
	Starting and Stopping an Agent

	Running an agent

	Agent Status

	Agent Autostart

	Authentication Commands
	Authentication record
	How to authenticate an agent to communicate with VOLTTRON platform

	Domain:

	Address:

	User_id:

	Capabilities:

	Roles:

	Groups:

	Mechanism:

	Credentials:

	Comments:

	Enabled:

Platform Commands

VOLTTRON files for a platform instance are stored under a single directory known as the VOLTTRON home. This home
directory is set via the VOLTTRON_HOME environment variable and defaults to ~/.volttron. Multiple instances of
the platform may exist under the same account on a system by setting the VOLTTRON_HOME environment variable
appropriately before executing VOLTTRON commands.

VOLTTRON’s configuration file uses a modified INI format where section names are command names for which the settings in
the section apply. Settings before the first section are considered global and will be used by all commands for which
the settings are valid. Settings keys are long options (with or without the opening “–”) and are followed by a colon
(:) or equal (=) and then the value. Boolean options need not include the separator or value, but may specify a
value of 1, yes, or true for true or 0, no, or false for false.

It is best practice to use the vcfg command prior to starting VOLTTRON for the first time to
populate the configuration file for your deployment. If VOLTTRON is started without having run vcfg, a default config
will be created in $VOLTTRON_HOME/config. The following is an example configuration after running vcfg:

where
message-bus - Indicates message bus to be used. Valid values are zmq and rmq
instance-name - Name of the VOLTTRON instance. This has to be unique if multiple instances need to be connected together
vip-address - VIP address of the VOLTTRON instance. It contains the IP address and port number (default port number is 22916)
bind-web-address - Optional parameter, only needed if VOLTTRON instance needs a web interface
volttron-central-address - Optional parameter. Web address of VOLTTRON Central agent

Note

env/bin/volttron -c <config> -l volttron.log &

Below is a compendium of commands which can be used to operate the VOLTTRON Platform from the command line interface.

VOLTTRON Platform Command

The main VOLTTRON platform command is volttron, however this command is seldom run as-is. In most cases the user
will want to run the platform in the background. In a limited number of cases, the user will wish to enable verbose
logging. A typical command to start the platform is:

Note

	All commands and sub-commands have help available with -h or --help

	Additional configuration files may be specified with -c or -config

	To specify a log file, use -l or --log

	The ampersand (&) can be added to then end of the command to run the platform in the background, freeing the
open shell to be used for additional commands.

volttron -vv -l volttron.log &

volttron Optional Arguments

	-c FILE, –config FILE - Start the platform using the configuration from the provided FILE

	-l FILE, –log FILE - send log output to FILE instead of standard output/error

	-L FILE, –log-config FILE - Use the configuration from FILE for VOLTTRON platform logging

	–log-level LOGGER:LEVEL - override default logger logging level (INFO, DEBUG, WARNING, ERROR, CRITICAL,
NOTSET)

	–monitor - monitor and log connections (implies verbose logging mode -v)

	-q, –quiet - decrease logger verboseness; may be used multiple times to further reduce logging (i.e. -qq)

	-v, –verbose - increase logger verboseness; may be used multiple times (i.e. -vv)

	–verboseness LEVEL - set logger verboseness level

	-h, –help - show this help message and exit

	–version - show program’s version number and exit

	–message-bus MESSAGE_BUS - set message bus to be used. valid values are zmq and rmq

Note

Visit the Python 3 logging documentation for more information about
logging and verboseness levels [https://docs.python.org/3/library/logging.html#logging-levels].

Agent Options

	–autostart - automatically start enabled agents and services after platform startup

	–vip-address ZMQADDR - ZeroMQ URL to bind for VIP connections

	–vip-local-address ZMQADDR - ZeroMQ URL to bind for local agent VIP connections

	–bind-web-address BINDWEBADDR - Bind a web server to the specified ip:port passed

	–web-ca-cert CAFILE - If using self-signed certificates, this variable will be set globally to allow requests to
be able to correctly reach the webserver without having to specify verify in all calls.

	–web-secret-key WEB_SECRET_KEY - Secret key to be used instead of HTTPS based authentication.

	–web-ssl-key KEYFILE - SSL key file for using https with the VOLTTRON server

	–web-ssl-cert CERTFILE - SSL certificate file for using https with the VOLTTRON server

	–volttron-central-address VOLTTRON_CENTRAL_ADDRESS - The web address of a VOLTTRON Central install instance.

	–volttron-central-serverkey VOLTTRON_CENTRAL_SERVERKEY - The server key of the VOLTTRON Central being connected
to.

	–instance-name INSTANCE_NAME - The name of the instance that will be reported to VOLTTRON Central.

	–msgdebug - Route all messages to an instance of the MessageDebug agent while debugging.

	–setup-mode - Setup mode flag for setting up authorization of external platforms.

	–volttron-central-rmq-address VOLTTRON_CENTRAL_RMQ_ADDRESS - The AMQP address of a VOLTTRON Central install
instance

	–agent-monitor-frequency AGENT_MONITOR_FREQUENCY - How often should the platform check for crashed agents
and attempt to restart. Units=seconds. Default=600

	–secure-agent-users SECURE_AGENT_USERS - Require that agents run with their own users (this requires running
scripts/secure_user_permissions.sh as sudo)

Warning

Certain options alter some basic behaviors of the platform, such as –secure-agent-users which causes the platform
to run each agent using its own Unix user to spawn the process. Please view the documentation for each feature to
understand its implications before choosing to run the platform in that fashion.

volttron-ctl Commands

volttron-ctl is used to issue commands to the platform from the command line. Through volttron-ctl it is possible
to install and removed agents, start and stop agents, manage the configuration store, get the platform status, and
shutdown the platform.

In more recent versions of VOLTTRON, the commands vctl, vpkg, and vcfg have been added to be used as a stand-in
for volttron-ctl, volttron-pkg, and volttron-cfg in the CLI. The VOLTTRON documentation will often use this
convention.

Warning

vctl creates a special temporary agent to communicate with the platform with a specific VIP IDENTITY, thus
multiple instances of vctl cannot run at the same time. Attempting to do so will result in a conflicting
identity error.

Use vctl with one or more of the following arguments, or below sub-commands:

vctl Optional Arguments

	-c FILE, –config FILE - Start the platform using the configuration from the provided FILE

	–debug - show tracebacks for errors rather than a brief message

	-t SECS, –timeout SECS - timeout in seconds for remote calls (default: 60)

	–msgdebug MSGDEBUG - route all messages to an agent while debugging

	–vip-address ZMQADDR - ZeroMQ URL to bind for VIP connections

	-l FILE, –log FILE - send log output to FILE instead of standard output/error

	-L FILE, –log-config FILE - Use the configuration from FILE for VOLTTRON platform logging

	-q, –quiet - decrease logger verboseness; may be used multiple times to further reduce logging (i.e. -qq)

	-v, –verbose - increase logger verboseness; may be used multiple times (i.e. -vv)

	–verboseness LEVEL - set logger verboseness level (this level is a numeric level co

	–json - format output to json

	-h, –help - show this help message and exit

Commands

	install - install an agent from wheel

Note

Does NOT package agents similarly to the scripts/install-agent.py script; installs agents from wheel files
only

	tag AGENT TAG - set, show, or remove agent tag for a particular agent

	remove AGENT - disconnect specified agent from the platform and remove its installed agent package from VOLTTRON_HOME

	peerlist - list the peers connected to the platform

	list - list installed agents

	status - show status of installed agents

	health AGENT - show agent health as JSON

	clear - clear status of defunct agents

	enable AGENT - enable agent to start automatically

	disable AGENT - prevent agent from start automatically

	start AGENT - start installed agent

	stop AGENT - stop agent

	restart AGENT - restart agent

	run PATH - start any agent by path

	upgrade AGENT WHEEL - upgrade agent from wheel file

Note

Does NOT upgrade agents from the agent’s code directory, requires agent wheel file.

	rpc - rpc controls

	certs OPTIONS - manage certificate creation

	auth OPTIONS - manage authorization entries and encryption keys

	config OPTIONS - manage the platform configuration store

	shutdown - stop all agents (providing the –platform optional argument causes the platform to be shutdown)

	send WHEEL - send agent and start on a remote platform

	stats - manage router message statistics tracking

	rabbitmq OPTIONS - manage rabbitmq

Note

For each command with OPTIONS in the description, additional options are required to make use of the command. For
each, please visit the corresponding section of documentation.

	Auth

	Certs

	Config

	RPC

Note

Visit the Python 3 logging documentation for more information about
logging and verboseness levels [https://docs.python.org/3/library/logging.html#logging-levels].

vctl auth Subcommands

	add - add new authentication record

	add-group - associate a group name with a set of roles

	add-known-host - add server public key to known-hosts file

	add-role - associate a role name with a set of capabilities

	keypair - generate CurveMQ keys for encrypting VIP connections

	list - list authentication records

	list-groups - show list of group names and their sets of roles

	list-known-hosts - list entries from known-hosts file

	list-roles - show list of role names and their sets of capabilities

	publickey - show public key for each agent

	remove - removes one or more authentication records by indices

	remove-group - disassociate a group name from a set of roles

	remove-known-host - remove entry from known-hosts file

	remove-role - disassociate a role name from a set of capabilities

	serverkey - show the serverkey for the instance

	update - updates one authentication record by index

	update-group - update group to include (or remove) given roles

	update-role - update role to include (or remove) given capabilities

vctl certs Subcommands

	create-ssl-keypair - create a SSL keypair

	export-pkcs12 - create a PKCS12 encoded file containing private and public key from an agent. This function is
may also be used to create a Java key store using a p12 file.

vctl config Subcommands

	store AGENT CONFIG_NAME CONFIG PATH - store a configuration file in agent’s config store (parses JSON by default,
use –csv for CSV files)

	edit AGENT CONFIG_NAME - edit a configuration. (opens nano by default, respects EDITOR env variable)

	delete AGENT CONFIG_NAME - delete a configuration from agent’s config store (–all removes all configs for the
agent)

	list AGENT - list stores or configurations in a store

	get AGENT CONFIG_NAME - get the contents of a configuration

vctl rpc Subcommands

	code - shows how to use RPC call in other agents

	list - lists all agents and their RPC methods

vpkg Commands

vpkg is the VOLTTRON command used to manage agent packages (code directories and wheel files) including creating
initializing new agent code directories, creating agent wheels, etc.

vpkg Optional Arguments

	-h, –help - show this help message and exit

	-l FILE, –log FILE - send log output to FILE instead of standard output/error

	-L FILE, –log-config FILE - Use the configuration from FILE for VOLTTRON platform logging

	-q, –quiet - decrease logger verboseness; may be used multiple times to further reduce logging (i.e. -qq)

	-v, –verbose - increase logger verboseness; may be used multiple times (i.e. -vv)

	–verboseness LEVEL - set logger verboseness level

Subcommands

	package - Create agent package (whl) from a directory

	init - Create new agent code package from a template. Will prompt for additional metadata.

	repackage - Creates agent package from a currently installed agent.

	configure - Add a configuration file to an agent package

volttron-cfg Commands

volttron-cfg (vcfg) is a tool aimed at making it easier to get up and running with VOLTTRON and a handful of agents.
Running the tool without any arguments will start a wizard with a walk through for setting up instance configuration
options and available agents. If only individual agents need to be configured they can be listed at the command line.

Note

For a detailed description of the VOLTTRON configuration file and vcfg wizard, as well as example usage, view the
platform configuration docs.

vcfg Optional Arguments

	-h, –help - show this help message and exit

	-v, –verbose - increase logger verboseness; may be used multiple times (i.e. -vv)

	–vhome VHOME Path to volttron home

	
	–instance-name INSTANCE_NAME

	Name of this volttron instance

	–list-agents - list configurable agents

Agents available to configure:
 listener
 master_driver
 platform_historian
 vc
 vcp

	–agent AGENT [AGENT …] - configure listed agents

	–rabbitmq RABBITMQ [RABBITMQ …] - Configure RabbitMQ for single instance, federation, or shovel either based on
configuration file in YML format or providing details when prompted. Usage:

vcfg --rabbitmq single|federation|shovel [rabbitmq config file]

	–secure-agent-users Require that agents run with their own users (this requires running
scripts/secure_user_permissions.sh as sudo)

Warning

The secure agent users significantly changes the operation of agents on the platform, please read the
secure agent users documentation before using this feature.

Agent Control Commands

The VOLTTRON platform has several commands for controlling the lifecycle of agents. This page discusses how to use
them, for details of operation please see Platform Configuration

Note

These examples assume the VOLTTRON environment has been activated

. env/bin/activate

If not activating the VOLTTRON virtual environment, add “bin/” to all commands

Agent Packaging

The vpkg command is used for packaging and configuring agents. It is not necessary to have the platform running to
use this command. The platform uses Python Wheel [https://pypi.python.org/pypi/wheel] for its packaging and follows
the Wheel naming convention [http://legacy.python.org/dev/peps/pep-0427/#file-name-convention].

To create an agent package, call:

vpkg <Agent Dir>

For instance: vpkg package examples/ListenerAgent

The package command uses the setup.py in the agent directory to create the package. The name and version number
portion of the Wheel filename come from this. The resulting wheels are created at ~/.volttron/packaged. For example:
~/.volttron/packaged/listeneragent-3.0-py2-none-any.whl.

Agent Configuration

Agent packages are configured with:

vpkg configure <AgentPackage> <ConfigFile>

It is suggested that this file use JSON formatting but the agent can be written to interpret any format it requires.
The configuration of a particular agent is opaque to the VOLTTRON platform. The location of the agent config file is
passed as an environmental variable AGENT_CONFIG which the provided utilities read in and pass to the agent.

An example config file passing in some parameters:

{

 "agentid": "listener1",
 "message": "hello"
}

Agent Installation and Removal

Agents are installed into the platform using:

vctl install <package>

When agents are installed onto a platform, it creates a uuid for that instance of an agent. This allows multiple
instances of the same agent package to be installed on the platform.

This allows the user to refer to the agent with --tag <tag> instead of the uuid when issuing commands. This tag can
also distinguish instances of an agent from each other.

A stopped agent can be removed with:

	vctl remove <AGENT_UUID>

	vctl remove --tag <AGENT_TAG>

	vctl remove --name <AGENT_NAME>

Tagging Agents

Agents can be tagged as they are installed with:

vctl install <TAG>=<AGENT_PACKAGE>

Agents can be tagged after installation with:

vctl tag <AGENT_UUID> <TAG>

Agents can be “tagged” to provide a meaningful user defined way to reference the agent instead of the uuid or the name.
This allows users to differentiate between instances of agents which use the same codebase but are configured
differently.

Example

A user installs two instances of the Listener Agent, tagged with listen1 and listen2 respectively:

python scripts/install-agent.py -s examples/ListenerAgent --tag listener1
python scripts/install-agent.py -s examples/ListenerAgent --tag listener2

vctl status displays:

 AGENT IDENTITY TAG STATUS HEALTH
a listeneragent-3.3 listeneragent-3.3_2 listener2
6 listeneragent-3.3 listeneragent-3.3_1 listener1

Commands which operate off an agent’s UUID can optionally operate off the tag by using “–tag “. This can use wildcards
to catch multiple agents at once. For example, vctl start --tag listener* will start both listener1 and
listener2.

Warning

Removal by tag and name potentially allows multiple agents to be removed at once and should be used with caution. A
“-f” option is required to delete more than one agent at a time.

Agent Control

Starting and Stopping an Agent

Agent that are installed in the platform can be launched with the start command. By default this operates off the
agent’s UUID but can be used with --tag or --name to launch agents by those attributes.

This can allow multiple agents to be started at once. For instance: vctl start --name myagent-0.1 would start all
instances of that agent regardless of their uuid, tag, or configuration information.

After an agent is started, it will show up in Agent Status as “running” with a process id.

Similarly, volttron-ctl stop <UUID> can also operate off the tag and name of agent(s). After an agent is stopped,
it will show an exit code of 0 in Agent Status

Running an agent

For testing purposes, an agent package not installed in the platform can
be run by using:

vctl run <PACKAGE>

Agent Status

vctl list shows the agents which have been installed on the platform along with their uuid, associated
tag and priority.

	uuid is the first column of the display and is displayed as the shorted unique portion. Using this portion, agents
can be started, stopped, removed, etc.

	AGENT is the “name” of this agent based on the name of the wheel file which was installed. Agents can be
controlled with this using --name.

Note

If multiple instances of a wheel are installed they will all have the same name and can be controlled as a group.

	IDENTITY is the VIP platform identity assigned to the agent which can be used to make RPC calls, etc. with the
platform

	TAG is a user provided tag which makes it simpler to track and refer to agents. --tag <tag>
can used in most agent control commands instead of the UUID to control that agent or multiple agents with a pattern.

	PRI is the priority for agents which have been “enabled” using the vctl enable command. When enabled, agents
will be automatically started in priority order along with the platform.

 AGENT IDENTITY TAG PRI
a listeneragent-3.3 listeneragent-3.3_2 listener2
6 listeneragent-3.3 listeneragent-3.3_1 listener1

The vctl status command shows the list of installed agents and whether they are running or have exited.

 AGENT IDENTITY TAG STATUS HEALTH
a listeneragent-3.3 listeneragent-3.3_2 listener2 running [12872] GOOD
6 listeneragent-3.3 listeneragent-3.3_1 listener1 running [12873] GOOD

	AGENT, IDENTITY and TAG are the same as in the vctl list command

	STATUS is the current condition of the agent. If the agent is currently executing, it has “running” and the process
id of the agent. If the agent is not running, the exit code is shown.

	HEALTH represents the current state of the agent. GOOD health is displayed while the agent is operating as
expected. If an agent enters an error state the health will display as BAD

Agent Autostart

An agent can be setup to start when the platform is started with the enable command. This command also allows a
priority to be set (0-100, default 50) so that agents can be started after any dependencies. This command can also be
used with the --tag or --name options.

vctl enable <AGENT_UUID> <PRIORITY>

Authentication Commands

All authentication sub-commands can be viewed by entering following command.

vctl auth --help

optional arguments:
-h, --help show this help message and exit
-c FILE, --config FILE
 read configuration from FILE
--debug show tracbacks for errors rather than a brief message
-t SECS, --timeout SECS
 timeout in seconds for remote calls (default: 30)
--vip-address ZMQADDR
 ZeroMQ URL to bind for VIP connections
--keystore-file FILE use keystore from FILE
--known-hosts-file FILE
 get known-host server keys from FILE

subcommands:
 add add new authentication record
 add-group associate a group name with a set of roles
 add-known-host add server public key to known-hosts file
 add-role associate a role name with a set of capabilities
 keypair generate CurveMQ keys for encrypting VIP connections
 list list authentication records
 list-groups show list of group names and their sets of roles
 list-known-hosts list entries from known-hosts file
 list-roles show list of role names and their sets of capabilities
 publickey show public key for each agent
 remove removes one or more authentication records by indices
 remove-group disassociate a group name from a set of roles
 remove-known-host remove entry from known-hosts file
 remove-role disassociate a role name from a set of capabilities
 serverkey show the serverkey for the instance
 update updates one authentication record by index
 update-group update group to include (or remove) given roles
 update-role update role to include (or remove) given capabilities

Authentication record

An authentication record consist of following parameters

domain []:
address []: Either a single agent identity or an array of agents identities
user_id []: Arbitrary string to identify the agent
capabilities (delimit multiple entries with comma) []: Array of strings referring to authorized capabilities defined by exported RPC methods
roles (delimit multiple entries with comma) []:
groups (delimit multiple entries with comma) []:
mechanism [CURVE]:
credentials []: Public key string for the agent
comments []:
enabled [True]:

For more details on how to create authentication record, please see section
Agent Authentication

How to authenticate an agent to communicate with VOLTTRON platform

An administrator can allow an agent to communicate with VOLTTRON platform by creating an authentication record for that
agent. An authentication record is created by using vctl auth add command and entering values to asked
arguments.

vctl auth add

 domain []:
 address []:
 user_id []:
 capabilities (delimit multiple entries with comma) []:
 roles (delimit multiple entries with comma) []:
 groups (delimit multiple entries with comma) []:
 mechanism [CURVE]:
 credentials []:
 comments []:
 enabled [True]:

The listed fields can also be specified on the command line:

vctl auth add --user_id bob --credentials ABCD...

If any field is specified on the command line, then the interactive menu
will not be used.

The simplest way of creating an authentication record is by entering the user_id and credential values.
User_id is a arbitrary string for VOLTTRON to identify the agent. Credential is the encoded public key string
for the agent. Create a public/private key pair for the agent and enter encoded public key for credential parameter.

vctl auth add

 domain []:
 address []:
 user_id []: my-test-agent
 capabilities (delimit multiple entries with comma) []:
 roles (delimit multiple entries with comma) []:
 groups (delimit multiple entries with comma) []:
 mechanism [CURVE]:
 credentials []: encoded-public-key-for-my-test-agent
 comments []:
 enabled [True]:

In next sections, we will discuss each parameter, its purpose and what all values it can take.

Domain:

Domain is the name assigned to locally bound address. Domain parameter is currently not being used in VOLTTRON and is placeholder for future implementation.

Address:

By specifying address, administrator can allow an agent to connect with VOLTTRON only if that agent is running on that address.
Address parameter can take a string representing an IP addresses.
It can also take a regular expression representing a range of IP addresses.

address []: 192.168.111.1
address []: /192.168.*/

User_id:

User_id can be any arbitrary string that is used to identify the agent by the platform.
If a regular expression is used for address or credential to combine agents in an authentication record then all
those agents will be identified by this user_id. It is primarily used for identifying agents during logging.

Capabilities:

Capability is an arbitrary string used by an agent to describe its exported RPC method. It is used to limit the access
to that RPC method to only those agents who have that capailbity listed in their authentication record.

If administrator wants to authorize an agent to access an exported RPC method with capability of another agent,
the administrator can list that capability string in this parameter. Capability parameter takes an string or an array of strings or
a string representation of dictionary listing all the capabilities this agent is authorized to access.
Listing capabilities here will allow this agent to access corresponding exported RPC methods of other agents.

For example, if there is an AgentA with capability enables exported RPC method and AgentB needs to access that method then
AgentA’s code and AgentB’s authentication record would be as follow:

AgentA’s capability enabled exported RPC method:

@RPC.export
@RPC.allow('can_call_bar')
def bar(self):
 return 'If you can see this, then you have the required capabilities'

AgentB’s authentication record to access bar method:

volttron-ctl auth add

 domain []:
 address []:
 user_id []: agent-b
 capabilities (delimit multiple entries with comma) []: can_call_bar
 roles (delimit multiple entries with comma) []:
 groups (delimit multiple entries with comma) []:
 mechanism [NULL]: CURVE
 credentials []: encoded-public-key-for-agent-b
 comments []:
 enabled [True]:

Similarly, capability parameter can take an array of string:

capabilities (delimit multiple entries with comma) []: can_call_bar
capabilities (delimit multiple entries with comma) []: can_call_method1, can_call_method2

Capabilities can also be used to restrict access to a rpc method only with certain parameter values. For example, if AgentA
exposes a method bar which accepts parameter x

AgentA’s capability enabled exported RPC method:

@RPC.export
@RPC.allow('can_call_bar')
def bar(self, x):
 return 'If you can see this, then you have the required capabilities'

You can restrict access to AgentA’s bar method to AgentB with x=1. To add this auth entry use the vctl auth add command
as show below

vctl auth add --capabilities '{"test1_cap2":{"x":1}}' --user_id AgentB --credential vELQORgWOUcXo69DsSmHiCCLesJPa4-CtVfvoNHwIR0

auth.json file entry for the above command would be

{
 "domain": null,
 "user_id": "AgentB",
 "roles": [],
 "enabled": true,
 "mechanism": "CURVE",
 "capabilities": {
 "test1_cap2": {
 "x": 1
 }
 },
 "groups": [],
 "address": null,
 "credentials": "vELQORgWOUcXo69DsSmHiCCLesJPa4-CtVfvoNHwIR0",
 "comments": null
}

Parameter values can also be regular expressions

(volttron)volttron@volttron1:~/git/myvolttron$ vctl auth add
domain []:
address []:
user_id []:
capabilities (delimit multiple entries with comma) []: {'test1_cap2':{'x':'/.*'}}
roles (delimit multiple entries with comma) []:
groups (delimit multiple entries with comma) []:
mechanism [CURVE]:
credentials []: vELQORgWOUcXo69DsSmHiCCLesJPa4-CtVfvoNHwIR0
comments []:
enabled [True]:
added entry domain=None, address=None, mechanism='CURVE', credentials=u'vELQORgWOUcXo69DsSmHiCCLesJPa4-CtVfvoNHwIR0', user_id='b22e041d-ec21-4f78-b32e-ab7138c22373'

auth.json file entry for the above command would be:

{
 "domain": null,
 "user_id": "90f8ef35-4407-49d8-8863-4220e95974c7",
 "roles": [],
 "enabled": true,
 "mechanism": "CURVE",
 "capabilities": {
 "test1_cap2": {
 "x": "/.*"
 }
 },
 "groups": [],
 "address": null,
 "credentials": "vELQORgWOUcXo69DsSmHiCCLesJPa4-CtVfvoNHwIR0",
 "comments": null
}

Roles:

A role is a name for a set of capabilities. Roles can be used to grant an agent
multiple capabilities without listing each capability in the in the agent’s
authorization entry. Capabilities can be fully utilized without roles. Roles
are purely for organizing sets of capabilities.

Roles can be viewed and edited with the following commands:

	vctl auth add-role

	vctl auth list-roles

	vctl auth remove-role

	vctl auth updated-role

For example, suppose agents protect certain methods with the following capabilites:
READ_BUILDING_A_TEMP, SET_BUILDING_A_TEMP, READ_BUILDLING_B_TEMP,
and SET_BUILDING_B_TEMP.

These capabilities can be organized into various roles:

vctl auth add-role TEMP_READER READ_BUILDING_A_TEMP READ_BUILDLING_B_TEMP
vctl auth add-role BUILDING_A_ADMIN READ_BUILDING_A_TEMP SET_BUILDING_A_TEMP
vctl auth add-role BUILDING_B_ADMIN READ_BUILDING_B_TEMP SET_BUILDING_B_TEMP

To view these roles run vctl auth list-roles:

ROLE CAPABILITIES
---- ------------
BUILDING_A_ADMIN ['READ_BUILDING_A_TEMP', 'SET_BUILDING_A_TEMP']
BUILDING_B_ADMIN ['READ_BUILDING_B_TEMP', 'SET_BUILDING_B_TEMP']
TEMP_READER ['READ_BUILDING_A_TEMP', 'READ_BUILDLING_B_TEMP']

With this configuration, adding the BUILDING_A_ADMIN role to an agent’s
authorization entry implicitly grants that agent the
READ_BUILDING_A_TEMP and SET_BUILDING_A_TEMP capabilities.

To add a new capabilities to an existing role:

vctl auth update-role BUILDING_A_ADMIN CLEAR_ALARM TRIGGER_ALARM

To remove a capability from a role:

vctl auth update-role BUILDING_A_ADMIN TRIGGER_ALARM --remove

Groups:

Groups provide one more layer of grouping. A group is a named set of roles.
Like roles, groups are optional and are meant to help with organization.

Groups can be viewed and edited with the following commands:

	vctl auth add-group

	vctl auth list-groups

	vctl auth remove-group

	vctl auth updated-group

These commands behave the same as the role commands. For example, to
further organize the capabilities in the previous section, one could create
create an ALL_BUILDING_ADMIN group:

vctl auth add-group ALL_BUILDING_ADMIN BUILDING_A_ADMIN BUILDING_B_ADMIN

With this configuration, agents in the ALL_BUILDING_ADMIN group would
implicity have the BUILDING_A_ADMIN and BUILDING_B_ADMIN roles. This means
such agents would implicity be granted the following capabilities:
READ_BUILDING_A_TEMP, SET_BUILDING_A_TEMP, READ_BUILDLING_B_TEMP,
and SET_BUILDING_B_TEMP.

Mechanism:

Mechanism is the authentication method by which the agent will communicate with VOLTTRON platform. Currently VOLTTRON uses only CURVE mechanism to authenticate agents.

Credentials:

The credentials field must be an CURVE encoded public key (see volttron.platform.vip.socket.encode_key for method to encode public key).

credentials []: encoded-public-key-for-agent

Comments:

Comments is arbitrary string to associate with authentication record

Enabled:

TRUE of FALSE value to enable or disable the authentication record.
Record will only be used if this value is True

Configuration Store

The Platform Configuration Store is a mechanism provided by the platform to facilitate the dynamic configuration
of agents. The Platform Configuration Store works by informing agents of changes to their configuration store and
the agent responding to those changes by updating any settings, subscriptions, or processes that are affected by
the configuration of the Agent.

Configurations and Agents

Each agent has it’s own configuration store (or just store). Agents are not given access to any other agent’s store.

The existence of a store is not dependent on the existence of an agent installed on the platform.

Each store has a unique identity. Stores are matched to agents at agent runtime via the agent’s VIP IDENTITY.
Therefore the store for an agent is the store with the same identity as the agent’s VIP IDENTITY.

When a user updates a configuration in the store the platform immediately informs the agent of the change. The platform
will not send another update until the Agent finishes processing the first. The platform will send updates to the
agent, one file at a time, in the order the changes were received.

Configuration Names

Every configuration in an agent’s store has a unique name. When a configuration is added to an agent’s store
with the same name as an existing configuration it will replace the existing configuration. The store will
remove any leading or trailing whitespace, “/”, and “" from the name.

Configuration File Types

The configuration store will automatically parse configuration files before presenting them to an agent. Additionally,
the configuration store does support storing raw data and giving to the agent unparsed. Most Agents will require the
configuration to be parsed. Any Agent that requires raw data will specifically mention the requirement in its
documentation.

This system removes the requirement that configuration files for an agent be in a specific format. For instance
a registry configuration for a driver may be JSON instead of CSV if that is more convenient for the user. This
will work as long as the JSON parses into an equivalent set of objects as an appropriate CSV file.

Currently the store supports parsing JSON and CSV files with support for more files types to come.

JSON

The store uses the same JSON parser that agents use to parse their configuration files. Therefore it supports
Python style comments and must create an object or list when parsed.

{
 "result": "PREEMPTED", #This is a comment.
 "info": null,
 "data": {
 "agentID": "my_agent", #This is another comment.
 "taskID": "my_task"
 }
}

CSV

A CSV file is represented as a list of objects. Each object represents a row in the CSV file.

For instance this simple CSV file:

Example CSV

	Volttron Point Name

	Modbus Register

	Writable

	Point Address

	ReturnAirCO2

	>f

	FALSE

	1001

	ReturnAirCO2Stpt

	>f

	TRUE

	1011

Is the equivalent to this JSON file:

[
 {
 "Volttron Point Name": "ReturnAirCO2",
 "Modbus Register": ">f",
 "Writable": "FALSE",
 "Point Address": "1001"
 },
 {
 "Volttron Point Name": "ReturnAirCO2Stpt",
 "Modbus Register": ">f",
 "Writable": "TRUE",
 "Point Address": "1011"
 }
]

File references

The Platform Configuration Store supports referencing one configuration file from another. If a referenced file exists
the contents of that file will replace the file reference when the file is processed by the agent. Otherwise the
reference will be replaced with null (or in Python, None).

Only configurations that are parsed by the platform (currently JSON or CSV) will be examined for references. If the
file referenced is another parsed file type (JSON or CSV, currently) then the replacement will be the parsed contents of
the file, otherwise it will be the raw contents of the file.

In a JSON object the name of a value will never be considered a reference.

A file reference is any value string that starts with config://. The rest of the string is the name of another
configuration. The configuration name is converted to lower case for comparison purposes.

Consider the following configuration files named devices/vav1.config and registries/vav.csv, respectively:

{
 "driver_config": {"device_address": "10.1.1.5",
 "device_id": 500},

 "driver_type": "bacnet",
 "registry_config":"config://registries/vav.csv",
 "campus": "pnnl",
 "building": "isb1",
 "unit": "vav1"
}

vav.csv

	Volttron Point Name

	Modbus Register

	Writable

	Point Address

	ReturnAirCO2

	>f

	FALSE

	1001

	ReturnAirCO2Stpt

	>f

	TRUE

	1011

The resulting configuration returns when an agent asks for devices/vav1.config.

{
 "driver_config": {"device_address": "10.1.1.5",
 "device_id": 500},

 "driver_type": "bacnet",
 "registry_config":[
 {
 "Volttron Point Name": "ReturnAirCO2",
 "Modbus Register": ">f",
 "Writable": "FALSE",
 "Point Address": "1001"
 },
 {
 "Volttron Point Name": "ReturnAirCO2Stpt",
 "Modbus Register": ">f",
 "Writable": "TRUE",
 "Point Address": "1011"
 }
],
 "campus": "pnnl",
 "building": "isb1",
 "unit": "vav1"
}

Circular references are not allowed. Adding a file that creates a circular reference will cause that file to be rejected
by the platform.

If a configuration is changed in any way and that configuration is referred to by another configuration then
the agent considers the referring configuration as changed. Thus a set of configurations with references
can be considered one large configuration broken into pieces for the users convenience.

Multiple configurations may all reference a single configuration. For instance, when configuring drivers
in the Master Driver you may have multiple drivers reference the same registry if appropriate.

Modifying the Configuration Store

Currently the configuration store must be modified through the command line. See
Commandline Interface.

	Config Store Command Line Tools
	Store Configuration

	Delete Configuration

	Get Configuration

	List Configurations

	Edit Configuration

	Agent Configuration Store
	Compatibility

	Configuration Names and Paths

	Configuration Ownership

	Configuration File Types

	Configuration File Representation to Agents
	JSON

	CSV

	Raw

	File references

	Agent Configuration Sub System
	Configuration Subsystem Agent Methods

	Configuration Sub System RPC Methods

	Notes on trigger_callback

	Platform Configuration Store
	Platform RPC Methods
	Methods for Agents

	Methods for Management

	Direct Call Methods

	Command Line Interface

	Disabling the Configuration Store

Config Store Command Line Tools

Command line management of the Configuration Store is done with the vctl config sub-commands.

Store Configuration

To store a configuration in the Configuration Store use the store sub-command:

vctl config store <agent vip identity> <configuration name> <infile>

	agent vip identity - The agent store to add the configuration to.

	configuration name - The name to give the configuration in the store.

	infile - The file to ingest into the store.

Optionally you may specify the file type of the file. Defaults to --json.

	--json - Interpret the file as JSON.

	--csv - Interpret the file as CSV.

	--raw - Interpret the file as raw data.

Delete Configuration

To delete a configuration in the Configuration Store use the delete sub-command:

vctl config delete <agent vip identity> <configuration name>

	agent vip identity - The agent store to delete the configuration from.

	configuration name - The name of the configuration to delete.

To delete all configurations for an agent in the Configuration Store use --all
switch in place of the configuration name:

vctl config delete <agent vip identity> --all

Get Configuration

To get the current contents of a configuration in the Configuration Store use the get sub-command:

vctl config get <agent vip identity> <configuration name>

	agent vip identity - The agent store to retrieve the configuration from.

	configuration name - The name of the configuration to get.

By default this command will return the json representation of what is stored.

	--raw - Return the raw version of the file.

List Configurations

To get the current list of agents with configurations in the Configuration Store use the list sub-command:

vctl config list

To get the current list of configurations for an agent include the Agent’s VIP IDENTITY:

vctl config list <agent vip identity>

	agent vip identity - The agent store to retrieve the configuration from.

Edit Configuration

To edit a configuration in the Configuration Store use the edit sub-command:

vctl config edit <agent vip identity> <configuration name>

	agent vip identity - The agent store containing the configuration.

	configuration name - The name of the configuration to edit.

The configuration must exist in the store to be edited.

By default edit will try to open the file with the nano editor.
The edit command will respect the EDITOR environment variable.
You may override this with the –editor option.

Agent Configuration Store

This document describes the configuration store feature and explains how an agent uses it.

The configuration store enables users to store agent configurations on the platform and allows the agent to
automatically retrieve them during runtime. Users may update the configurations and the agent will automatically be
informed of the changes.

Compatibility

Supporting the configuration store will not be required by Agents, however the usage will be strongly encouraged as it
should substantially improve user experience.

The previous method for configuring an agent will still be available to agents (and in some cases required), however
agents can be created to only work with the configuration store and not support the old method at all.

It will be possible to create an agent to use the traditional method for configuration to establish defaults if no
configuration exist in the platform configuration store.

Configuration Names and Paths

Any valid OS file path name is a valid configuration name. Any leading or trailing “/”, “” and whitespace is removed
by the store.

The canonical name for the main agent configuration is config.

The configuration subsystem remembers the case of configuration names. Name matching is case insensitive both on the
Agent and platform side. Configuration names are reported to agent callbacks in the original case used when adding them
to the configuration. If a new configuration is store with a different case of an existing name the new name case is
used.

Configuration Ownership

Each configuration belongs to one agent and one agent only. When an agent refers to a configuration file via it’s path
it does not need to supply any information about its identity to the platform in the file path. The only configurations
an agent has direct access to are it’s own. The platform will only inform the owning agent configuration changes.

Configuration File Types

Configurations files come in three types: json, csv, and raw. The type of a configuration file is declared when
it is added to or changed in the store.

The parser assumes the first row of every CSV file is a header.

Invalid JSON or CSV files are rejected at the time they are added to the store.

Raw files are unparsed and accepted as is.

Other parsed types may be added in the future.

Configuration File Representation to Agents

JSON

A JSON file is parsed and represented as appropriate data types to the requester.

Consider a file with the following contents:

{
 "result": "PREEMPTED",
 "info": null,
 "data": {
 "agentID": "my_agent",
 "taskID": "my_task"
 }
}

The file will be parsed and presented as a dictionary with 3 values to the requester.

CSV

A CSV file is represented as a list of objects. Each object represents a row in the CSV file.

For instance this (simplified) CSV file:

Example CSV

	Volttron Point Name

	Modbus Register

	Writable

	Point Address

	ReturnAirCO2

	>f

	FALSE

	1001

	ReturnAirCO2Stpt

	>f

	TRUE

	1011

will be represented like this:

[
 {
 "Volttron Point Name": "ReturnAirCO2",
 "Modbus Register": ">f",
 "Writable": "FALSE",
 "Point Address": "1001"
 },
 {
 "Volttron Point Name": "ReturnAirCO2Stpt",
 "Modbus Register": ">f",
 "Writable": "TRUE",
 "Point Address": "1011"
 }
]

Raw

Raw files are represented as a string containing the contents of the file.

File references

The Platform Configuration Store supports referencing one configuration file from another. If a referenced file
exists the contents of that file will replace the file reference when the file is sent to the owning agent. Otherwise
the reference will be replaced with None.

Only configurations that are parsed by the platform (currently “json” or “csv”) will be examined for references. If the
file referenced is another parsed file type (JSON or CSV, currently) then the replacement will be the parsed contents of
the file.

In a JSON object the name of a value will never be considered a reference.

A file reference is any value string that starts with config://. The rest of the string is the path in the config
store to that configuration. The config store path is converted to lower case for comparison purposes.

Consider the following configuration files named devices/vav1.config and registries/vav.csv, respectively:

{
 "driver_config": {"device_address": "10.1.1.5",
 "device_id": 500},

 "driver_type": "bacnet",
 "registry_config":"config://registries/vav.csv",
 "campus": "pnnl",
 "building": "isb1",
 "unit": "vav1"
}

vav.csv

	Volttron Point Name

	Modbus Register

	Writable

	Point Address

	ReturnAirCO2

	>f

	FALSE

	1001

	ReturnAirCO2Stpt

	>f

	TRUE

	1011

The resulting configuration returns when an agent asks for devices/vav1.config. The Python object will have the
following configuration:

{
 "driver_config": {"device_address": "10.1.1.5",
 "device_id": 500},

 "driver_type": "bacnet",
 "registry_config":[
 {
 "Volttron Point Name": "ReturnAirCO2",
 "Modbus Register": ">f",
 "Writable": "FALSE",
 "Point Address": "1001"
 },
 {
 "Volttron Point Name": "ReturnAirCO2Stpt",
 "Modbus Register": ">f",
 "Writable": "TRUE",
 "Point Address": "1011"
 }
],
 "campus": "pnnl",
 "building": "isb1",
 "unit": "vav1"
}

Circular references are not allowed. Adding a file that creates a circular reference will cause that file to be
rejected by the platform.

If a file is changed in anyway (NEW, UPDATE, or DELETE) and that file is referred to by another file then the
platform considers the referring configuration as changed. The configuration subsystem on the Agent will call every
callback listening to a file or any file referring to that file either directly or indirectly.

Agent Configuration Sub System

The configuration store shall be implemented on the Agent(client) side in the form of a new subsystem called config.

The subsystem caches configurations as the platform updates the state to the agent. Changes to the cache triggered by
an RPC call from the platform will trigger callbacks in the agent.

No callback methods are called until the onconfig phase of agent startup. A new phase to agent startup called
onconfig will be added to the Core `class. Originally it was planned to have this run after the `onstart phase has
completed but that is currently not possible. Ideally if an agent is using the config store feature it will not need
any onstart methods.

When the onconfig phase is triggered the subsystem will retrieve the current configuration state from the platform and
call all callbacks registered to a configuration in the store to the NEW action. No callbacks are called before this
point in agent startup.

The first time callbacks are called at agent startup any callbacks subscribed to a configuration called config are
called first.

Configuration Subsystem Agent Methods

These methods are part of the interface available to the Agent.

config.get(config_name=”config”) - Get the contents of a configuration.
If no name is provided the contents of the main agent configuration “config” is returned. This may not be called
before onstart methods are called. If called during the onstart phase it will trigger the subsystem to
initialize early but will not trigger any callbacks.

config.subscribe(callback, action=(“NEW”, “UPDATE”, “DELETE”), pattern=”*”) - Sets up a callback for handling a
configuration change. The platform will automatically update the agent when a configuration changes ultimately
triggering all callbacks that match the pattern specified. The action argument describes the types of configuration
change action that will trigger the callback. Possible actions are NEW, UPDATE, and DELETE or a tuple of any
combination of actions. If no action is supplied the callback happens for all changes. A list of actions can be
supplied if desired. If no file name pattern is supplied then the callback is called for all configurations. The
pattern is an regex used match the configuration name.

The callback will also be called if any file referenced by a configuration file is changed.

The signature of the callback method is callback(config_name, action, contents) where file_name is the file
that triggered the callback, action is the action that triggered the callback, and contents are the new contents of
the configuration. Contents will be None on a DELETE action. All callbacks registered for NEW events will
be called at agent startup after all osntart methods have been called. Unlike pubsub subscriptions, this may be
called at any point in an agent’s lifetime.

config.unsubscribe(callback=None, config_name_pattern=None) - Unsubscribe from configuration changes.
Specifying a callback only will unsubscribe that callback from all config name patterns they have been bound to.
If a pattern only is specified then all callbacks bound to that pattern will be removed. Specifying both will
remove that callback from that pattern. Calling with no arguments will remove all subscriptions.

config.unsubscribe_all() - Unsubscribe from all configuration changes.

config.set(config_name, contents, trigger_callback=False) - Set the contents of a configuration. This may not
be called before onstart methods are called. This can be used by an agent to store agent state across agent
installations. This will NOT trigger any callbacks unless trigger_callback is set to True. To prevent
deadlock with the platform this method may not be called from a configuration callback function. Doing so will
raise a RuntimeError exception.

This will not modify the local configuration cache the Agent maintains. It will send the configuration change to
the platform and rely on the subsequent update_config call.

config.delete(config_name, trigger_callback=False) - Remove the configuration from the store. This will NOT
trigger any callbacks unless trigger_callback is True. To prevent deadlock with the platform this method may not
be called from a configuration callback function. Doing so will raise a RuntimeError exception.

config.list() - Returns a list of configuration names.

config.set_default(config_name, contents, trigger_callback=False) - Set a default value for a configuration.
DOES NOT modify the platform’s configuration store but creates a default configuration that is used for agent
configuration callbacks if the configuration does not exist in the store or the configuration is deleted from the
store. The callback will only be triggered if trigger_callback is true and the configuration store subsystem on
the agent is not aware of a configuration with that name from the platform store.

Typically this will be called in the __init__ method of an agent with the parsed contents of the packaged
configuration file. This may not be called from a configuration callback. Doing so will raise a RuntimeError.

config.delete_default(config_name, trigger_callback=False) - Delete a default value for a configuration. This
method is included for for completeness and is unlikely to be used in agent code. This may not be called from a
configuration callback. Doing so will raise a RuntimeError.

Configuration Sub System RPC Methods

These methods are made available on each agent to allow the platform to communicate changes to a configuration to the
affected agent. As these methods are not part of the exposed interface they are subject to change.

config.update(config_name, action, contents=None, trigger_callback=True) - called by the platform when a
configuration was changed by some method other than the Agent changing the configuration itself. Trigger callback tells
the agent whether or not to call any callbacks associate with the configuration.

Notes on trigger_callback

As the configuration subsystem calls all callbacks in the onconfig phase and none are called beforehand the
trigger_callback setting is effectively ignored if an agent sets a configuration or default configuration before the
end of the onstart phase.

Platform Configuration Store

The platform configuration store handles the storage and maintenance of configuration states on the platform.

As these methods are not part of the exposed interface they are subject to change.

Platform RPC Methods

Methods for Agents

Agent methods that change configurations do not trigger any callbacks unless trigger_callback is True.

set_config(config_name, contents, trigger_callback=False) - Change/create a configuration file on the platform.

get_configs() - Get all of the configurations for an Agent.

delete_config(config_name, trigger_callback=False) - Delete a configuration.

Methods for Management

manage_store_config(identity, config_name, contents, config_type=”raw”) - Change/create a configuration on the
platform for an agent with the specified identity

manage_delete_config(identity, config_name) - Delete a configuration for an agent with the specified identity.
Calls the agent’s update_config with the action DELETE_ALL and no configuration name.

manage_delete_store(identity) - Delete all configurations for a VIP IDENTITY.

manage_list_config(identity) - Get a list of configurations for an agent with the specified identity.

manage_get_config(identity, config_name, raw=True) - Get the contents of a configuration file. If raw is set to
True this function will return the original file, otherwise it will return the parsed representation of the file.

manage_list_stores() - Get a list of all the agents with configurations.

Direct Call Methods

Services local to the platform who wish to use the configuration store may use two helper methods on the agent class
created for this purpose. This allows the auth service to use the config store before the router is started.

delete(self, identity, config_name, trigger_callback=False) - Same as functionality as delete_config, but the
caller must specify the identity of the config store.

store(self, identity, config_name, contents, trigger_callback=False) - Same functionality as set_config, but the
caller must specify the identity of the config store.

Command Line Interface

The command line interface will consist of a new commands for the volttron-ctl program called config with four
sub-commands called store, delete, list, get. These commands will map directly to the management RPC functions
in the previous section.

Disabling the Configuration Store

Agents may optionally disable support for the configuration store by passing enable_store=False to the __init__
method of the Agent class. This allows temporary agents to not spin up the subsystem when it is not needed. Platform
service agents that do not yet support the configuration store and the temporary agents used by volttron-ctl will set
this value.

Platform Security

There are various security-related topics throughout VOLTTRON’s documentation. This is a quick roadmap for finding
security documentation.

A core component of VOLTTRON is its message bus. The security of this message bus is
crucial to the entire system. The VOLTTRON Interconnect Protocol provides communication over the
message bus.

VIP was built with security in mind from the ground up. VIP uses encrypted channels and enforces agent
authentication by default for all network communication. VIP’s
authorization mechanism allows system administrators to limit agent capabilities with fine
granularity.

Even with these security mechanisms built into VOLTTRON, it is important for system administrators to
harden VOLTTRON’s underlying OS.

The VOLTTRON team has engaged with PNNL’s Secure Software Central team to create a threat profile document. You can
read about the threat assessment findings and how the VOLTTRON team is addressing them here: SSC Threat Profile [https://volttron.org/sites/default/files/publications/VolttronThreatProfile_v1.1.pdf]

Additional documentation related to VIP authentication and authorization is available here:

	Running Agents as Unix Users
	Setup agents to run using unique users

	Creating new Agents

	Changes to existing agents in secure mode

	Porting existing VOLTTRON home to secure mode

	Key Stores
	Key Store Locations

	Generating a Key Store

	Known Hosts File
	Saving a Server Key

	Server Key for Local Platforms

	Know-Host-File Details
	File Location

	File Contents

Running Agents as Unix Users

This VOLTTRON feature will cause the platform to create a new, unique Unix user(agent users) on the host machine for
each agent installed on the platform. This user will have restricted permissions for the file system, and will be used
to run the agent process.

Warning

The Unix user starting the VOLTTRON platform will be given limited sudo access to create and delete agent users.

Since this feature requires system level changes (e.g. sudo access, user creation, file permission changes), the initial
step needs to be run as root or user with sudo access. This can be a user other than Unix user used to run the
VOLTTRON platform.

All files and folder created by the VOLTTRON process in this mode would not have any access to others by default.
Permission for Unix group others would be provided to specific files and folder based on VOLTTRON process requirement.

It is recommended that you use a new VOLTTRON_HOME to run VOLTTRON in secure mode. Converting a existing VOLTTRON
instance to secure mode is also possible but would involve some manual changes. Please see the section
Porting existing volttron home to secure mode.

Note

VOLTTRON has to be bootstrapped as prerequisite to running agents as unique users.

Setup agents to run using unique users

	This feature requires acl to be installed.

Make sure the acl library is installed. If you are running on a Docker image acl might not be installed by
default.

apt-get install acl

	Agents now run as a user different from VOLTTRON platform user. Agent users should have read and execute
permissions to all directories in the path to the Python executable used by VOLTTRON. For example, if VOLTTRON is
using a virtual environment, then agent users should have read permissions to <ENV_DIR>/bin/python and read
and execute permission to all the directories in the path <ENV_DIR>/bin. This can be achieved by running:

chmod -R o+rx <ENV_DIR>/bin

	Run scripts/secure_user_permissions.sh as root or using sudo

This script MUST be run as root or using sudo. This script gives the VOLTTRON platform user limited sudo
access to create a new Unix user for each agent. All users created will be of the format volttron_<timestamp>.

This script prompts for:

	volttron platform user - Unix user who would be running the VOLTTRON platform. This should be an existing
Unix user. On a development machine this could be the Unix user you logged in as to check out VOLTTRON source

	VOLTTRON_HOME directory - The absolute path of the volttron home directory.

	Volttron instance name if VOLTTRON_HOME/config does not exist -

If the VOLTTRON_HOME/config file exists then instance name is obtained from that config file. If not, the user
will be prompted for an instance name. volttron_<instance_name> MUST be a 23 characters or shorter containing
only characters valid as Unix user names.

This script will create necessary entries in /etc/sudoers.d/volttron to allow the VOLTTRON platform user to create
and delete agent users, the VOLTTRON agent group, and run any non-sudo command as the agent users.

This script will also create VOLTTRON_HOME and the config file if given a new VOLTTRON home directory when
prompted.

	Continue with VOLTTRON bootstrap and setup as normal - point to the VOLTTRON_HOME that you provided in step 2.

	On agent install (or agent start for existing agents) - a unique agent user(Unix user) is created and the agent
is started as this user. The agent user name is recorded in USER_ID file under the agent install directory
(VOLTTRON_HOME/agents/<agent-uuid>/USER_ID). Subsequent agent restarts will read the content of the USER_ID file
and start the agent process as that user.

	On agent uninstall - The agent user is deleted and the agent install directory is deleted.

Creating new Agents

In this secure mode, agents will only have read write access to the agent-data directory under the agent install
directory - VOLTTRON_HOME/agents/<agent_uuid>/<agent_name>/<agent_name>.agent-data. Attempting to write in any other
folder under VOLTTRON_HOME will result in permission errors.

Changes to existing agents in secure mode

Due to the above change, SQL historian has been modified to create its database by default under its agent-data
directory if no path is given in the config file. If providing a path to the database in the config file, please
provide a directory where agent will have write access. This can be an external directory for which agent user
(recorded in VOLTTRON_HOME/agents/<agent-uuid>/USER_ID) has read, write, and execute access.

Porting existing VOLTTRON home to secure mode

When running scripts/secure_users_permissions.sh you will be prompted for a VOLTTRON_HOME directory. If this
directory exists and contains a volttron config file, the script will update the file locations and permissions of
existing VOLTTRON files including installed directories. However this step has the following limitations:

	You will NOT be able to revert to insecure mode once the changes are done. - Once setup is complete, changing the
config file manually to make parameter secure-agent-users to False, may result inconsistent VOLTTRON behavior

	The VOLTTRON process and all agents have to be restarted to take effect

	Agents can only to write to its own agent-data dir. - If your agents writes to any directory outside
$VOLTTRON_HOME/agents/<agent-uuid>/<agent-name>/agent-name.agent-data move existing files and update the agent
configuration such that the agent writes to the agent-name.agent-data dir. For example, if you have a
SQLHistorian which writes a .sqlite file to a subdirectory under VOLTTRON_HOME that is not
$VOLTTRON_HOME/agents/<agent-uuid>/<agent-name>/agent-name.agent-data this needs to be manually updated.

Key Stores

Warning

Most VOLTTRON users should not need to directly interact with agent key stores. These are notes for VOLTTRON
platform developers. This is not a stable interface and the implementation details are subject to change.

Each agent has its own encryption key-pair that is used to authenticate itself with the
VOLTTRON platform. A key-pair comprises a public key and a private (secret) key. These keys are saved in a
“key store”, which is implemented by the KeyStore class. Each agent
has its own key store.

Key Store Locations

There are two main locations key stores will be saved. Installed agents’ key stores are in the the agent’s data
directory:

$VOLTTRON_HOME/agents/<AGENT_UUID>/<AGENT_NAME>/keystore.json

Agents that are not installed, such as platform services and stand-alone agents, store their key stores here:

$VOLTTRON_HOME/keystores/<VIP_IDENTITY>/keystore.json

Generating a Key Store

Agents automatically retrieve keys from their key store unless both the publickey and secretkey parameters are
specified when the agent is initialized. If an agent’s key store does not exist it will automatically be generated upon
access.

Users can generate a key pair by running the following command:

vctl auth keypair

Known Hosts File

Before an agent can connect to a VOLTTRON platform that agent must know the platform’s VIP address and public key (known
as the server key). It can be tedious to manually keep track of server keys and match them with their corresponding
addresses.

The purpose of the known-hosts file is to save a mapping of platform addresses to server keys. This way the user only
has to specify a server key one time.

Saving a Server Key

Suppose a user wants to connect to a platform at 192.168.0.42:22916, and the platform’s public key is
uhjbCUm3kT5QWj5Py9w0XZ7c1p6EP8pdo4Hq4dNEIiQ. To save this address-to-server-key association, the user can run:

volttron-ctl auth add-known-host --host 192.168.0.42:22916 --serverkey uhjbCUm3kT5QWj5Py9w0XZ7c1p6EP8pdo4Hq4dNEIiQ

Now agents on this system will automatically use the correct server key when connecting to the platform at
192.168.0.42:22916.

Server Key for Local Platforms

When a platform starts it automatically adds its public key to the known-hosts file. Thus agents connecting to the
local VOLTTRON platform (on the same system and using the same $VOLTTRON_HOME) will automatically be able to
retrieve the platform’s public key.

Know-Host-File Details

Note

The following details regarding the known-hosts file are subject to change. These notes are primarily for
developers, but the may be helpful if troubleshooting an issue. The known-hosts file should not be edited
directly.

File Location

The known-hosts-file is stored at $VOLTTRON_HOME/known_hosts.

File Contents

Here are the contents of an example known-hosts file:

{
 "@": "FSG7LHhy3v8tdNz3gK35G6-oxUcyln54pYRKu5fBJzU",
 "127.0.0.1:22916": "FSG7LHhy3v8tdNz3gK35G6-oxUcyln54pYRKu5fBJzU",
 "127.0.0.2:22916": "FSG7LHhy3v8tdNz3gK35G6-oxUcyln54pYRKu5fBJzU",
 "127.0.0.1:12345": "FSG7LHhy3v8tdNz3gK35G6-oxUcyln54pYRKu5fBJzU",
 "192.168.0.42:22916": "uhjbCUm3kT5QWj5Py9w0XZ7c1p6EP8pdo4Hq4dNEIiQ"
}

The first four entries are for the local platform. (They were automatically added when the platform started.) The first
entry with the @ key is for IPC connections, and the entries with the 127.0.0.* keys are for local TCP
connections. Note that a single VOLTTRON platform can bind to multiple TCP addresses, and each address will be
automatically added to the known-hosts file. The last entry is for a remote VOLTTRON platform. (It was added in the
Saving a Server Key section.)

Troubleshooting

This section contains individual documents intended to help the user troubleshoot various platform components. For
troubleshooting of individual agents and drivers please refer to the corresponding document for each.

	RabbitMQ Troubleshooting
	Check the status of the federation connection

	Check the status of the shovel connection

	Check the RabbitMQ logs for any errors

	Rabbitmq startup hangs

	SSL trouble shooting

	DataMover troubleshooting

RabbitMQ Troubleshooting

Check the status of the federation connection

$RABBITMQ_HOME/sbin/rabbitmqctl eval 'rabbit_federation_status:status().'

If everything is properly configured, then the status is set to running. If not look for the error status. Some of
the typical errors are:

	failed_to_connect_using_provided_uris - Check if RabbitMQ user is created in downstream server node. Refer to
step 3-b of federation setup

	unknown ca - Check if the root CAs are copied to all the nodes correctly. Refer to step 2 of federation setup

	no_suitable_auth_mechanism - Check if the AMPQ/S ports are correctly configured.

Check the status of the shovel connection

RABBITMQ_HOME/sbin/rabbitmqctl eval 'rabbit_shovel_status:status().'

If everything is properly configured, then the status is set to running. If not look for the error status. Some of
the typical errors are:

	failed_to_connect_using_provided_uris - Check if RabbitMQ user is created in subscriber node. Refer to step 3-b
of shovel setup

	unknown ca - Check if the root CAs are copied to remote servers correctly. Refer to step 2 of shovel setup

	no_suitable_auth_mechanism - Check if the AMPQ/S ports are correctly configured.

Check the RabbitMQ logs for any errors

tail -f <volttron source dir>/rabbitmq.log

Rabbitmq startup hangs

	Check for errors in the RabbitMQ log. There is a rabbitmq.log file in your VOLTTRON source directory that is a
symbolic link to the RabbitMQ server logs.

	Check for errors in syslog (/var/log/syslog or /var/log/messages)

	If there are no errors in either of the logs, restart the RabbitMQ server in foreground and see if there are any
errors written on the console. Once you find the error you can kill the process by entering Ctl+C, fix the error
and start rabbitmq again using ./start-rabbitmq from VOLTTRON source directory.

./stop-volttron
./stop-rabbitmq
@RABBITMQ_HOME/sbin/rabbitmq-server

SSL trouble shooting

There are few things that are essential for SSL certificates to work right.

	Please use a unique common-name for CA certificate for each VOLTTRON instance. This is configured under
certificate-data in the rabbitmq_config.yml or if no yml file is used while configuring a VOLTTRON single
instance (using vcfg --rabbitmq single). Certificate generated for agent will automatically get agent’s VIP
identity as the certificate’s common-name

	The host name in the SSL certificate should match hostname used to access the server. For example, if the fully
qualified domain name was configured in the certificate-data, you should use the fully qualified domain name to
access RabbitMQ’s management url.

	Check if your system time is correct especially if you are running virtual machines. If the system clock is not
right, it could lead to SSL certificate errors

DataMover troubleshooting

If output from volttron.log is not as expected check for {'alert_key': 'historian_not_publishing'} in the callee
node’s volttron.log. Most likely cause is the historian is not running properly or credentials between caller and
callee nodes was not set properly.

Applications

These resources summarize the use of the sample applications that have been created by VOLTTRON users. For detailed
information on these applications, refer to the report
Transactional Network Platform [http://www.pnl.gov/main/publications/external/technical_reports/PNNL-22941.pdf.].

Note, as of VOLTTRON 4.0, applications are now in their own repository at:
https://github.com/VOLTTRON/volttron-applications

	Acquiring Third Party Agent Code
	Passive Automated Fault Detection and Diagnostic Agent

	The Demand Response (DR) Agent

	Simulation Subsystem
	Linux Installation

	SimulationAgent Configuration Parameters

	Driver Parameters and Points

	Working with the Sample Data Files

	Running the Simulation

	Using the Simulation Framework to Test a Driver

	For Further Information

	Open ADR
	Reference Application

	OpenADR VTN Server: User Guide

	OpenADR VTN Server: Installation and Configuration

	MatLab Integration
	Overview:

	Installation steps for system running Matlab:

	Run and test Matlab VOLTTRON Integration:

	Resources

Acquiring Third Party Agent Code

Add the volttron-applications repository under the volttron/applications directory by using following command:

git subtree add –prefix applications https://github.com/VOLTTRON/volttron-applications.git develop –squash

Passive Automated Fault Detection and Diagnostic Agent

The Passive Automated Fault Detection and Diagnostic (Passive AFDD) agent is used to identify problems in the operation and performance of air-handling units (AHUs) or packaged rooftop units (RTUs). Air-side economizers modulate controllable dampers to use outside air to cool instead of (or to supplement) mechanical cooling, when outdoor-air conditions are more favorable than the return-air conditions. Unfortunately, economizers often do not work properly, leading to increased energy use rather than saving energy. Common problems include incorrect control strategies, diverse types of damper linkage and actuator failures, and out-of-calibration sensors. These problems can be detected using sensor data that is normally used to control the system.

The Passive AFDD requires the following data fields to perform the fault detection and diagnostics:

	Outside-air temperature

	Return-air temperature

	Mixed-air temperature

	Outside-air damper position/signal

	Supply fan status

	Mechanical cooling status

	Heating status.

The AFDD supports both real-time data via a Modbus or BACnet device, or input of data from a csv style text document.

The following section describes how to configure the Passive AFDD agent, methods for data input (real-time data from a device or historical data in a comma separated value formatted text file), and launching the Passive AFDD agent.

Note: A proactive version of the Passive AFDD exists as a PNNL application (AFDDAgent). This application requires active control of the RTU for fault detection and diagnostics to occur. The Passive AFDD was created to allow more users a chance to run diagnostics on their HVAC equipment without the need to actively modify the controls of the system.

Configuring the Passive AFDD Agent

Before launching the Passive AFDD agent, several parameters require configuration. The AFDD utilizes the same JSON style configuration file used by the Actuator, Listener, and Weather agents. The threshold parameters used for the fault detection algorithms are pre-configured and will work well for most RTUs or AHUs. Figure 1 shows an example configuration file for the AFDD agent.

The parameters boxed in black (in Figure 1) are the pre-configured fault detection thresholds; these do not require any modification to run the Passive AFDD agent. The parameters in the example configuration that are boxed in red will require user input. The following list describes each user configurable parameter and their possible values:

	agentid – This is the ID used when making schedule, set, or get requests to the Actuator agent; usually a string data type.

	campus – Campus name as configured in the sMAP driver. This parameter builds the device path that allows the Actuator agent to set and get values on the device; usually a string data type.

	building – Building name as configured in the sMAP driver. This parameter builds the device path that allows the Actuator agent to set and get values on the device; usually a string data type.

	unit – Device name as configured in the sMAP driver. This parameter builds the device path that allows the Actuator agent to set and get values on the device; usually a string data type. Note: The campus, building, and unit parameters are used to build the device path (campus/building/unit). The device path is used for communication on the message bus.

	controller point names – When using real-time communication, the Actuator agent identifies what registers or values to set or get by the point name you specify. This name must match the “Point Name” given in the Modbus registry file, as specified in VOLTTRON Core Services.

	aggregate_data – When using real-time data sampled at an interval of less than 1 hour or when inputting data via a csv file sampled at less than 1 hour intervals, set this flag to “1.” Value should be an integer or floating-point number (i.e., 1 or 1.0)

	csv_input – Flag to indicate if inputting data from a csv text file. Set to “0” for use with real-time data from a device or “1” if data is input from a csv text file. It should be an integer or floating point number (i.e., 1 or 1.0)

	EER – Energy efficiency ratio for the AHU or RTU. It should be an integer or floating-point number (i.e., 10 or 10.0)

	tonnage – Cooling capacity of the AHU or RTU in tons of cooling. It should be an integer or floating-point number (i.e., 10 or 10.0)

	economizer_type – This field indicates what type of economizer control is used. Set to “0” for differential dry-bulb control or to “1” for high limit dry-bulb control. It should be an integer or floating-point number.

	high_limit – If the economizer is using high-limit dry-bulb control, this value indicates what the outside-air temperature high limit should be. The input should be floating-point number (i.e., 60.0)

	matemp_missing – Flag used to indicate if the mixed-air temperature is missing for this system. If utilizing csv data input, simply set this flag to “1” and replace the mixed-air temperature column with discharge-air temperature data. If using real-time data input, change the field “mat_point_name” under Point Names section to the point name indicating the discharge-air temperature. It should be an integer or floating-point number (i.e., 1 or 1.0)

	OAE6 – This section contains the schedule information for the AHU or RTU. The default is to indicate a 24-hour schedule for each day of the week. To modify this, change the numbers in the bracketed list next to the corresponding day with which you are making operation schedule modifications. For example: “Saturday”: [0,0] (This indicates the system is off on Saturdays).

[image: ../../_images/1_Example_Passive_AFDD_Agent_Configuration_file.jpg]
Figure 1. Example Passive AFDD Agent Configuration File

Launching the Passive AFDD Agent

The Passive AFDD agent performs passive diagnostics on AHUs or RTUs, monitors and utilizes sensor data, but does not actively control the devices. Therefore, the agent does not require interaction with the Actuator agent. Steps for launching the agent are provided below.

In a terminal window, enter the following commands:

	Run pack_install script on Passive AFDD agent:

$. scripts/core/pack_install.sh applications/PassiveAFDD applications/PassiveAFDD/passiveafdd.launch.json passive-afdd

Upon successful completion of this command, the terminal output will show the install directory, the agent UUID (unique identifier for an agent; the UUID shown in red is only an example and each instance of an agent will have a different UUID), and the agent name (blue text):

Installed /home/volttron-user/.volttron/packaged/passiveafdd-0.1-py2-none-any.whl as 5df00517-6a4e-4283-8c70-5f0759713c64 passiveafdd-0.1

	Start the agent:

$ vctl start --tag passive-afdd

	Verify that the agent is running:

$ vctl status
$ tail -f volttron.log

If changes are made to the Passive AFDD agent’s configuration file after the agent is launched, it is necessary to stop and reload the agent. In a terminal, enter the following commands:

$ vctl stop --tag passive-afdd
$ vctl remove --tag passive-afdd

Then re-build and start the updated agent.

When the AFDD agent is monitoring a device via the message bus, the agent relies on the periodic data published from the sMAP driver. The AFDD agent then aggregates this data each hour and performs the diagnostics on the average hourly data. The result is written to a csv text file, which is appended if the file already exists. This file is in a folder titled “Results” under the (<project directory>/applications/pnnl/PassiveAFDD/passiveafdd) directory. Below is a key that describes how to interpret the diagnostic results:

	Diagnostic Code

	Code Message

	AFDD-1 (Temperature Sensor Fault)

	20

	No faults detected

	21

	Temperature sensor fault

	22

	Conditions not favorable for diagnostic

	23

	Mixed-air temperature outside of expected range

	24

	Return-air temperature outside of expected range

	25

	Outside-air temperature outside of expected range

	27

	Missing data necessary for fault detection

	29

	Unit is off (No Fault)

	AFDD-2 (RTU Economizing When it Should)

	30

	No faults detected

	31

	Unit is not currently cooling or conditions are not favorable for economizing (No Fault)

	32

	Insufficient outdoor air when economizing (Fault)

	33

	Outdoor-air damper is not fully open when the unit should be economizing (Fault)

	36

	OAD is open but conditions were not favorable for OAF calculation (No Fault)

	37

	Missing data necessary for fault detection (No Fault)

	38

	OAD is open when economizing but OAF calculation led to an unexpected value (No Fault)

	39

	Unit is off (No Fault)

	AFDD-3 (Unit Economizing When it Should)

	40

	No faults detected

	41

	Damper should be at minimum position but is not (Fault)

	42

	Damper is at minimum for ventilation (No Fault)

	43

	Conditions favorable for economizing (No Fault)

	47

	Missing data necessary for fault detection (No Fault)

	49

	Unit is off (No Fault)

	AFDD-4 (Excess Outdoor-air Intake)

	50

	No faults detected

	51

	Excessive outdoor-air intake

	52

	Damper is at minimum but conditions are not favorable for OAF calculation (No Fault)

	53

	Damper is not at minimum (Fault)

	56

	Unit should be economizing (No Fault)

	57

	Missing data necessary for fault detection (No Fault)

	58

	Damper is at minimum but OAF calculation led to an unexpected value (No Fault)

	59

	Unit is off (No Fault)

	AFDD-5 (Insufficient Outdoor-air Ventilation)

	60

	No faults detected

	61

	Insufficient outdoor-air intake (Fault)

	62

	Damper is at minimum but conditions are not favorable for OAF calculation (No Fault)

	63

	Damper is not at minimum when is should not be (Fault)

	66

	Unit should be economizing (No Fault)

	67

	Missing data necessary for fault detection (No Fault)

	68

	Damper is at minimum but conditions are not favorable for OAF calculation (No Fault)

	69

	Unit is off (No Fault)

	AFDD-6 (Schedule)

	70

	Unit is operating correctly based on input on/off time (No Fault)

	71

	Unit is operating at a time designated in schedule as “off” time

	77

	Missing data

Launching the AFDD for CSV Data Input

When utilizing the AFDD agent and inputting data via a csv text file, set the csv_input parameter, contained in the AFDD configuration file, to “1.”

	Launch the agent normally.

	A small file input box will appear. Navigate to the csv data file and select the csv file to input for the diagnostic.

	The result will be created for this RTU or AHU in the results folder described.

Figure 2 shows the dialog box that is used to input the csv data file.

[image: ../../_images/2_File_Selection_Dialog_Box.jpg]
Figure 2 File Selection Dialog Box when Inputting Data in a csv File

If “Cancel” is pushed on the file input dialog box, the AFDD will acknowledge that no file was selected. The Passive AFDD must be restarted to run the diagnostics. If a non-csv file is selected, the AFDD will acknowledge the file selected was not a csv file. The AFDD must be restarted to run the diagnostics.

Figure 3 shows a sample input data in a csv format. The header, or name for each column from the data input csv file used for analysis, should match the name given in the configuration file, as shown in Figure 1, boxed in red.

[image: ../../_images/3_Sample_of_CSV_Data.jpg]
Figure 3 Sample of CSV Data for Passive AFDD Agent

The Demand Response (DR) Agent

Many utilities around the country have or are considering implementing dynamic electrical pricing programs that use time-of-use (TOU) electrical rates. TOU electrical rates vary based on the demand for electricity. Critical peak pricing (CPP), also referred to as critical peak days or event days, is an electrical rate where utilities charge an increased price above normal pricing for peak hours on the CPP day. CPP times coincide with peak demand on the utility; these CPP events are generally called between 5 to 15 times per year and occur when the electrical demand is high and the supply is low. Customers on a flat standard rate who enroll in a peak time rebate program receive rebates for using less electricity when a utility calls for a peak time event. Most CPP events occur during the summer season on very hot days. The initial implementation of the DR agent addresses CPP events where the RTU would normally be cooling. This implementation can be extended to handle CPP events for heating during the winter season as well. This implementation of the DR agent is specific to the CPP, but it can easily be modified to work with other incentive signals (real-time pricing, day ahead, etc.).

The main goal of the building owner/operator is to minimize the electricity consumption during peak summer periods on a CPP day. To accomplish that goal, the DR agent performs three distinct functions:

	Step 1 – Pre-Cooling: Prior to the CPP event period, the cooling and heating (to ensure the RTU is not driven into a heating mode) set points are reset lower to allow for pre-cooling. This step allows the RTU to cool the building below its normal cooling set point while the electrical rates are still low (compared to CPP events). The cooling set point is typically lowered between 3 and 5oF below the normal. Rather than change the set point to a value that is 3 to 5oF below the normal all at once, the set point is gradually lowered over a period of time.

	Step 2 – Event: During the CPP event, the cooling set point is raised to a value that is 4 to 5oF above the normal, the damper is commanded to a position that is slightly below the normal minimum (half of the normal minimum), the fan speed is slightly reduced (by 10% to 20% of the normal speed, if the unit has a variable-frequency drive (VFD)), and the second stage cooling differential (time delay between stage one and stage two cooling) is increased (by few degrees, if the unit has multiple stages). The modifications to the normal set points during the CPP event for the fan speed, minimum damper position, cooling set point, and second stage cooling differential are user adjustable. These steps will reduce the electrical consumption during the CPP event. The pre-cooling actions taken in step 1 will allow the temperature to slowly float up to the CPP cooling temperature set point and reduce occupant discomfort during the attempt to shed load.

	Step 3 – Post-Event: The DR agent will begin to return the RTU to normal operations by changing the cooling and heating set points to their normal values. Again, rather than changing the set point in one step, the set point is changed gradually over a period of time to avoid the “rebound” effect (a spike in energy consumption after the CPP event when RTU operations are returning to normal).

The following section will detail how to configure and launch the DR agent.

Configuring DR Agent

Before launching the DR agent, several parameters require configuration. The DR utilizes the same JSON style configuration file that the Actuator, Listener, and Weather agent use. A notable limitation of the DR agent is that the DR agent requires active control of an RTU/AHU. The DR agent modifies set points on the controller or thermostat to reduce electrical consumption during a CPP event. The DR agent must be able to set certain values on the RTU/AHU controller or thermostat via the Actuator agent. Figure 4 shows a sample configuration file for the DR agent:

[image: ../../_images/4-1_Example_DR_Agent_Configuration_File.jpg]
[image: ../../_images/4-2_Example_DR_Agent_Configuration_File.jpg]
Figure 4 Example Configuration File for the DR Agent

The parameters boxed in black (Figure 4) are the demand response parameters; these may require modification to ensure the DR agent and corresponding CPP event are executed as one desires. The parameters in the example configuration that are boxed in red are the controller or thermostat points, as specified in the Modbus or BACnet (depending on what communication protocol your device uses) registry file, that the DR agent will set via the Actuator agent. These device points must be writeable, and configured as such, in the registry (Modbus or BACnet) file. The following list describes each user configurable parameter:

	agentid - This is the ID used when making schedule, set, or get requests to the Actuator agent; usually a string data type.

	campus - Campus name as configured in the sMAP driver. This parameter builds the device path that allows the Actuator agent to set and get values on the device; usually a string data type.

	building - Building name as configured in the sMAP driver. This parameter builds the device path that allows the Actuator agent to set and get values on the device; usually a string data type.

	unit - Device name as configured in the sMAP driver. This parameter builds the device path that allows the Actuator agent to set and get values on the device; usually a string data type. Note: The campus, building, and unit parameters are used to build the device path (campus/building/unit). The device path is used for communication on the message bus.

	csp_pre - Pre-cooling space cooling temperature set point.

	csp_cpp - CPP event space cooling temperature set point.

	normal_firststage_fanspeed - Normal operations, first stage fan speed set point.

	normal_secondstage_fanspeed - Normal operations, second stage fan speed set point.

	normal_damper_stpt - Normal operations, minimum outdoor-air damper set point.

	normal_coolingstpt - Normal operations, space cooling temperature set point.

	normal_heatingstpt - Normal operations, space heating temperature set point.

	fan_reduction - Fractional reduction in fan speeds during CPP event (default: 0.1-10%).

	damper_cpp - CPP event, minimum outdoor-air damper set point.

	max_precool_hours - Maximum allotted time for pre-cooling, in hours.

	cooling_stage_differential - Difference in actual space temperature and set-point temperature before second stage cooling is activated.

	schedule - Day of week occupancy schedule “0” indicate unoccupied day and “1” indicate occupied day (e.g., [1,1,1,1,1,1,1] = [Mon, Tue, Wed, Thu, Fri, Sat, Sun]).

OpenADR (Open Automated Demand Response)

Open Automated Demand Response (OpenADR) is an open and standardized way for electricity providers and system operators to communicate DR signals with each other and with their customers using a common language over any existing IP-based communications network, such as the Internet. Lawrence Berkeley National Laboratory created an agent to receive DR signals from an external source (e.g., OpenADR server) and publish this information on the message bus. The DR agent subscribes to the OpenADR topic and utilizes the contents of this message to coordinate the CPP event.

The OpenADR signal is formatted as follows:

'openadr/event',{'Content-Type': ['application/json'], 'requesterID': 'openadragent'}, {'status': 'near',
'start_at': '2013-6-15 14:00:00', 'end_at': '2013-10-15 18:00:00', 'mod_num': 0, 'id':
'18455630-a5c4-4e4a-9d53-b3cf989ccf1b','signals': 'null'}

The red text in the signal is the topic associated with CPP events that are published on the message bus. The text in dark blue is the message; this contains the relevant information on the CPP event for use by the DR agent.

If one desires to test the behavior of a device when responding to a DR event, such an event can be simulated by manually publishing a DR signal on the message bus. From the base VOLTTRON directory, in a terminal window, enter the following commands:

	Activate project:

$ source env/bin/activate

	Start Python interpreter:

$ python

	Import VOLTTRON modules:

$ from volttron.platform.vip.agent import Core, Agent

	Import needed Python library:

$ import gevent

	Instantiate agent (agent will publish OpenADR message):

$ agent = Agent(address='ipc://@/home/volttron-user/.volttron/run/vip.socket')

	Ensure the setup portion of the agent run loop is executed:

$ gevent.spawn(agent.core.run).join(0)

	Publish simulated OpenADR message:

$ agent.vip.pubsub.publish(peer='pubsub', topic='openadr/event',headers={},
message={'id': 'event_id','status': 'active', 'start_at': 10-30-15 15:00', 'end_at': '10-30-15
18:00'})

To cancel this event, enter the following command:

$ agent.vip.pubsub.publish(peer='pubsub', topic='openadr/event',headers={}, message={'id':
'event_id','status': 'cancelled', 'start_at': 10-30-15 15:00', 'end_at': '10-30-15 18:00'})

The DR agent will use the most current signal for a given day. This allows utilities/OpenADR to modify the signal up to the time prescribed for pre-cooling.

DR Agent Output to sMAP

After the DR agent has been configured, the agent can be launched. To launch the DR agent from the base VOLTTRON directory, enter the following commands in a terminal window:

	Run pack_install script on DR agent:

$. scripts/core/pack_install.sh applications/DemandResponseAgent
applications/DemandResponseAgent/demandresponse.launch.json dr-agent

Upon successful completion of this command, the terminal output will show the install directory, the agent UUID (unique identifier for an agent; the UUID shown in red is only an example and each instance of an agent will have a different UUID) and the agent name (blue text):

Installed
/home/volttron-user/.volttron/packaged/DemandResponseagent-0.1-py2-none-
any.whlas 5b1706d6-b71d-4045-86a3-8be5c85ce801
DemandResponseagent-0.1

	Start the agent:

$ vctl start --tag dr-agent

	Verify that agent is running:

$ vctl status
$ tail -f volttron.log

If changes are made to the DR agent’s configuration file after the agent is launched, it is necessary to stop and reload the agent. In a terminal, enter the following commands:

$ vctl stop --tag dr-agent
$ vctl remove --tag dr-agent

Then re-build and start the updated agent.

Simulation Subsystem

The simulation subsystem includes a set of device simulators and a clock
that can run faster (or slower) than real time. It can be used to test VOLTTRON agents
or drivers. It could be particularly useful when simulating
multi-agent and/or multi-driver scenarios.

The source code for the agents and drivers comprising this subsystem
resides in the https://github.com/VOLTTRON/volttron-applications github repository.

This subsystem is designed to be extended easily. Its initial delivery includes a set of
simulated energy devices that report status primarily in terms of power (kilowatts)
produced and consumed. It could easily be adapted, though, to simulate and report data for
devices that produce, consume and manage resources other than energy.

Three agents work together to run a simulation:

	SimulationClockAgent. This agent manages the simulation’s clock.
After it has been supplied with a start time, a stop time, and a clock-speed multiplier,
and it has been asked to start a simulation, it provides the current simulated time
in response to requests. If no stop time has been provided, the SimulationClockAgent
continues to manage the simulation clock until the agent is stopped. If no clock-speed
multiplier has been provided, the simulation clock runs at normal wall-clock speed.

	SimulationDriverAgent. Like MasterDriverAgent, this agent is a front-end manager for
device drivers. It handles get_point/set_point requests from other agents, and it
periodically “scrapes” and publishes each driver’s points. If a device driver has been
built to run under MasterDriverAgent, with a few minor modifications (detailed below)
it can be adapted to run under SimulationDriverAgent.

	SimulationAgent. This agent configures, starts, and reports on a simulation.
It furnishes a variety of configuration parameters to the other simulation agents,
starts the clock, subscribes to scraped driver points, and generates a CSV output file.

Four device drivers have been provided:

	storage (simstorage). The storage driver simulates an energy storage device (i.e., a
battery). When it receives a power dispatch value (positive to charge the battery,
negative to discharge it), it adjusts its charging behavior accordingly. Its reported
power doesn’t necessarily match the dispatch value, since (like an actual battery)
it stays within configured max-charge/max-discharge limits, and its power dwindles as its
state of charge approaches a full or empty state.

	pv (simpv). The PV driver simulates a photovoltaic array (solar panels), reporting
the quantity of solar power produced. Solar power is calculated as a function of (simulated)
time, using a data file of incident-sunlight metrics. A year’s worth of solar data has
been provided as a sample resource.

	load (simload). The load driver simulates the behavior of a power consumer such
as a building, reporting the quantity of power consumed. It gets its power metrics as a
function of (simulated) time from a data file of power readings. A year’s worth of
building-load data has been provided as a sample resource.

	meter (simmeter). The meter driver simulates the behavior of a circuit’s power meter.
This driver, as delivered, is actually just a shell of a simulated device. It’s able to
report power as a function of (simulated) time, but it has no built-in default logic for
deciding what particular power metrics to report.

Linux Installation

The following steps describe how to set up and run a simulation. They assume that
VOLTTRON / volttron and VOLTTRON / volttron-applications repositories have been
downloaded from github, and that Linux shell variables $VOLTTRON_ROOT and
$VOLTTRON_APPLICATIONS_ROOT point at the root directories of these repositories.

First, create a soft link to the applications directory from the volttron directory,
if that hasn’t been done already:

$ cd $VOLTTRON_ROOT
$ ln -s $VOLTTRON_APPLICATIONS_ROOT applications

With VOLTTRON running, load each simulation driver’s configuration into a “simulation.driver” config store:

$ export SIMULATION_DRIVER_ROOT=$VOLTTRON_ROOT/applications/kisensum/Simulation/SimulationDriverAgent

$ vctl config store simulation.driver simload.csv $SIMULATION_DRIVER_ROOT/simload.csv --csv
$ vctl config store simulation.driver devices/simload $SIMULATION_DRIVER_ROOT/simload.config

$ vctl config store simulation.driver simmeter.csv $SIMULATION_DRIVER_ROOT/simmeter.csv --csv
$ vctl config store simulation.driver devices/simmeter $SIMULATION_DRIVER_ROOT/simmeter.config

$ vctl config store simulation.driver simpv.csv $SIMULATION_DRIVER_ROOT/simpv.csv --csv
$ vctl config store simulation.driver devices/simpv $SIMULATION_DRIVER_ROOT/simpv.config

$ vctl config store simulation.driver simstorage.csv $SIMULATION_DRIVER_ROOT/simstorage.csv --csv
$ vctl config store simulation.driver devices/simstorage $SIMULATION_DRIVER_ROOT/simstorage.config

Install and start each simulation agent:

$ export SIMULATION_ROOT=$VOLTTRON_ROOT/applications/kisensum/Simulation
$ export VIP_SOCKET="ipc://$VOLTTRON_HOME/run/vip.socket"

$ python scripts/install-agent.py \
 --vip-identity simulation.driver \
 --tag simulation.driver \
 --agent-source $SIMULATION_ROOT/SimulationDriverAgent \
 --config $SIMULATION_ROOT/SimulationDriverAgent/simulationdriver.config \
 --force \
 --start

$ python scripts/install-agent.py \
 --vip-identity simulationclock \
 --tag simulationclock \
 --agent-source $SIMULATION_ROOT/SimulationClockAgent \
 --config $SIMULATION_ROOT/SimulationClockAgent/simulationclock.config \
 --force \
 --start

$ python scripts/install-agent.py \
 --vip-identity simulationagent \
 --tag simulationagent \
 --agent-source $SIMULATION_ROOT/SimulationAgent \
 --config $SIMULATION_ROOT/SimulationAgent/simulationagent.config \
 --force \
 --start

SimulationAgent Configuration Parameters

This section describes SimulationAgent’s configurable parameters. Each of these has a
default value and behavior, allowing the simulation to be run “out of the box” without
configuring any parameters.

	Type

	Param Name

	Data Type

	Default

	Comments

	General

	agent_id

	str

	simulation

	

	General

	heartbeat_period

	int sec

	5

	

	General

	sim_driver_list

	list of str

	[simload, simmeter, simpv, simstorage]

	Allowed keywords are simload, simmeter,
simpv, simstorage.

	Clock

	sim_start

	datetime str

	2017-02-02 13:00:00

	

	Clock

	sim_end

	datetime str

	None

	If None, sim doesn’t stop.

	Clock

	sim_speed

	float sec

	180.0

	This is a multiplier, e.g. 1 sec actual
time = 180 sec sim time.

	Load

	load_timestamp_column_header

	str

	local_date

	

	Load

	load_power_column_header

	str

	load_kw

	

	Load

	load_data_frequency_min

	int min

	15

	

	Load

	load_data_year

	str

	2015

	

	Load

	load_csv_file_path

	str

	~/repos/volttron-applications/kisensum/
Simulation/SimulationAgent/data/load_an
d_pv.csv

	~ and shell variables in the pathname
will be expanded. The file must exist.

	PV

	pv_panel_area

	float m2

	50.0

	

	PV

	pv_efficiency

	float 0.0-1.0

	0.75

	

	PV

	pv_data_frequency_min

	int min

	30

	

	PV

	pv_data_year

	str

	2015

	

	PV

	pv_csv_file_path

	str

	~/repos/volttron-applications/kisensum/
Simulation/SimulationAgent/data/nrel_pv
_readings.csv

	~ and shell variables in the pathname
will be expanded. The file must exist.

	Storage

	storage_soc_kwh

	float kWh

	30.0

	

	Storage

	storage_max_soc_kwh

	float kWh

	50.0

	

	Storage

	storage_max_charge_kw

	float kW

	15.0

	

	Storage

	storage_max_discharge_kw

	float kW

	12.0

	

	Storage

	storage_reduced_charge_soc
_threshold

	float 0.0-1.0

	0.80

	Charging will be reduced when SOC % >
this value.

	Storage

	storage_reduced_discharge_s
oc_threshold

	float 0.0-1.0

	0.20

	Discharging will be reduced when SOC %
< this value.

	Dispatch

	storage_setpoint_rule

	str keyword

	oscillation

	See below.

	Dispatch

	positive_dispatch_kw

	float kW >= 0.0

	15.0

	

	Dispatch

	negative_dispatch_kw

	float kW <= 0.0

	-15.0

	

	Dispatch

	go_positive_if_below

	float 0.0-1.0

	0.1

	

	Dispatch

	go_negative_if_above

	float 0.0-1.0

	0.9

	

	Report

	report_interval

	int seconds

	14

	

	Report

	report_file_path

	str

	$VOLTTRON_HOME/run/simulation_out.csv

	~ and shell variables in the pathname
will be expanded. If the file exists,
it will be overwritten.

The oscillation setpoint rule slowly oscillates between charging and discharging based on
the storage device’s state of charge (SOC):

If SOC < (``go_positive_if_below`` * ``storage_max_soc_kwh``):
 dispatch power = ``positive_dispatch_kw``

If SOC > (``go_negative_if_above`` * ``storage_max_soc_kwh``)
 dispatch power = ``negative_dispatch_kw``

Otherwise:
 dispatch power is unchanged from its previous value.

The alternate setpoint rule is used when storage_setpoint_rule has been configured with any
value other than oscillation. It simply charges at the dispatched charging value (subject to the
constraints of the other parameters, e.g. storage_max_discharge_kw):

dispatch power = ``positive_dispatch_kw``

Driver Parameters and Points

Load Driver

The load driver’s parameters specify how to look up power metrics in its data file.

	Type

	Name

	Data Type

	Default

	Comments

	Param/Point

	csv_file_path

	string

	
	This parameter must be
supplied by the agent.

	Param/Point

	timestamp_column_header

	string

	local_date

	

	Param/Point

	power_column_header

	string

	load_kw

	

	Param/Point

	data_frequency_min

	int

	15

	

	Param/Point

	data_year

	string

	2015

	

	Point

	power_kw

	float

	0.0

	

	Point

	last_timestamp

	datetime

	
	

Meter Driver

	Type

	Name

	Data Type

	Default

	Comments

	Point

	power_kw

	float

	0.0

	

	Point

	last_timestamp

	datetime

	
	

PV Driver

The PV driver’s parameters specify how to look up sunlight metrics in its data file,
and how to calculate the power generated from that sunlight.

	Type

	Name

	Data Type

	Default

	Comments

	Param/Point

	csv_file_path

	string

	
	This parameter must be
supplied by the agent.

	Param/Point

	max_power_kw

	float

	10.0

	

	Param/Point

	panel_area

	float

	50.0

	

	Param/Point

	efficiency

	float

	0.75

	

	Param/Point

	data_frequency_min

	int

	30

	

	Param/Point

	data_year

	string

	2015

	

	Point

	power_kw

	float

	0.0

	

	Point

	last_timestamp

	datetime

	
	

Storage Driver

The storage driver’s parameters describe the device’s power and SOC limits, its initial SOC,
and the SOC thresholds at which charging and discharging start to be reduced as its SOC
approaches a full or empty state. This reduced power is calculated as a straight-line
reduction: charging power is reduced in a straight line from reduced_charge_soc_threshold to
100% SOC, and discharging power is reduced in a straight line from reduced_discharge_soc_threshold
to 0% SOC.

	Type

	Name

	Data Type

	Default

	Comments

	Param/Point

	max_charge_kw

	float

	15.0

	

	Param/Point

	max_discharge_kw

	float

	15.0

	

	Param/Point

	max_soc_kwh

	float

	50.0

	

	Param/Point

	soc_kwh

	float

	25.0

	

	Param/Point

	reduced_charge_soc_threshold

	float

	0.8

	

	Param/Point

	reduced_discharge_soc_threshold

	float

	0.2

	

	Point

	dispatch_kw

	float

	0.0

	

	Point

	power_kw

	float

	0.0

	

	Point

	last_timestamp

	datetime

	
	

Working with the Sample Data Files

The Load and PV simulation drivers report power readings that are based on metrics
from sample data files. The software distribution includes sample Load and PV files
containing at least a year’s worth of building-load and sunlight data.

CSV files containing different data sets of load and PV data can be substituted by
specifying their paths in SimulationAgent’s configuration, altering its other parameters
if the file structures and/or contents are different.

Load Data File

load_and_pv.csv contains building-load and PV power readings at 15-minute increments
from 01/01/2014 - 12/31/2015. The data comes from a location in central Texas. The file’s
data columns are: utc_date, local_date, time_offset, load_kw, pv_kw.
The load driver looks up the row with a matching local_date and returns its load_kw value.

Adjust the following SimulationAgent configuration parameters to change how load power
is derived from the data file:

	Use load_csv_file_path to set the path of the sample data file

	Use load_data_frequency_min to set the frequency of the sample data

	Use load_data_year to set the year of the sample data

	Use load_timestamp_column_header to indicate the header name of the timestamp column

	Use load_power_column_header to indicate the header name of the power column

PV Data File

nrel_pv_readings.csv contains irradiance data at 30-minute increments from
01/01/2015 - 12/31/2015, downloaded from NREL’s National Solar Radiation Database,
https://nsrdb.nrel.gov. The file’s data columns are:
Year, Month, Day, Hour, Minute, DHI, DNI, Temperature. The PV driver looks up
the row with a matching date/time and uses its DHI (diffuse horizontal irradiance)
to calculate the resulting solar power produced:

power_kw = irradiance * panel_area * efficiency / elapsed_time_hrs

Adjust the following SimulationAgent configuration parameters to change how solar power
is derived from the data file:

	Use pv_csv_file_path to set the path of the sample data file

	Use pv_data_frequency_min to set the frequency of the sample data

	Use pv_data_year to set the year of the sample data

	Use pv_panel_area and pv_efficiency to indicate how to transform
an irradiance measurement in wh/m2 into a power reading in kw.

If a PV data file will be used that has a column structure which differs from the
one in the supplied sample, an adjustment may need to be made to the simpv driver software.

Running the Simulation

One way to monitor the simulation’s progress is to look at debug trace in VOLTTRON’s log output, for example:

2017-05-01 15:05:42,815 (simulationagent-1.0 9635) simulation.agent DEBUG: 2017-05-01 15:05:42.815484 Initializing drivers
2017-05-01 15:05:42,815 (simulationagent-1.0 9635) simulation.agent DEBUG: Initializing Load: timestamp_column_header=local_date, power_column_header=load_kw, data_frequency_min=15, data_year=2015, csv_file_path=/Users/robcalvert/repos/volttron-applications/kisensum/Simulation/SimulationAgent/data/load_and_pv.csv
2017-05-01 15:05:42,823 (simulationagent-1.0 9635) simulation.agent DEBUG: Initializing PV: panel_area=50, efficiency=0.75, data_frequency_min=30, data_year=2015, csv_file_path=/Users/robcalvert/repos/volttron-applications/kisensum/Simulation/SimulationAgent/data/nrel_pv_readings.csv
2017-05-01 15:05:42,832 (simulationagent-1.0 9635) simulation.agent DEBUG: Initializing Storage: soc_kwh=30.0, max_soc_kwh=50.0, max_charge_kw=15.0, max_discharge_kw=12.0, reduced_charge_soc_threshold = 0.8, reduced_discharge_soc_threshold = 0.2
2017-05-01 15:05:42,844 (simulationagent-1.0 9635) simulation.agent DEBUG: 2017-05-01 15:05:42.842162 Started clock at sim time 2017-02-02 13:00:00, end at 2017-02-02 16:00:00, speed multiplier = 180.0
2017-05-01 15:05:57,861 (simulationagent-1.0 9635) simulation.agent DEBUG: 2017-05-01 15:05:57.842164 Reporting at sim time 2017-02-02 13:42:00
2017-05-01 15:05:57,862 (simulationagent-1.0 9635) simulation.agent DEBUG: devices/simload/power_kw = 486.1
2017-05-01 15:05:57,862 (simulationagent-1.0 9635) simulation.agent DEBUG: devices/simpv/power_kw = -0.975
2017-05-01 15:05:57,862 (simulationagent-1.0 9635) simulation.agent DEBUG: devices/simstorage/dispatch_kw = 0.0
2017-05-01 15:05:57,862 (simulationagent-1.0 9635) simulation.agent DEBUG: devices/simstorage/last_timestamp = 2017-02-02 13:33:00
2017-05-01 15:05:57,862 (simulationagent-1.0 9635) simulation.agent DEBUG: devices/simstorage/power_kw = 0.0
2017-05-01 15:05:57,862 (simulationagent-1.0 9635) simulation.agent DEBUG: devices/simstorage/soc_kwh = 30.0
2017-05-01 15:05:57,862 (simulationagent-1.0 9635) simulation.agent DEBUG: net_power_kw = 485.125
2017-05-01 15:05:57,862 (simulationagent-1.0 9635) simulation.agent DEBUG: report_time = 2017-02-02 13:42:00
2017-05-01 15:05:57,862 (simulationagent-1.0 9635) simulation.agent DEBUG: Setting storage dispatch to 15.0 kW
2017-05-01 15:06:12,901 (simulationagent-1.0 9635) simulation.agent DEBUG: 2017-05-01 15:06:12.869471 Reporting at sim time 2017-02-02 14:30:00
2017-05-01 15:06:12,901 (simulationagent-1.0 9635) simulation.agent DEBUG: devices/simload/power_kw = 467.5
2017-05-01 15:06:12,901 (simulationagent-1.0 9635) simulation.agent DEBUG: devices/simpv/power_kw = -5.925
2017-05-01 15:06:12,901 (simulationagent-1.0 9635) simulation.agent DEBUG: devices/simstorage/dispatch_kw = 15.0
2017-05-01 15:06:12,901 (simulationagent-1.0 9635) simulation.agent DEBUG: devices/simstorage/last_timestamp = 2017-02-02 14:27:00
2017-05-01 15:06:12,901 (simulationagent-1.0 9635) simulation.agent DEBUG: devices/simstorage/power_kw = 15.0
2017-05-01 15:06:12,901 (simulationagent-1.0 9635) simulation.agent DEBUG: devices/simstorage/soc_kwh = 43.5
2017-05-01 15:06:12,901 (simulationagent-1.0 9635) simulation.agent DEBUG: net_power_kw = 476.575
2017-05-01 15:06:12,901 (simulationagent-1.0 9635) simulation.agent DEBUG: report_time = 2017-02-02 14:30:00
2017-05-01 15:06:12,901 (simulationagent-1.0 9635) simulation.agent DEBUG: Setting storage dispatch to 15.0 kW
2017-05-01 15:06:27,931 (simulationagent-1.0 9635) simulation.agent DEBUG: 2017-05-01 15:06:27.907951 Reporting at sim time 2017-02-02 15:15:00
2017-05-01 15:06:27,931 (simulationagent-1.0 9635) simulation.agent DEBUG: devices/simload/power_kw = 474.2
2017-05-01 15:06:27,931 (simulationagent-1.0 9635) simulation.agent DEBUG: devices/simpv/power_kw = -11.7
2017-05-01 15:06:27,932 (simulationagent-1.0 9635) simulation.agent DEBUG: devices/simstorage/dispatch_kw = 15.0
2017-05-01 15:06:27,932 (simulationagent-1.0 9635) simulation.agent DEBUG: devices/simstorage/last_timestamp = 2017-02-02 15:03:00
2017-05-01 15:06:27,932 (simulationagent-1.0 9635) simulation.agent DEBUG: devices/simstorage/power_kw = 5.362
2017-05-01 15:06:27,932 (simulationagent-1.0 9635) simulation.agent DEBUG: devices/simstorage/soc_kwh = 48.033
2017-05-01 15:06:27,932 (simulationagent-1.0 9635) simulation.agent DEBUG: net_power_kw = 467.862
2017-05-01 15:06:27,932 (simulationagent-1.0 9635) simulation.agent DEBUG: report_time = 2017-02-02 15:15:00
2017-05-01 15:06:27,932 (simulationagent-1.0 9635) simulation.agent DEBUG: Setting storage dispatch to -15.0 kW
2017-05-01 15:06:42,971 (simulationagent-1.0 9635) simulation.agent DEBUG: 2017-05-01 15:06:42.939181 Reporting at sim time 2017-02-02 16:00:00
2017-05-01 15:06:42,971 (simulationagent-1.0 9635) simulation.agent DEBUG: devices/simload/power_kw = 469.5
2017-05-01 15:06:42,971 (simulationagent-1.0 9635) simulation.agent DEBUG: devices/simpv/power_kw = -9.375
2017-05-01 15:06:42,971 (simulationagent-1.0 9635) simulation.agent DEBUG: devices/simstorage/dispatch_kw = -15.0
2017-05-01 15:06:42,971 (simulationagent-1.0 9635) simulation.agent DEBUG: devices/simstorage/last_timestamp = 2017-02-02 15:57:00
2017-05-01 15:06:42,971 (simulationagent-1.0 9635) simulation.agent DEBUG: devices/simstorage/power_kw = -12.0
2017-05-01 15:06:42,971 (simulationagent-1.0 9635) simulation.agent DEBUG: devices/simstorage/soc_kwh = 37.233
2017-05-01 15:06:42,971 (simulationagent-1.0 9635) simulation.agent DEBUG: net_power_kw = 448.125
2017-05-01 15:06:42,971 (simulationagent-1.0 9635) simulation.agent DEBUG: report_time = 2017-02-02 16:00:00
2017-05-01 15:06:42,971 (simulationagent-1.0 9635) simulation.agent DEBUG: Setting storage dispatch to -15.0 kW
2017-05-01 15:06:58,001 (simulationagent-1.0 9635) simulation.agent DEBUG: The simulation has ended.

Report Output

The SimulationAgent also writes a CSV output file so that simulation results can be reported
by spreadsheets, for example this graph of the simulated storage device following an
oscillating dispatch:

[image: ../../_images/1-simulation-out.jpg]

Using the Simulation Framework to Test a Driver

If you’re developing a VOLTTRON driver, and you intend to add it to the drivers
managed by MasterDriverAgent, then with a few tweaks, you can adapt it so that it’s testable from
this simulation framework.

As with drivers under MasterDriverAgent, your driver should be go in a .py module that implements
a Register class and an Interface class. In order to work within the simulation framework,
simulation drivers need to be adjusted as follows:

	Place the module in the interfaces directory under SimulationDriverAgent.

	The module’s Register class should inherit from SimulationRegister.

	The module’s Interface class should inherit from SimulationInterface.

	If the driver has logic that depends on time, get the simulated time by calling self.sim_time().

Add files with your driver’s config and point definitions, and load them into the config store:

$ vctl config store simulation.driver \
 yourdriver.csv \
 $VOLTTRON_ROOT/applications/kisensum/Simulation/SimulationDriverAgent/yourdriver.csv --csv
$ vctl config store simulation.driver \
 devices/yourdriver \
 $VOLTTRON_ROOT/applications/kisensum/Simulation/SimulationDriverAgent/yourdriver.config

To manage your driver from the SimulationAgent, first add the driver to the sim_driver_list in that
agent’s config:

"sim_driver_list": ["simload", "simpv", "simstorage", "youdriver"]

Then, if you choose, you can also revise SimulationAgent’s config and logic to scrape and report
your driver’s points, and/or send RPC requests to your driver.

For Further Information

If you have comments or questions about this simulation support,
please contact Rob Calvert at Kisensum, Inc.:

	(github) @rob-calvert

	(email) rob@kisensum.com

Open ADR

OpenADR (Automated Demand Response) is a standard for alerting and responding to the
need to adjust electric power consumption in response to fluctuations in grid demand.
OpenADR communications are conducted between Virtual Top Nodes (VTNs) and Virtual End Nodes (VENs).

In this implementation, a VOLTTRON agent, OpenADRVenAgent, is made available as a
VOLTTRON service. It acts as a VEN, communicating with its VTN via EiEvent
and EiReport services in conformance with a subset of the OpenADR 2.0b specification.

A VTN server has also been implemented, with source code in the kisensum/openadr
folder of the volttron-applications git repository. As has been described below,
it communicates with the VEN and provides a web user interface for defining and reporting on Open ADR events.

The OpenADR 2.0b specification (http://www.openadr.org/specification) is available
from the OpenADR Alliance. This implementation also generally follows the DR program
characteristics of the Capacity Program described in Section 9.2 of the OpenADR
Program Guide (http://www.openadr.org/assets/openadr_drprogramguide_v1.0.pdf).

The OpenADR Capacity Bidding program relies on a pre-committed agreement about the
VEN’s load shed capacity. This agreement is reached in a bidding process transacted
outside of the OpenADR interaction, typically with a long-term scope, perhaps a month or longer.
The VTN can “call an event,” indicating that a load-shed event should occur in
conformance with this agreement. The VTN indicates the level of load shedding
desired, when the event should occur, and for how long. The VEN responds with
an “optIn” acknowledgment. (It can also “optOut,” but since it has been
pre-committed, an “optOut” may incur penalties.)

	Reference Application
	Linux Installation

	ReferenceAppAgent Configuration Parameters

	Driver Parameters and Points

	VEN Configuration

	Running the Simulation

	For Further Information

	OpenADR VTN Server: User Guide
	Login Screen

	Overview Screen

	Create a Customer

	Create a Site

	Create a DR Program

	Create a DR Event

	OpenADR VTN Server: Installation and Configuration
	Get Source Code

	Install Python 3

	Use Pip to Install Third-Party Software

	Set up a Postgres Database

	Migrate the Database and Create an Initial Superuser

	Configure Rabbitmq

	Start the VTN Server

	Start Celery

	Configuration Parameters

Reference Application

This reference application for VOLTTRON’s OpenADR Virtual End Node (VEN) and its Simulation
Subsystem demonstrates interactions between the VOLTTRON VEN agent and simulated devices.
It employs a Virtual Top Node (VTN) server, demonstrating the full range of interaction and
communication in a VOLTTRON implementation of the OpenADR (Automated Demand Response) standard.

The simulation subsystem, described in more detail in Simulated Subsystem,
includes a set of device simulators and a clock that can run faster (or slower) than
real time (using ReferenceApp’s default configuration, the clock runs at normal speed).

Eight VOLTTRON agents work together to run this simulation:

	ReferenceAppAgent. This agent configures, starts, and reports on a simulation.
It furnishes a variety of configuration parameters to the other simulation agents,
starts the clock, subscribes to scraped driver points, and generates a CSV output file.
The ReferenceApp also serves as the mediator between the simulated device drivers and the VEN,
adjusting driver behavior (particularly the behavior of the “simstorage” battery) while
an OpenADR event is in progress, and aggregating and relaying relevant driver metrics
to the VEN for reporting to the VTN.

	SimulationClockAgent. This agent manages the simulation’s clock.
After it has been supplied with a start time, a stop time, and a clock-speed multiplier,
and it has been asked to start a simulation, it provides the current simulated time
in response to requests. If no stop time has been provided (this is the default behavior
while the ReferenceApp is managing the clock), the SimulationClockAgent runs the simulation
until the agent is stopped. If no clock-speed multiplier has been provided, the simulation
clock runs at normal wallclock speed.

	SimulationDriverAgent. Like MasterDriverAgent, this agent is a front-end manager for
device drivers. It handles get_point/set_point requests from other agents, and it
periodically “scrapes” and publishes each driver’s points. If a device driver has been
built to run under MasterDriverAgent, with a few minor modifications (detailed below)
it can be adapted to run under SimulationDriverAgent.

	ActuatorAgent. This agent manages write access to device drivers. Another agent
may request a scheduled time period, called a Task, during which it controls a device.

	OpenADRVenAgent. This agent implements an OpenADR Virtual End Node (VEN). It receives
demand-response event notifications from a Virtual Top Node (VTN), making the event
information available to the ReferenceAppAgent and other interested VOLTTRON agents.
It also reports metrics to the VTN based on information furnished by the ReferenceAppAgent.

	SQLHistorian. This agent, a “platform historian,” captures metrics reported by the
simulated devices, storing them in a SQLite database.

	VolttronCentralPlatform. This agent makes the platform historian’s device metrics available
for reporting by the VolttronCentralAgent.

	VolttronCentralAgent. This agent manages a web user interface that can produce graphical
displays of the simulated device metrics captured by the SQLHistorian.

Three simulated device drivers are used:

	storage (simstorage). The storage driver simulates an energy storage device (i.e., a
battery). When it receives a power dispatch value (positive to charge the battery,
negative to discharge it), it adjusts the storage unit’s charging behavior accordingly. Its reported
power doesn’t necessarily match the dispatch value, since (like an actual battery)
it stays within configured max-charge/max-discharge limits, and power dwindles as its
state of charge approaches a full or empty state.

	pv (simpv). The PV driver simulates a photovoltaic array (solar panels), reporting
the quantity of solar power produced. Solar power is calculated as a function of (simulated)
time, using a data file of incident-sunlight metrics. A year’s worth of solar data has
been provided as a sample resource.

	load (simload). The load driver simulates the behavior of a power consumer such
as a building, reporting the quantity of power consumed. It gets its power metrics as a
function of (simulated) time from a data file of power readings. A year’s worth of
building-load data has been provided as a sample resource.

Linux Installation

The following steps describe how to set up and run a simulation. They assume that the
VOLTTRON / volttron and VOLTTRON / volttron-applications repositories have been
downloaded from github.

Installing and running a simulation is walked through in the Jupyter notebook in
$VOLTTRON_ROOT/examples/JupyterNotebooks/ReferenceAppAgent.ipynb.
In order to run this notebook, install Jupyter and start the Jupyter server:

$ cd $VOLTTRON_ROOT
$ source env/bin/activate
$ pip install jupyter
$ jupyter notebook

By default, a browser will open with the Jupyter Notebook dashboard at http://localhost:8888.
Run the notebook by navigating in the Jupyter Notebook dashboard
to http://localhost:8888/tree/examples/JupyterNotebooks/ReferenceAppAgent.ipynb.

ReferenceAppAgent Configuration Parameters

This section describes ReferenceAppAgents’s configurable parameters. Each of these has a
default value and behavior, allowing the simulation to be run “out of the box” without
configuring any parameters.

	Type

	Param Name

	Data Type

	Default

	Comments

	General

	agent_id

	str

	reference_app

	

	General

	heartbeat_period

	int sec

	5

	

	General

	sim_driver_list

	list of str

	[simload, simpv, simstorage]

	Allowed keywords are simload, simmeter,
simpv, simstorage.

	General

	opt_type

	str

	optIn

	The ReferenceApp will automatically
“opt in” to each DR events it receives
from the VEN. Change this to “optOut”
if the ReferenceApp should opt out of
events instead.

	General

	report_interval_secs

	int sec

	30

	How often the ReferenceApp will send
telemetry to the VEN.

	General

	baseline_power_kw

	int kw

	500

	Power consumption (in kw) that will be
reported to the VTN as the baseline
power that would have been consumed
if there were no DR adjustment.

	Clock

	sim_start

	datetime str

	2017-04-30 13:00:00

	Simulated clock time when the simulation
begins.

	Clock

	sim_end

	datetime str

	None

	Simulated clock time when the simulation
stops. If None, the simulation runs
until the agent is stopped.

	Clock

	sim_speed

	float sec

	1.0

	Simulation clock speed. This is a
multiplier. To run a simulation in
which a minute of simulated time equals
a second of elapsed time, set this to
60.0.

	Load

	load_timestamp_column_header

	str

	local_date

	

	Load

	load_power_column_header

	str

	load_kw

	

	Load

	load_data_frequency_min

	int min

	15

	

	Load

	load_data_year

	str

	2015

	

	Load

	load_csv_file_path

	str

	~/repos/volttron-applications/kisensum/
ReferenceAppAgent/data/load_an
d_pv.csv

	~ and shell variables in the pathname
will be expanded. The file must exist.

	PV

	pv_panel_area

	float m2

	1000.0

	

	PV

	pv_efficiency

	float 0.0-1.0

	0.75

	

	PV

	pv_data_frequency_min

	int min

	30

	

	PV

	pv_data_year

	str

	2015

	

	PV

	pv_csv_file_path

	str

	~/repos/volttron-applications/kisensum/
ReferenceAppAgent/data/nrel_pv
_readings.csv

	~ and shell variables in the pathname
will be expanded. The file must exist.

	Storage

	storage_soc_kwh

	float kWh

	450.0

	

	Storage

	storage_max_soc_kwh

	float kWh

	500.0

	

	Storage

	storage_max_charge_kw

	float kW

	150.0

	

	Storage

	storage_max_discharge_kw

	float kW

	150.0

	

	Storage

	storage_reduced_charge_soc
_threshold

	float 0.0-1.0

	0.80

	Charging will be reduced when SOC % >
this value.

	Storage

	storage_reduced_discharge_s
oc_threshold

	float 0.0-1.0

	0.20

	Discharging will be reduced when SOC %
< this value.

	Dispatch

	positive_dispatch_kw

	float kW >= 0.0

	150.0

	

	Dispatch

	negative_dispatch_kw

	float kW <= 0.0

	-150.0

	

	Dispatch

	go_positive_if_below

	float 0.0-1.0

	0.1

	

	Dispatch

	go_negative_if_above

	float 0.0-1.0

	0.9

	

	Report

	report_interval

	int seconds

	15

	

	Report

	report_file_path

	str

	$VOLTTRON_HOME/run/simulation_out.csv

	~ and shell variables in the pathname
will be expanded. If the file exists,
it will be overwritten.

	Actuator

	actuator_id

	str

	simulation.actuator

	

	VEN

	venagent_id

	str

	venagent

	

Driver Parameters and Points

Load Driver

The load driver’s parameters specify how to look up power metrics in its data file.

	Type

	Name

	Data Type

	Default

	Comments

	Param/Point

	csv_file_path

	string

	
	This parameter must be
supplied by the agent.

	Param/Point

	timestamp_column_header

	string

	local_date

	

	Param/Point

	power_column_header

	string

	load_kw

	

	Param/Point

	data_frequency_min

	int

	15

	

	Param/Point

	data_year

	string

	2015

	

	Point

	power_kw

	float

	0.0

	

	Point

	last_timestamp

	datetime

	
	

PV Driver

The PV driver’s parameters specify how to look up sunlight metrics in its data file,
and how to calculate the power generated from that sunlight.

	Type

	Name

	Data Type

	Default

	Comments

	Param/Point

	csv_file_path

	string

	
	This parameter must be
supplied by the agent.

	Param/Point

	max_power_kw

	float

	10.0

	

	Param/Point

	panel_area

	float

	50.0

	

	Param/Point

	efficiency

	float

	0.75

	

	Param/Point

	data_frequency_min

	int

	30

	

	Param/Point

	data_year

	string

	2015

	

	Point

	power_kw

	float

	0.0

	

	Point

	last_timestamp

	datetime

	
	

Storage Driver

The storage driver’s parameters describe the device’s power and SOC limits, its initial SOC,
and the SOC thresholds at which charging and discharging start to be reduced as its SOC
approaches a full or empty state. This reduced power is calculated as a straight-line
reduction: charging power is reduced in a straight line from reduced_charge_soc_threshold to
100% SOC, and discharging power is reduced in a straight line from reduced_discharge_soc_threshold
to 0% SOC.

	Type

	Name

	Data Type

	Default

	Comments

	Param/Point

	max_charge_kw

	float

	15.0

	

	Param/Point

	max_discharge_kw

	float

	15.0

	

	Param/Point

	max_soc_kwh

	float

	50.0

	

	Param/Point

	soc_kwh

	float

	25.0

	

	Param/Point

	reduced_charge_soc_threshold

	float

	0.8

	

	Param/Point

	reduced_discharge_soc_threshold

	float

	0.2

	

	Point

	dispatch_kw

	float

	0.0

	

	Point

	power_kw

	float

	0.0

	

	Point

	last_timestamp

	datetime

	
	

VEN Configuration

The VEN may be configured according to its documentation here.

Running the Simulation

There are three main ways to monitor the ReferenceApp simulation’s progress.

One way is to look at debug trace in VOLTTRON’s log output, for example:

2018-01-08 17:41:30,333 (referenceappagent-1.0 23842) referenceapp.agent DEBUG: 2018-01-08 17:41:30.333260 Initializing drivers
2018-01-08 17:41:30,333 (referenceappagent-1.0 23842) referenceapp.agent DEBUG: Initializing Load: timestamp_column_header=local_date, power_column_header=load_kw, data_frequency_min=15, data_year=2015, csv_file_path=/home/ubuntu/repos/volttron-applications/kisensum/ReferenceAppAgent/data/load_and_pv.csv
2018-01-08 17:41:30,379 (referenceappagent-1.0 23842) referenceapp.agent DEBUG: Initializing PV: panel_area=50.0, efficiency=0.75, data_frequency_min=30, data_year=2015, csv_file_path=/home/ubuntu/repos/volttron-applications/kisensum/ReferenceAppAgent/data/nrel_pv_readings.csv
2018-01-08 17:41:30,423 (referenceappagent-1.0 23842) referenceapp.agent DEBUG: Initializing Storage: soc_kwh=25.0, max_soc_kwh=50.0, max_charge_kw=15.0, max_discharge_kw=15.0, reduced_charge_soc_threshold = 0.8, reduced_discharge_soc_threshold = 0.2
2018-01-08 17:41:32,331 (referenceappagent-1.0 23842) referenceapp.agent DEBUG: 2018-01-08 17:41:32.328390 Reporting at sim time 2018-01-08 17:41:31.328388
2018-01-08 17:41:32,331 (referenceappagent-1.0 23842) referenceapp.agent DEBUG: net_power_kw = 0
2018-01-08 17:41:32,331 (referenceappagent-1.0 23842) referenceapp.agent DEBUG: report_time = 2018-01-08 17:41:31.328388
2018-01-08 17:41:32,338 (referenceappagent-1.0 23842) referenceapp.agent DEBUG: Setting storage dispatch to 15.0 kW
2018-01-08 17:41:46,577 (referenceappagent-1.0 23842) referenceapp.agent DEBUG: Received event: ID=4, status=far, start=2017-12-01 18:40:55+00:00, end=2017-12-02 18:37:56+00:00, opt_type=none, all params={"status": "far", "signals": "{\"null\": {\"intervals\": {\"0\": {\"duration\": \"PT23H57M1S\", \"uid\": \"0\", \"payloads\": {}}}, \"currentLevel\": null, \"signalID\": null}}", "event_id": "4", "start_time": "2017-12-01 18:40:55+00:00", "creation_time": "2018-01-08 17:41:45.774548", "opt_type": "none", "priority": 1, "end_time": "2017-12-02 18:37:56+00:00"}
2018-01-08 17:41:46,577 (referenceappagent-1.0 23842) referenceapp.agent DEBUG: Sending an optIn response for event ID 4
2018-01-08 17:41:46,583 (referenceappagent-1.0 23842) referenceapp.agent DEBUG: 2018-01-08 17:41:46.576130 Reporting at sim time 2018-01-08 17:41:46.328388
2018-01-08 17:41:46,583 (referenceappagent-1.0 23842) referenceapp.agent DEBUG: devices/simload/power_kw = 519.3
2018-01-08 17:41:46,583 (referenceappagent-1.0 23842) referenceapp.agent DEBUG: devices/simpv/power_kw = -17.175
2018-01-08 17:41:46,583 (referenceappagent-1.0 23842) referenceapp.agent DEBUG: devices/simstorage/dispatch_kw = 15.0
2018-01-08 17:41:46,584 (referenceappagent-1.0 23842) referenceapp.agent DEBUG: devices/simstorage/power_kw = 15.0
2018-01-08 17:41:46,584 (referenceappagent-1.0 23842) referenceapp.agent DEBUG: devices/simstorage/soc_kwh = 25.025
2018-01-08 17:41:46,584 (referenceappagent-1.0 23842) referenceapp.agent DEBUG: net_power_kw = 49.755
2018-01-08 17:41:46,584 (referenceappagent-1.0 23842) referenceapp.agent DEBUG: report_time = 2018-01-08 17:41:46.328388
2018-01-08 17:41:46,596 (referenceappagent-1.0 23842) referenceapp.agent DEBUG: Setting storage dispatch to 15.0 kW
2018-01-08 17:41:48,617 (referenceappagent-1.0 23842) referenceapp.agent DEBUG: Received event: ID=4, status=completed, start=2017-12-01 18:40:55+00:00, end=2017-12-02 18:37:56+00:00, opt_type=optIn, all params={"status": "completed", "signals": "{\"null\": {\"intervals\": {\"0\": {\"duration\": \"PT23H57M1S\", \"uid\": \"0\", \"payloads\": {}}}, \"currentLevel\": null, \"signalID\": null}}", "event_id": "4", "start_time": "2017-12-01 18:40:55+00:00", "creation_time": "2018-01-08 17:41:45.774548", "opt_type": "optIn", "priority": 1, "end_time": "2017-12-02 18:37:56+00:00"}
2018-01-08 17:42:59,563 (referenceappagent-1.0 23842) referenceapp.agent DEBUG: 2018-01-08 17:42:59.559264 Reporting at sim time 2018-01-08 17:42:59.328388
2018-01-08 17:42:59,563 (referenceappagent-1.0 23842) referenceapp.agent DEBUG: devices/simload/power_kw = 519.3
2018-01-08 17:42:59,563 (referenceappagent-1.0 23842) referenceapp.agent DEBUG: devices/simpv/power_kw = -17.175
2018-01-08 17:42:59,563 (referenceappagent-1.0 23842) referenceapp.agent DEBUG: devices/simstorage/dispatch_kw = 15.0
2018-01-08 17:42:59,563 (referenceappagent-1.0 23842) referenceapp.agent DEBUG: devices/simstorage/power_kw = 15.0
2018-01-08 17:42:59,563 (referenceappagent-1.0 23842) referenceapp.agent DEBUG: devices/simstorage/soc_kwh = 25.238
2018-01-08 17:42:59,563 (referenceappagent-1.0 23842) referenceapp.agent DEBUG: net_power_kw = 49.755
2018-01-08 17:42:59,563 (referenceappagent-1.0 23842) referenceapp.agent DEBUG: report_time = 2018-01-08 17:42:59.328388
2018-01-08 17:42:59,578 (referenceappagent-1.0 23842) referenceapp.agent DEBUG: Setting storage dispatch to -1.05158333333 kW
2018-01-08 17:43:01,596 (referenceappagent-1.0 23842) referenceapp.agent DEBUG: 2018-01-08 17:43:01.589877 Reporting at sim time 2018-01-08 17:43:01.328388
2018-01-08 17:43:01,596 (referenceappagent-1.0 23842) referenceapp.agent DEBUG: devices/simload/power_kw = 519.3
2018-01-08 17:43:01,596 (referenceappagent-1.0 23842) referenceapp.agent DEBUG: devices/simpv/power_kw = -17.175
2018-01-08 17:43:01,597 (referenceappagent-1.0 23842) referenceapp.agent DEBUG: devices/simstorage/dispatch_kw = -1.05158333333
2018-01-08 17:43:01,597 (referenceappagent-1.0 23842) referenceapp.agent DEBUG: devices/simstorage/power_kw = -1.051
2018-01-08 17:43:01,597 (referenceappagent-1.0 23842) referenceapp.agent DEBUG: devices/simstorage/soc_kwh = 25.236
2018-01-08 17:43:01,597 (referenceappagent-1.0 23842) referenceapp.agent DEBUG: net_power_kw = 33.704
2018-01-08 17:43:01,597 (referenceappagent-1.0 23842) referenceapp.agent DEBUG: report_time = 2018-01-08 17:43:01.328388
2018-01-08 17:43:01,598 (referenceappagent-1.0 23842) referenceapp.agent DEBUG: Reporting telemetry: {'start_time': '2018-01-08 17:42:31.598889+00:00', 'baseline_power_kw': '50', 'current_power_kw': '33.704', 'end_time': '2018-01-08 17:43:01.598889+00:00'}
2018-01-08 17:43:01,611 (referenceappagent-1.0 23842) referenceapp.agent DEBUG: Setting storage dispatch to -1.0515 kW

Another way to monitor progress is to launch the VolttronCentral web UI, which can be found
at http://127.0.0.1:8080/vc/index.html.
Here, in addition to checking agent status, one can track metrics reported by the simulated device drivers.
For example, these graphs track the simstorage battery’s power consumption and state of charge over time. The abrupt
shift from charging to discharging happens because an OpenADR event has just started:

[image: ../../../_images/2-simulation-out.png]
A third way to monitor progress, while there is an active DR event,
is to examine the event’s graph in the VTN web UI. This displays the VEN’s power consumption,
which is an aggregate of the consumption reported by each simulated device driver:

[image: ../../../_images/3-simulation-out.png]

Report Output

The ReferenceAppAgent also writes a CSV output file so that simulation results can be reported
in a spreadsheet, for example this graph of the simulated storage device:

[image: ../../../_images/4-simulation-out.png]

For Further Information

If you have comments or questions about this simulation support,
please contact Rob Calvert or Nate Hill at Kisensum, Inc.:

	(github) @rob-calvert

	(email) rob@kisensum.com

	(github) @hillrnate

	(github) nate@kisensum.com

OpenADR VTN Server: User Guide

Warning

This VTN server implementation is incomplete, and is not supported by the VOLTTRON core team. For
information about its status including known issues, refer to the VTN Server Configuration docs.

This guide assumes that you have a valid user account to access and log in to the VTN application website.

Login Screen

In order to begin using the VTN application, navigate to \http://yourhostname*<or>*ip:8000/vtn.

[image: ../../../_images/vtn_login_screen.png]

Overview Screen

Once logged in for the first time, this is the ‘Overview’ screen.

[image: ../../../_images/vtn_overview_screen.png]
In order to begin scheduling DR events, one must first create at least one customer,
with at least one associated site/VEN, and at least one sort of demand response (DR) program.
A VTN will not be able to tell a VEN about DR Events if the VTN doesn’t know about the VEN.
A VTN knows about a VEN after a Site for the VEN has been created in the VTN application,
and the VEN has contacted the VTN.

The rest of this document describes how to set up Customers, Sites, DR Programs,
and DR Events, as well as how to export event data.

Create a Customer

Creating a Customer can be done by clicking on ‘Add Customer’ on the Overview screen.

The standard interface for adding a Customer:

[image: ../../../_images/vtn_add_customer_screen.png]
Customers will appear on the Overview screen after they have been added.

[image: ../../../_images/vtn_overview_screen_with_customers.png]

Create a Site

At first, Customers will not have any Sites. To add a Site for a Customer,
click on the Customer’s name from the Overview screen, and then click ‘Create New Site’.

[image: ../../../_images/vtn_create_new_site.png]
On the Create Site screen, DR Programs will appear in the ‘DR Programs’
multiple-select box if they have been added. This will be discussed soon.
Selecting one or more DR Programs here means, when creating a DR Event with a
specified DR Program, the site will be an available option for the given DR Event.

A site’s ‘VEN Name’ is permanent. In order to change a Site’s VEN Name, the Site must be deleted and re-added.

[image: ../../../_images/vtn_site_detail_screen.png]
After creating a Site for a given customer, the Site will appear offline until
communication has been established with the Site’s VEN within a configurable
interval (default is 15 minutes).

[image: ../../../_images/vtn_offline_site.png]
Note: When editing a Site, you will notice an extra field on the Screen labeled ‘VEN ID’.
This field is assigned automatically upon creation of a Site and is used by the VTN
to communicate with and identify the VEN.

[image: ../../../_images/vtn_site_with_ven_id.png]

Create a DR Program

DR Programs must be added via the Admin interface. DR Programs can be added with
or without associated sites. In other words, a DR Program can be created with no sites,
and sites can be added later, either by Creating/Editing a Site and selecting
the DR Program, or by Creating/Editing the DR Program and adding the Site.

[image: ../../../_images/vtn_create_program.png]

Create a DR Event

Once a Customer (with at least one site) and a DR Program have been added, a DR Event
can be created. This is done by navigating to the Overview screen and clicking ‘Add DR Event’.

On the Add DR Event screen, the first step is to select a DR Program from the drop-down menu.
Once a DR Program is selected, the ‘Sites’ multi-select box will auto-populate with
the Sites that are associated with that DR Program.

Note that the Notification Time is the absolute soonest time that a VEN will be
notified of a DR Event. VENs will not ‘know’ about DR Events that apply to them
until they have ‘polled’ the VTN after the Notification Time.

[image: ../../../_images/vtn_create_event.png]
Active DR events are displayed on the Overview screen. DR Events are considered active
if they have not been canceled and if they have not been completed.

[image: ../../../_images/vtn_event_overview.png]
Exporting event telemetry to a .csv is available on the Report tab. In the case of
this VTN and its associated VENs, the telemetry that will be reported include
baseline power (kw) and measured power (kw).

[image: ../../../_images/vtn_export_report_data.png]

OpenADR VTN Server: Installation and Configuration

The OpenADR VTN server is a partial implementation of the OpenADR VTN specification developed by Kisensum for
interoperability with the VOLTTRON core VEN agent implementation. The VTN server resides in the VOLTTRON applications
repository, and is not supported by the VOLTTRON core team.

Known issues: The Kisensum implementation of the VTN server does not currently include support for registration,
including QueryRegistration requests, create and cancel party requests, etc. Additionally, it does not implement opt-in
behavior as specified by OpenADR. Finally, it has been found that requests containing empty basic authentication will
be served a 403 error, while requests with no authentication will proceed to the correct endpoint normally.

The Kisensum VTN server is a Django application written in Python 3 and utilizing a Postgres database.

Warning

If you are planning to install your VTN server on the same system that contains your VOLTTRON instance
and you are using RabbitMQ with VOLTTRON, you will need to set up a new instance of RabbitMQ for VTN.
In production, the VTN server should be on a different device than VOLTTRON, and as such it is recommended
that your VTN server is in it’s own VM or on it’s own machine. If you still wish to set up two instances
of RabbitMQ on the same system, please refer to https://www.rabbitmq.com for further details.

Get Source Code

To install the VTN server, first get the code by cloning volttron-applications from github
and checking out the openadr software.

$ cd ~/repos
$ git clone https://github.com/volttron/volttron-applications
$ cd volttron-applications
$ git checkout master

Install Python 3

After installing Python3 on the server, configure an openadr virtual environment:

$ sudo pip install virtualenvwrapper
$ mkdir ~/.virtualenvs (if it doesn’t exist already)

Edit ~/.bashrc and add these lines:

export WORKON_HOME=$HOME/.virtualenvs
export PROJECT_HOME=$HOME/repos/volttron-applications/kisensum/openadr
source virtualenvwrapper.sh

Create the openadr project’s virtual environment:

$ source ~/.bashrc
$ mkvirtualenv -p /usr/bin/python3 openadr
$ setvirtualenvproject openadr ~/repos/volttron-applications/kisensum/openadr
$ workon openadr

From this point on, use workon openadr to operate within the openadr virtual environment.

Create a local site override for Django’s base settings file as follows. First,
create ~/.virtualenvs/openadr/.settings in a text editor, adding the following line to it:

openadr.settings.site

Then, edit ~/.virtualenvs/openadr/postactivate, adding the following lines:

PROJECT_PATH=`cat "$VIRTUAL_ENV/$VIRTUALENVWRAPPER_PROJECT_FILENAME"`
PROJECT_ROOT=`dirname $PROJECT_PATH`
PROJECT_NAME=`basename $PROJECT_PATH`
SETTINGS_FILENAME=".settings"
ENV_FILENAME=".env_postactivate.sh"

Load the default DJANGO_SETTINGS_MODULE from a .settings
file in the django project root directory.
export OLD_DJANGO_SETTINGS_MODULE=$DJANGO_SETTINGS_MODULE
if [-f $VIRTUAL_ENV/$SETTINGS_FILENAME]; then
 export DJANGO_SETTINGS_MODULE=`cat "$VIRTUAL_ENV/$SETTINGS_FILENAME"`
fi

Finally, create $PROJECT_HOME/openadr/openadr/openadr/settings/site.py, which holds overrides
to base.py, the Django base settings file. At a minimum, this file should contain the following:

from .base import *
ALLOWED_HOSTS = [‘*’]

A more restrictive ALLOWED_HOSTS setting (e.g. ‘ki-evi.com’) should be used in place of ‘*’ if it is known.

Use Pip to Install Third-Party Software

$ workon openadr
$ pip install -r requirements.txt

Set up a Postgres Database

Install postgres.

Create a postgres user.

Create a postgres database named openadr.

(The user name, user password, and database name must match what is in
$PROJECT_HOME/openadr/openadr/settings/base.py or the override settings
in $PROJECT_HOME/openadr/openadr/settings/local.py.)

You may have to edit /etc/postgresql/9.5/main/pg_hba.conf to be ‘md5’ authorization
for ‘local’.

Migrate the Database and Create an Initial Superuser

$ workon openadr
$ cd openadr
$ python manage.py migrate
$ python manage.py createsuperuser

This is the user that will be used to login to the VTN application for the first time,
and will be able to create other users and groups.

Configure Rabbitmq

rabbitmq is used by celery, which manages the openadr server’s periodic tasks.

Install and run rabbitmq as follows (for further information, see http://www.rabbitmq.com/download.html):

$ sudo apt-get install rabbitmq-server

Start the rabbitmq server if it isn’t already running:

$ sudo rabbitmq-server -detached (note the single dash)

Start the VTN Server

$ workon openadr
$ cd openadr
$ python manage.py runserver 0.0.0.0:8000

Start Celery

$ workon openadr
$ cd openadr
$ celery -A openadr worker -B

Configuration Parameters

The VTN supports the following configuration parameters, which can be found in
base.py and overriden in site.py:

	Parameter

	Example

	Description

	VTN_ID

	“vtn01”

	OpenADR ID of this virtual top node. Virtual end
nodes must know this VTN_ID to be able to
communicate with the VTN.

	ONLINE_INTERVAL_MINUTES

	15

	The amount of time, in minutes, that determines how
long the VTN will wait until displaying a given VEN
offline. In other words, if the VTN does not receive
any communication from a given VEN within
ONLINE_INTERVAL_MINUTES minutes, the VTN will display
said VEN as offline.

	GRAPH_TIMECHUNK_SECONDS

	360

	The VTN displays DR Event graph data by averaging
individual VENs’ telemetry by GRAPH_TIMECHUNK_SECONDS
seconds. This value should be adjusted according to
how often VENs are sending the VTN telemetry.

MatLab Integration

Overview:

Matlab-VOLTTRON integration allows Matlab applications to receive
data from devices and send control commands to change points on
those devices.

DrivenMatlabAgent in VOLTTRON allows this interaction by using ZeroMQ
sockets to communicate with the Matlab application.

Data Flow Architecture:

[image: Architecture]

Installation steps for system running Matlab:

	Install python. Suggested 3.6.

	Install pyzmq (tested with version 15.2.0)
Follow steps at: https://github.com/zeromq/pyzmq

	Install Matlab (tested with R2015b)

	Start Matlab and set the python path.
In the Matlab command window set the python path with pyversion:

>> pyversion python.exe

	To test that the python path has been set correctly type following in
the Matlab command window. Matlab shoud print the python path with version
information.

>> pyversion

	To test that the pyzmq library is installed correctly and is accessible
from python inside Matlab, type the following in Matlab command window
and it should show pyzmq version installed.

>> py.zmq.pyzmq_version()

	Copy example.m from volttron/examples/ExampleMatlabApplication/matlab
to your desired folder.

Run and test Matlab VOLTTRON Integration:

Assumptions

	Device driver agent is already developed

Installation:

	Install VOLTTRON on a VM or different system than the one
running Matlab.

Follow link: http://volttron.readthedocs.io/en/develop/install.html

	Add subtree volttron-applications under volttron/applications by using
the following command:

git subtree add --prefix applications https://github.com/VOLTTRON/volttron-applications.git develop --squash

Configuration

	Copy example configuration file applications/pnnl/DrivenMatlabAgent/config_waterheater to volltron/config.

	Change config_url and data_url in the new config file to the
ipaddress of machine running Matlab. Keep the same port numbers.

	Change campus, building and unit (device) name in the config file.

	Open example.m and change following line:

matlab_result = '{"commands":{"Zone1":[["temperature",27]],"Zone2":[["temperature",28]]}}';

Change it to include correct device name and point names in the format:

'{"commands":{"device1":[["point1",value1]],"device2":[["point2",value2]]}}';

Steps to test integration:

	Start VOLTTRON

	Run Actuator

	Run device driver agent

	Run DrivenMatlabAgent with the new config file

	Run example.m in Matlab

Now whenever the device driver publishes the state of devices listed in the
config file of DrivenMatlabAgent, DrivenMatlabAgent will send it to Matlab
application and receive commands to send to devices.

Resources

http://www.mathworks.com/help/matlab/getting-started_buik_wp-3.html

Change Log

This section includes individual documents describing important changes to platform components, such as the RabbitMQ
message bus implementation. For information on specific changes, please refer to the corresponding document.

	Scalability Setup
	Core Platform

	Socket types

	Subsystems

	Core Services

	Tweaking tests

	Hardware profiling

	Scenarios

	Impact on Platform
	Improvements Based on Results

	Scalability Planning
	Goals

	Test framework
	Test Devices

	Launcher Script

	Shutdown Script

	Performance Metrics Agent

	Additional Benefits

	Running a simple test

	Real Driver Benchmarking
	Setup
	Target setup

	Platform setup

	Launch Test

	Version History
	VOLTTRON 1.0 – 1.2

	VOLTTRON 2.0

	VOLTTRON 3.0

	VOLTTRON 4.0

	VOLTTRON 5.0

	VOLTTRON 6.0

	VOLTTRON 7.0rc1
	Python3 Upgrade

	RabbitMQ Message Bus

	Config store secured

	Known Issues which will be dealt with for the final release:

	VOLTTRON 7.0 Full Release
	Known Issues

	Upgrading Existing Deployments
	VOLTTRON 7
	From 6.x

Scalability Setup

Core Platform

	VIP router - how many messages per second can the router pass

	A single agent can connect and send messages to itself as quickly as
possible

	Repeat but with multiple agents

	Maybe just increase the number of connected but inactive agents to
test lookup times

	Inject faults to test impact of error handling

	Agents

	How many can be started on a single platform?

	How does it affect memory?

	How is CPU affected?

Socket types

	inproc - lockless, copy-free, fast

	ipc - local, reliable, fast

	tcp - remote, less reliable, possibly much slower

	test with different

	latency

	throughput

	jitter (packet delay variation)

	error rate

Subsystems

	ping - simple protocol which can provide baseline for other
subsystems

	RPC - requests per second

	Pub/Sub - messages per second

	How does it scale as subscribers are added

Core Services

	historian

	How many records can be processed per second?

	drivers

	BACnet drivers use a virtual BACnet device as a proxy to do device
communication. Currently there is no known upper limit to the number
of devices that can be handled at once. The BACnet proxy opens a
single UDP port to do all communication. In theory the upper limit is
the point when UDP packets begin to be lost due to network
congestion. In practice we have communicated with ~190 devices at
once without issue.

	ModBUS opens up a TCP connection for each communication with a device
and then closes it when finished. This has the potential to hit the
limit for open file descriptors available to the master driver
process. (Before, each driver would run in a separate process, but
that quickly uses up sockets available to the platform.) To protect
from this the master driver process raises the total allowed open
sockets to the hard limit. The number of concurrently open sockets is
throttled at 80% of the max sockets. On most Linux systems this is
about 3200. Once that limit is hit additional device communications
will have to wait in line for a socket to become available.

Tweaking tests

	Configure message size

	Perform with/without encryption

	Perform with/without authentication

Hardware profiling

	Perform tests on hardware of varying resources: Raspberry Pi, NUC,
Desktop, etc.

Scenarios

	One platform controlling large numbers of devices

	One platform managing large numbers of platforms

	Peer communication (Hardware demo type setup)

Impact on Platform

What is the impact of a large number of devices being scraped on a
platform (and how does it scale with the hardware)?

	Historians

	At what point are historians unable to keep up with the traffic being
generated?

	Is the bottleneck the sqlite cache or the specific implementation
(SQLite, MySQL)

	Do historian queues grow so large we have a memory problem?

	Large number of devices with small number of points vs small number
of devices with large number of points

	How does a large message flow affect the router?

	Examine effects of the watermark (does increasing help)

	Response time for vctl commands (for instance: status)

	Affect on round trip times (Agent A sends message, Agent B replies,
Agent A receives reply)

	Do messages get lost at some point (EAgain error)?

	What impact does security have? Are things significantly faster in
developer-mode? (Option to turn off encryption, no longer available)

	
Regulation Agent

Every 10 minutes there is an action the master node determines.
Duty cycle cannot be faster than that but is set to 2 seconds for
simulation.

Some clients miss duty cycle signal

Mathematically each node solves ODE.

Model notes accept switch on/off from master.

Bad to lose connection to clients in the field

Chaos router to introduce delays and dropped packets.

MasterNode needs to have vip address of clients.

Experiment capture historian - not listening to devices, just capturing
results

	Go straight to db to see how far behind other historians

	Improvements Based on Results

	Scalability Planning
	Goals

	Test framework
	Test Devices

	Launcher Script

	Shutdown Script

	Performance Metrics Agent

	Additional Benefits

	Running a simple test

	Real Driver Benchmarking
	Setup
	Target setup

	Platform setup

	Launch Test

Improvements Based on Results

Here is the list of scalability improvements so far:

Reduced the overhead of the base historian by removing unneeded writes
to the backup db. Significantly improved performance on low end devices.

Added options to reduce the number of publishes per device per scrape.
Common cases where per point publishes and breadth first topics are not
needed the driver can be configured only publish the depth first “all”
or any combination per device the operator needs. This dramatically
decreases the platform hardware requirements while increasing the number
of devices that can be scraped.

Added support for staggering device scrapes to reduce CPU load during a
scrape.

Further ideas:

Determine if how we use ZMQ is reducing its efficiency.

Remove an unneeded index in historian backup db.

Increase backup db page count.

Scalability Planning

Goals

	Determine the limits of the number of devices that can be interacted
with via a single Volttron platform.

	Determine how scaling out affects the rate at which devices are
scraped. i.e. How long from the first device scrape to the last?

	Determine the effects of socket throttling in the master driver on
the performance of Modbus device scraping.

	Measure total memory consumption of the Master Driver Agent at scale.

	Measure how well the base history agent and one or more of the
concrete agents handle a large amount of data.

	Determine the volume of messages that can be achieved on the pubsub
before the platform starts rejecting them.

Test framework

Test Devices

Simple, command line configured virtual devices to test against in both
Modbus and BACnet flavors. Devices should create 10 points to read that
generate either random or easily predictable (but not necessarily
constant) data. Process should be completely self contained.

Test devices will be run on remote hosts from the Volttron test
deployment.

Launcher Script

	The script will be configurable as to the number and type of devices
to launch.

	The script will be configurable as to the hosts to launch virtual
devices on.

	The script (probably a fabric script) will push out code for and
launch one or more test devices on one or more machines for the
platform to scrape.

	The script will generate all of the master driver configuration files
to launch the master driver.

	The script may launch the master driver.

	The script may launch any other agents used to measure performance.

Shutdown Script

	The script (probably the same fabric script run with different
options) will shutdown all virtual drivers on the network.

	The script may shutdown the master driver.

	The script may shutdown any related agents.

Performance Metrics Agent

This agent will track the publishes by the different drivers and
generate data in some form to indicate:

	Total time for all devices to be scraped

	Any devices that were not successfully scraped.

	Performance of the message bus.

Additional Benefits

Most parts of a test bed run should be configurable. If a user wanted to
verify that the Master Driver worked, for instance, they could run the
test bed with only a few virtual device to confirm that the platform is
working correctly.

Running a simple test

You will need 2 open terminals to run this test. (3 if you want to run
the platform in it’s own terminal)

Checkout the feature/scalability branch.

Start the platform.

Go to the volttron/scripts/scalability-testing directory in two
different terminals. (Both with the environment activated)

In one terminal run:

python config_builder.py --count=1500 --scalability-test --scalability-test-iterations=6 fake fake18.csv localhost

Change the path to fake.csv as needed.

(Optional) After it finishes run:

./launch_fake_historian.sh

to start the null historian.

In a separate terminal run:

./launch_scalability_drivers.sh

to start the scalability test.

This will emulate the scraping of 1500 devices with 18 points each 6
times, log the timing, and quit.

Redirecting the driver log output to a file can help improve
performance. Testing should be done with and without the null historian.

Currently only the depth first all is published by drivers in this
branch. Uncomment the other publishes in driver.py to test out full
publishing. fake.csv has 18 points.

Optionally you can run two listener agents from the volttron/scripts
directory in two more terminals with the command:

./launch_listener.sh

and rerun the test to see the how it changes the performance.

Real Driver Benchmarking

Scalability testing using actual MODBUS or BACnet drivers can be done
using the virtual device applications in the
scripts/scalability-testing/virtual-drivers/ directory. The
configuration of the master driver and launching of these virtual
devices on a target machine can be done automatically with fabric.

Setup

This requires two computers to run: One for the VOLTTRON platform to run
the tests on (“the platform”) and a target machine to host the virtual
devices (“the target”).

Target setup

The target machine must have the VOLTTRON source with the
feature/scalability branch checked out and bootstrapped. Make a note of
the directory of the VOLTTRON code.

Platform setup

With the VOLTTRON environment activated install fabric.

pip install fabric

Edit the file scripts/scalability-testing/test_settings.py as needed.

	virtual_device_host (string) - Login name and IP address of the
target machine. This is used to remotely start and stop virtual
devices via ssh. “volttron@10.0.0.1”

	device_types - map of driver types to tuple of the device count and
registry config to use for the virtual devices. Valid device types
are “bacnet” and “modbus”.

	volttron_install - location of volttron code on the target.

To configure the driver on the platform and launch the virtual devices
on the target run

fab deploy_virtual_devices

When prompted enter the password for the target machine. Upon completion
virtual devices will be running on the target and configuration files
written for the master driver.

Launch Test

If your test includes virtual BACnet devices be sure to configure and
launch the BACnet Proxy before launching the scalability driver test.

(Optional)

./launch_fake_historian.sh

to start the null historian.

In a separate terminal run:

./launch_scalability_drivers.sh

to start the scalability test.

To stop the virtual devices run

fab stop_virtual_devices

and enter the user password when prompted.

Version History

VOLTTRON 1.0 – 1.2

	Agent execution platform

	Message bus

	Modbus and BACnet drivers

	Historian

	Data logger

	Device scheduling

	Device actuation

	Multi-node communication

	Weather service

VOLTTRON 2.0

	Advanced Security Features

	Guaranteed resource allocation to agents using execution contracts

	Signing and verification of agent packaging

	Agent mobility

	Admin can send agents to another platform

	Agent can request to move

	Enhanced command framework

VOLTTRON 3.0

	Modularize Data Historian

	Modularize Device Drivers

	Secure and accountable communication using the VIP

	Web Console for Monitoring and Administering VOLTTRON Deployments

VOLTTRON 4.0

	Documentation moved to ReadTheDocs

	VOLTTRON Configuration Wizard

	Configuration store to dynamically configure agents

	Aggregator agent for aggregating topics

	More reliable remote install mechanism

	UI for device configuration

	Automatic registration of VOLTTRON instances with management agent

VOLTTRON 5.0

	Tagging service for attaching metadata to topics for simpler retrieval

	Message bus performance improvement

	Multi-platform publish/subscribe for simpler coordination across platforms

	Drivers contributed back for SEP 2.0 and ChargePoint EV

VOLTTRON 6.0

	Maintained backward compatibility with communication between zmq and rmq deployments.

	Added DarkSky Weather Agent

	Web Based Additions

	Added CSR support for multiplatform communication

	Added SSL support to the platform for secure communication

	Backported SSL support to zmq based deployments.

	Upgraded VC to use the platform login.

	Added docker support to the test environment for easier Rabbitmq testing.

	Updated volttron-config (vcfg) to support both RabbitMQ and ZMQ including https based instances.

	Added test support for RabbitMQ installations of all core agents.

	Added multiplatform (zmq and rmq based platform) testing.

	Integrated RabbitMQ documentation into the core documentation.

VOLTTRON 7.0rc1

Python3 Upgrade

	Update libraries to appropriate and compatible versions

	String handling efficiency

	Encode/Decode of strings has been simplified and centralized

	Added additional test cases for frame serialization in ZMQ

	Syntax updates such difference in handling exceptions, dictionaries, sorting lists, pytest markers etc.

	Made bootstrap process simpler

	Resolved gevent monkey patch issues when using third party libraries

RabbitMQ Message Bus

	
	Client code for integrating non-VOLTTRON applications with the message bus

	available at: https://github.com/VOLTTRON/external-clients-for-rabbitmq

	Includes support for MQTT, non-VOLTTRON Python, and Java-based RabbitMQ
clients

Config store secured

	Agents can prevent other agents from modifying their configuration store entry

Known Issues which will be dealt with for the final release:

	Python 3.7 has conflicts with some libraries such as gevent

	The VOLTTRON Central agent is not fully integrated into Python3

	CFFI library has conflicts on the Raspian OS which interferes with bootstrapping

VOLTTRON 7.0 Full Release

This is a full release of the 7.0 version of VOLTTRON which has been refactored to work with Python3. This release
incorporates community feedback from the release candidate as well as new contributions and features.
Major new features and highlights since the release candidate include:

	Added secure agent user feature which allows agents to be launched as a user separate from the platform. This
protects the platform against malformed or malicious agents accessing platform level files

	Added a driver to interface with the Ecobee smart thermostat and make data available to agents on the platform

	Updated VOLTTRON Central UI to work with Python3

	Added web support to authenticate remote VOLTTRON ZMQ message bus-based connections

	Updated ZMQ-based multiplatform RPC with Python 3

	To reduce installation size and complexity, fewer services are installed by default

	MasterDriver dependencies are not installed by default during bootstrap. To use MasterDriver, please use the
following command:

python3 bootstrap.py --driver

	Web dependencies are not installed by default during bootstrap. To use the MasterWeb service, please use the
following command:

python3 bootstrap.py --web

	Added initial version of test cases for volttron-cfg (vcfg) utility

	On all arm-based systems, libffi is now a required dependency, this is reflected in the installation instructions

	On arm-based systems, Raspbian >= 10 or Ubuntu >= 18.04 is required

	Updated examples and several contributed features to Python 3

	Inclusion of docker in test handling for databases

	A new /gs endpoint to access platform services without using Volttron Central through Json-RPC

	A new SCPAgent to transfer files between two remote systems

Known Issues

	Continued documentation updates to ensure correctness

	Rainforest Eagle driver is not yet upgraded to Python3

	A bug in the Modbus TK library prevents creating connections from 2 different masters to a single slave.

	BACnet Proxy Agent and BACnet auto configuration scripts require the version of BACPypes installed in the virtual
environment of VOLTTRON to be version 0.16.7. We have pinned it to version 0.16.7 since it does not work properly in
later versions of BACPypes.

	VOLTTRON 7.0 code base is not fully tested in Ubuntu 20.04 LTS so issues with this combination have not been addressed

Upgrading Existing Deployments

It is often recommended that users upgrade to the latest stable release of VOLTTRON for their deployments. Major
releases include helpful new features, bug fixes, and other improvements. Please see the guides below for upgrading
your existing deployment to the latest version.

VOLTTRON 7

VOLTTRON 7 includes a migration from Python 2.7 to Python 3.6, as well as security features, new agents, and more.

From 6.x

From version 6.x to 7.x important changes have been made to the virtual environment as well as VOLTTRON_HOME. Take
the following steps to upgrade:

Note

The following instructions are for debian based Linux distributions (including Ubuntu and Linux Mint). For Red Hat,
Arch or other distributions, please use the corresponding package manager and commands.

	Install the VOLTTRON dependencies using the following command:

sudo apt install python3-dev python3-venv libffi-dev

Note

This assumes you have existing 6.x dependencies installed. If you’re unsure, refer to the
platform installation instructions.

	Remove your existing virtual environment and run the bootstrap process.

To remove the virtual environment, change directory to the VOLTTRON project root and run the rm command with the
-r option.

cd $VOLTTRON_ROOT/
rm -r env

Now you can use the included bootstrap.py script to set up the new virtual environment. For information on how
to install dependencies for VOLTTRON integrations, run the script with the --help option.

python3 bootstrap.py <options>

Note

Because the new environment uses a different version of Python, using the --force option with bootstrap will
throw errors. Please follow the above instructions when upgrading.

	Make necessary VOLTTRON_HOME changes

Warning

It is possible that some existing agents may continue to operate after the platform upgrade, however this is not
true for most agents, and it is recommended to reinstall the agent to ensure the agent wheel is compatible and
that there are no side-effects.

	Reinstall Agents

It is recommended to reinstall all agents that exist on the platform to ensure the agent wheel is compatible with
Python3 VOLTTRON. In many cases, the configurations for version 7.x are backwards compatible with 6.x, requiring no
additional changes from the user. For information on individual agent configs, please read through that agent’s
documentation.

	Modify Agent Directories

Note

Modifying the agent directories is only necessary if not reinstalling agents.

To satisfy the security requirements of the secure agents feature included with VOLTTRON 7, changes have been made
to the agent directory structure.

	Keystore.json

The agent keystore file has been moved from the agent’s agent-data directory to the agent’s dist-info
directory. To move the file, change directory to the agents install directory and use the mv command.

cd $VOLTTRON_HOME/agents/<agent uuid>/<agent dir>
mv <agent>agent.agent-data/keystore.json <agent>agent.dist-info/

	Historian Database

Historians with a local database file have had their default location change do the data directory inside of
the agent’s install directory. It is recommended to relocate the file from $VOLTTRON_HOME/data to the agent’s
data directory. Alternatively, a path can be used if the user the agent is run as (the VOLTTRON user for
deployments not using the secure agents feature) has read-write permissions for the file.

mv $VOLTTRON_HOME/data/historian.sqlite $VOLTTRON_HOME/agents/<agent uuid>/<agent>/data

Warning

If not specifying a path to the database, the database will be created in the agent’s data directory. This
is important if removing or uninstalling the historian as the database file will be removed when the agent
dir is cleaned up. Copy the database file to a temporary directory, reinstall the agent, and move the
database file back to the agent’s data directory

	Forward Historian

For deployments which are passing data from 6.x VOLTTRON to the latest 7.x release, some users will experience
timeout issues with the Forward Historian. By updating the 6.x deployment to the latest from the releases/6.x
branch, and restarting the platform and forwarder, this issue can be resolved.

. env/bin/activate
./stop-volttron
git pull
git checkout releases/6.x
./start-volttron
vctl start <forward id or tag>

 Python Module Index

 v

 		 	

 		
 v	

 	[image: -]
 	
 volttron	

 	
 	
 volttron.platform	

 	
 	
 volttron.platform.agent	

 	
 	
 volttron.platform.agent.bacnet_proxy_reader	

 	
 	
 volttron.platform.agent.base	

 	
 	
 volttron.platform.agent.base_aggregate_historian	

 	
 	
 volttron.platform.agent.base_historian	

 	
 	
 volttron.platform.agent.base_market_agent	

 	
 	
 volttron.platform.agent.base_market_agent.buy_sell	

 	
 	
 volttron.platform.agent.base_market_agent.error_codes	

 	
 	
 volttron.platform.agent.base_market_agent.market_registration	

 	
 	
 volttron.platform.agent.base_market_agent.offer	

 	
 	
 volttron.platform.agent.base_market_agent.point	

 	
 	
 volttron.platform.agent.base_market_agent.poly_line	

 	
 	
 volttron.platform.agent.base_market_agent.poly_line_factory	

 	
 	
 volttron.platform.agent.base_market_agent.registration_manager	

 	
 	
 volttron.platform.agent.base_market_agent.rpc_proxy	

 	
 	
 volttron.platform.agent.base_simulation_integration	

 	
 	
 volttron.platform.agent.base_simulation_integration.base_sim_integration	

 	
 	
 volttron.platform.agent.base_tagging	

 	
 	
 volttron.platform.agent.cron	

 	
 	
 volttron.platform.agent.driven	

 	
 	
 volttron.platform.agent.exit_codes	

 	
 	
 volttron.platform.agent.green	

 	
 	
 volttron.platform.agent.known_identities	

 	
 	
 volttron.platform.agent.matching	

 	
 	
 volttron.platform.agent.math_utils	

 	
 	
 volttron.platform.agent.multithreading	

 	
 	
 volttron.platform.agent.sched	

 	
 	
 volttron.platform.agent.utils	

 	
 	
 volttron.platform.async_	

 	
 	
 volttron.platform.auth	

 	
 	
 volttron.platform.certs	

 	
 	
 volttron.platform.dbutils	

 	
 	
 volttron.platform.dbutils.basedb	

 	
 	
 volttron.platform.dbutils.crateutils	

 	
 	
 volttron.platform.dbutils.mongoutils	

 	
 	
 volttron.platform.dbutils.mysqlfuncts	

 	
 	
 volttron.platform.dbutils.sqlitefuncts	

 	
 	
 volttron.platform.dbutils.sqlutils	

 	
 	
 volttron.platform.deployment	

 	
 	
 volttron.platform.jsonapi	

 	
 	
 volttron.platform.jsonrpc	

 	
 	
 volttron.platform.keystore	

 	
 	
 volttron.platform.lib	

 	
 	
 volttron.platform.lib.inotify	

 	
 	
 volttron.platform.lib.inotify.green	

 	
 	
 volttron.platform.lib.kwonlyargs	

 	
 	
 volttron.platform.lib.prctl	

 	
 	
 volttron.platform.messaging	

 	
 	
 volttron.platform.messaging.headers	

 	
 	
 volttron.platform.messaging.health	

 	
 	
 volttron.platform.messaging.socket	

 	
 	
 volttron.platform.messaging.topics	

 	
 	
 volttron.platform.messaging.utils	

 	
 	
 volttron.platform.scheduling	

 	
 	
 volttron.platform.store	

 	
 	
 volttron.platform.storeutils	

 	
 	
 volttron.platform.vip	

 	
 	
 volttron.platform.vip.agent	

 	
 	
 volttron.platform.vip.agent.compat	

 	
 	
 volttron.platform.vip.agent.connection	

 	
 	
 volttron.platform.vip.agent.core	

 	
 	
 volttron.platform.vip.agent.decorators	

 	
 	
 volttron.platform.vip.agent.dispatch	

 	
 	
 volttron.platform.vip.agent.errors	

 	
 	
 volttron.platform.vip.agent.example	

 	
 	
 volttron.platform.vip.agent.results	

 	
 	
 volttron.platform.vip.agent.subsystems	

 	
 	
 volttron.platform.vip.agent.subsystems.auth	

 	
 	
 volttron.platform.vip.agent.subsystems.base	

 	
 	
 volttron.platform.vip.agent.subsystems.channel	

 	
 	
 volttron.platform.vip.agent.subsystems.configstore	

 	
 	
 volttron.platform.vip.agent.subsystems.health	

 	
 	
 volttron.platform.vip.agent.subsystems.heartbeat	

 	
 	
 volttron.platform.vip.agent.subsystems.hello	

 	
 	
 volttron.platform.vip.agent.subsystems.peerlist	

 	
 	
 volttron.platform.vip.agent.subsystems.ping	

 	
 	
 volttron.platform.vip.agent.subsystems.pubsub	

 	
 	
 volttron.platform.vip.agent.subsystems.query	

 	
 	
 volttron.platform.vip.agent.subsystems.rmq_pubsub	

 	
 	
 volttron.platform.vip.agent.subsystems.rpc	

 	
 	
 volttron.platform.vip.agent.subsystems.volttronfncs	

 	
 	
 volttron.platform.vip.agent.subsystems.web	

 	
 	
 volttron.platform.vip.agent.utils	

 	
 	
 volttron.platform.vip.externalrpcservice	

 	
 	
 volttron.platform.vip.green	

 	
 	
 volttron.platform.vip.keydiscovery	

 	
 	
 volttron.platform.vip.proxy_zmq_router	

 	
 	
 volttron.platform.vip.pubsubservice	

 	
 	
 volttron.platform.vip.pubsubwrapper	

 	
 	
 volttron.platform.vip.rmq_connection	

 	
 	
 volttron.platform.vip.router	

 	
 	
 volttron.platform.vip.routingservice	

 	
 	
 volttron.platform.vip.socket	

 	
 	
 volttron.platform.vip.tracking	

 	
 	
 volttron.platform.vip.zmq_connection	

 	
 	
 volttron.platform.vpm	

 	
 	
 volttron.platform.web.discovery	

 	
 	
 volttron.utils	

 	
 	
 volttron.utils.docs	

 	
 	
 volttron.utils.frame_serialization	

 	
 	
 volttron.utils.frozendict	

 	
 	
 volttron.utils.persistance	

 	
 	
 volttron.utils.prompt	

 	
 	
 volttron.utils.rmq_config_params	

 	
 	
 volttron.utils.rmq_mgmt	

 	
 	
 volttron.utils.rmq_setup	

 	
 	
 volttron.utils.valid_uuid	

Index

 A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | J
 | K
 | L
 | M
 | N
 | O
 | P
 | Q
 | R
 | S
 | T
 | U
 | V
 | W
 | X
 | Y
 | Z

A

 	
 	AbsolutePathFileReloader (class in volttron.utils)

 	AbstractDrivenAgent (class in volttron.platform.agent.driven)

 	add() (volttron.platform.agent.base_market_agent.poly_line.PolyLine method)

 	(volttron.platform.auth.AuthFile method)

 	(volttron.platform.keystore.KnownHostsStore method)

 	(volttron.platform.vip.pubsubservice.ProtectedPubSubTopics method)

 	add_bus() (volttron.platform.vip.pubsubwrapper.PubSubWrapper method)

 	add_capabilities() (volttron.platform.auth.AuthEntry method)

 	add_on_channel_close_callback() (volttron.platform.vip.rmq_connection.RMQConnection method)

 	add_peer() (volttron.platform.vip.agent.subsystems.PeerList method)

 	(volttron.platform.vip.agent.subsystems.peerlist.PeerList method)

 	add_rabbitmq_agent() (volttron.platform.vip.pubsubservice.PubSubService method)

 	add_status_callback() (volttron.platform.vip.agent.subsystems.Health method)

 	(volttron.platform.vip.agent.subsystems.health.Health method)

 	add_tags() (volttron.platform.agent.base_tagging.BaseTaggingService method)

 	add_timing_data_to_header() (in module volttron.platform.agent.base_historian)

 	add_topic_tags() (volttron.platform.agent.base_tagging.BaseTaggingService method)

 	Address (class in volttron.platform.vip.socket)

 	address (volttron.platform.vip.agent.connection.Connection attribute)

 	ADDRESS (volttron.platform.vip.agent.subsystems.Channel attribute)

 	(volttron.platform.vip.agent.subsystems.channel.Channel attribute)

 	admin_pwd (volttron.utils.rmq_config_params.RMQConfig attribute)

 	admin_user (volttron.utils.rmq_config_params.RMQConfig attribute)

 	Again

 	Agent (class in volttron.platform.vip.agent)

 	Agent.Subsystems (class in volttron.platform.vip.agent)

 	AggregateHistorian (class in volttron.platform.agent.base_aggregate_historian)

 	
 	allow() (volttron.platform.vip.agent.subsystems.RPC method)

 	(volttron.platform.vip.agent.subsystems.rpc.RPC method)

 	amqp_port (volttron.utils.rmq_config_params.RMQConfig attribute)

 	amqp_port_ssl (volttron.utils.rmq_config_params.RMQConfig attribute)

 	annotate() (in module volttron.platform.vip.agent.decorators)

 	annotations() (in module volttron.platform.vip.agent.decorators)

 	append_external_certificate() (volttron.platform.certs.Certs method)

 	approve_authorization_failure() (volttron.platform.auth.AuthService method)

 	approve_csr() (volttron.platform.certs.Certs method)

 	args (volttron.platform.agent.sched.Event attribute)

 	as_dict() (volttron.platform.messaging.health.Status method)

 	as_json() (volttron.platform.messaging.health.Status method)

 	assertempty() (in module volttron.platform.lib.kwonlyargs)

 	async_sync() (volttron.utils.persistance.PersistentDict method)

 	AsyncBackupDatabase (class in volttron.platform.agent.base_historian)

 	AsyncCall (class in volttron.platform.async_)

 	Auth (class in volttron.platform.vip.agent.subsystems)

 	(class in volttron.platform.vip.agent.subsystems.auth)

 	authenticate() (volttron.platform.auth.AuthService method)

 	AuthEntry (class in volttron.platform.auth)

 	AuthEntryInvalid

 	AuthException

 	AuthFile (class in volttron.platform.auth)

 	AuthFileEntryAlreadyExists

 	AuthFileIndexError

 	AuthFileUserIdAlreadyExists

 	AuthService (class in volttron.platform.auth)

B

 	
 	backup_new_data() (volttron.platform.agent.base_historian.AsyncBackupDatabase method)

 	(volttron.platform.agent.base_historian.BackupDatabase method)

 	BackupDatabase (class in volttron.platform.agent.base_historian)

 	BACnetReader (class in volttron.platform.agent.bacnet_proxy_reader)

 	BaseAgent (class in volttron.platform.agent.base)

 	BaseConnection (class in volttron.platform.vip)

 	BaseHistorian (class in volttron.platform.agent.base_historian)

 	BaseHistorianAgent (class in volttron.platform.agent.base_historian)

 	BaseJSONStore (class in volttron.platform.keystore)

 	BaseQueryHistorianAgent (class in volttron.platform.agent.base_historian)

 	BaseRouter (class in volttron.platform.vip.green)

 	(class in volttron.platform.vip.router)

 	BaseSimIntegration (class in volttron.platform.agent.base_simulation_integration.base_sim_integration)

 	BaseTaggingService (class in volttron.platform.agent.base_tagging)

 	BasicAgent (class in volttron.platform.vip.agent)

 	BasicCore (class in volttron.platform.vip.agent.core)

 	batch() (volttron.platform.jsonrpc.Dispatcher method)

 	(volttron.platform.vip.agent.subsystems.RPC method)

 	(volttron.platform.vip.agent.subsystems.rpc.RPC method)

 	
 	batch_call() (volttron.platform.jsonrpc.Dispatcher method)

 	baz() (volttron.platform.vip.agent.example.ExampleAgent method)

 	between() (volttron.platform.agent.base_market_agent.poly_line.PolyLine static method)

 	bind() (volttron.platform.vip.socket.Address method)

 	(volttron.platform.vip.zmq_connection.ZMQConnection method)

 	build() (volttron.platform.messaging.health.Status static method)

 	build_agent() (in module volttron.platform.vip.agent.utils)

 	build_agent_connection() (volttron.utils.rmq_mgmt.RabbitMQMgmt method)

 	build_capabilities_field() (volttron.platform.auth.AuthEntry static method)

 	build_connection() (in module volttron.platform.vip.agent.utils)

 	build_connection_param() (volttron.utils.rmq_mgmt.RabbitMQMgmt method)

 	build_remote_connection_param() (volttron.utils.rmq_mgmt.RabbitMQMgmt method)

 	build_rmq_address() (volttron.utils.rmq_mgmt.RabbitMQMgmt method)

 	build_router_connection() (volttron.utils.rmq_mgmt.RabbitMQMgmt method)

 	build_shovel_connection() (volttron.utils.rmq_mgmt.RabbitMQMgmt method)

 	build_vip_address_string() (in module volttron.platform)

 	bulk_insert() (volttron.platform.dbutils.basedb.DbDriver method)

 	BUY (volttron.platform.agent.base_market_agent.offer.Offer attribute)

C

 	
 	ca_cert() (volttron.platform.certs.Certs method)

 	ca_db_file() (volttron.platform.certs.Certs method)

 	ca_exists() (volttron.platform.certs.Certs method)

 	ca_serial_file() (volttron.platform.certs.Certs method)

 	call() (volttron.platform.jsonrpc.Dispatcher method)

 	(volttron.platform.vip.agent.connection.Connection method)

 	(volttron.platform.vip.agent.subsystems.RPC method)

 	(volttron.platform.vip.agent.subsystems.rpc.RPC method)

 	cancel() (volttron.platform.agent.sched.Event method)

 	canceled (volttron.platform.agent.sched.Event attribute)

 	ccw() (volttron.platform.agent.base_market_agent.poly_line.PolyLine static method)

 	cert() (volttron.platform.certs.Certs method)

 	cert_exists() (volttron.platform.certs.Certs method)

 	cert_file() (volttron.platform.certs.Certs method)

 	CertError

 	certificate_data (volttron.utils.rmq_config_params.RMQConfig attribute)

 	Certs (class in volttron.platform.certs)

 	CertWrapper (class in volttron.platform.certs)

 	Channel (class in volttron.platform.vip.agent.subsystems)

 	(class in volttron.platform.vip.agent.subsystems.channel)

 	check_for_config_link() (in module volttron.platform.storeutils)

 	check_for_recursion() (in module volttron.platform.storeutils)

 	check_rabbit_status() (in module volttron.utils.rmq_setup)

 	classmethod() (volttron.platform.vip.agent.decorators.dualmethod method)

 	close() (volttron.platform.agent.base_historian.BackupDatabase method)

 	(volttron.platform.dbutils.basedb.DbDriver method)

 	(volttron.utils.persistance.PersistentDict method)

 	close_connection() (volttron.platform.vip.rmq_connection.RMQConnection method)

 	(volttron.platform.vip.zmq_connection.ZMQConnection method)

 	close_external_connections() (volttron.platform.vip.routingservice.RoutingService method)

 	closed (volttron.platform.agent.base.BaseAgent attribute)

 	closing() (in module volttron.platform.dbutils.basedb)

 	cmp() (in module volttron.platform.agent.base_market_agent.poly_line)

 	collect_aggregate() (volttron.platform.agent.base_aggregate_historian.AggregateHistorian method)

 	(volttron.platform.dbutils.basedb.DbDriver method)

 	(volttron.platform.dbutils.mysqlfuncts.MySqlFuncts method)

 	(volttron.platform.dbutils.sqlitefuncts.SqlLiteFuncts method)

 	collect_aggregate_data() (volttron.platform.agent.base_aggregate_historian.AggregateHistorian method)

 	combine() (volttron.platform.agent.base_market_agent.poly_line_factory.PolyLineFactory static method)

 	command() (volttron.platform.agent.driven.Results method)

 	commit() (volttron.platform.dbutils.basedb.DbDriver method)

 	commodity() (volttron.platform.agent.base_market_agent.offer.Offer method)

 	compare() (volttron.platform.agent.base_market_agent.poly_line.PolyLine static method)

 	CompatPubSub (class in volttron.platform.vip.agent.compat)

 	compute_aggregation_time_slice() (volttron.platform.agent.base_aggregate_historian.AggregateHistorian static method)

 	compute_next_collection_time() (volttron.platform.agent.base_aggregate_historian.AggregateHistorian static method)

 	ConfigStore (class in volttron.platform.vip.agent.subsystems)

 	(class in volttron.platform.vip.agent.subsystems.configstore)

 	
 	ConfigStoreService (class in volttron.platform.store)

 	configure() (volttron.platform.agent.base_aggregate_historian.AggregateHistorian method)

 	(volttron.platform.agent.base_historian.BaseHistorianAgent method)

 	connect() (volttron.platform.vip.agent.dispatch.Signal method)

 	(volttron.platform.vip.rmq_connection.RMQConnection method)

 	(volttron.platform.vip.socket.Address method)

 	(volttron.platform.vip.zmq_connection.ZMQConnection method)

 	connect_remote_platform() (volttron.platform.vip.agent.subsystems.Auth method)

 	(volttron.platform.vip.agent.subsystems.auth.Auth method)

 	connected (volttron.platform.vip.agent.core.Core attribute)

 	(volttron.platform.vip.agent.core.RMQCore attribute)

 	(volttron.platform.vip.agent.core.ZMQCore attribute)

 	connected_since (volttron.platform.vip.agent.connection.Connection attribute)

 	Connection (class in volttron.platform.vip.agent.connection)

 	ConnectionError

 	contains_none() (volttron.platform.agent.base_market_agent.poly_line.PolyLine method)

 	context (volttron.platform.messaging.health.Status attribute)

 	ConversionMapper (class in volttron.platform.agent.driven)

 	copy() (volttron.platform.messaging.headers.Headers method)

 	(volttron.platform.messaging.socket.Headers method)

 	Core (class in volttron.platform.vip.agent.core)

 	counter() (in module volttron.platform.vip.agent.results)

 	create() (volttron.platform.vip.agent.subsystems.Channel method)

 	(volttron.platform.vip.agent.subsystems.channel.Channel method)

 	create_aggregate_store() (volttron.platform.dbutils.basedb.DbDriver method)

 	(volttron.platform.dbutils.mysqlfuncts.MySqlFuncts method)

 	(volttron.platform.dbutils.sqlitefuncts.SqlLiteFuncts method)

 	create_csr() (volttron.platform.certs.Certs method)

 	create_event_handlers() (volttron.platform.vip.agent.core.Core method)

 	create_exchange() (volttron.utils.rmq_mgmt.RabbitMQMgmt method)

 	create_from_x509_subject() (volttron.platform.certs.Subject static method)

 	create_queue() (volttron.utils.rmq_mgmt.RabbitMQMgmt method)

 	create_requests_ca_bundle() (volttron.platform.certs.Certs method)

 	create_root_ca() (volttron.platform.certs.Certs method)

 	create_schema() (in module volttron.platform.dbutils.crateutils)

 	create_signed_cert_files() (volttron.platform.certs.Certs method)

 	create_user() (volttron.utils.rmq_mgmt.RabbitMQMgmt method)

 	create_user_with_permissions() (volttron.utils.rmq_mgmt.RabbitMQMgmt method)

 	create_vhost() (volttron.utils.rmq_mgmt.RabbitMQMgmt method)

 	cron() (in module volttron.platform.scheduling)

 	csr_pending_file() (volttron.platform.certs.Certs method)

 	current_simulation_step (volttron.platform.vip.agent.subsystems.FNCS attribute)

 	(volttron.platform.vip.agent.subsystems.volttronfncs.FNCS attribute)

 	current_values (volttron.platform.vip.agent.subsystems.FNCS attribute)

 	(volttron.platform.vip.agent.subsystems.volttronfncs.FNCS attribute)

 	cursor() (volttron.platform.dbutils.basedb.DbDriver method)

 	curve() (volttron.platform.agent.base_market_agent.offer.Offer method)

D

 	
 	DbDriver (class in volttron.platform.dbutils.basedb)

 	decode_peer() (in module volttron.platform.vip.pubsubwrapper)

 	delay() (volttron.platform.agent.sched.Queue method)

 	delay_onstart_signal (volttron.platform.vip.agent.core.BasicCore attribute)

 	(volttron.platform.vip.agent.core.Core attribute)

 	delay_running_event_set (volttron.platform.vip.agent.core.BasicCore attribute)

 	(volttron.platform.vip.agent.core.Core attribute)

 	delete() (volttron.platform.store.ConfigStoreService method)

 	(volttron.platform.vip.agent.subsystems.ConfigStore method)

 	(volttron.platform.vip.agent.subsystems.configstore.ConfigStore method)

 	delete_authorization_failure() (volttron.platform.auth.AuthService method)

 	delete_config() (volttron.platform.store.ConfigStoreService method)

 	delete_connection() (volttron.utils.rmq_mgmt.RabbitMQMgmt method)

 	delete_csr() (volttron.platform.certs.Certs method)

 	delete_default() (volttron.platform.vip.agent.subsystems.ConfigStore method)

 	(volttron.platform.vip.agent.subsystems.configstore.ConfigStore method)

 	delete_exchange() (volttron.utils.rmq_mgmt.RabbitMQMgmt method)

 	delete_multiplatform_parameter() (volttron.utils.rmq_mgmt.RabbitMQMgmt method)

 	delete_parameter() (volttron.utils.rmq_mgmt.RabbitMQMgmt method)

 	delete_policy() (volttron.utils.rmq_mgmt.RabbitMQMgmt method)

 	delete_queue() (volttron.utils.rmq_mgmt.RabbitMQMgmt method)

 	delete_remote_cert() (volttron.platform.certs.Certs method)

 	delete_user() (volttron.utils.rmq_mgmt.RabbitMQMgmt method)

 	delete_users_in_bulk() (volttron.utils.rmq_mgmt.RabbitMQMgmt method)

 	delete_vhost() (volttron.utils.rmq_mgmt.RabbitMQMgmt method)

 	deny_authorization_failure() (volttron.platform.auth.AuthService method)

 	
 	deny_csr() (volttron.platform.certs.Certs method)

 	deserialize() (volttron.platform.jsonrpc.Dispatcher method)

 	deserialize_frames() (in module volttron.utils.frame_serialization)

 	determinant() (volttron.platform.agent.base_market_agent.poly_line.PolyLine static method)

 	dict (volttron.platform.messaging.headers.Headers attribute)

 	(volttron.platform.messaging.socket.Headers attribute)

 	disable() (volttron.platform.vip.tracking.Tracker method)

 	disconnect() (volttron.platform.vip.agent.dispatch.Signal method)

 	(volttron.platform.vip.rmq_connection.RMQConnection method)

 	(volttron.platform.vip.zmq_connection.ZMQConnection method)

 	disconnect_external_instances() (volttron.platform.vip.routingservice.RoutingService method)

 	DiscoveryError, [1]

 	DiscoveryInfo (class in volttron.platform.web.discovery)

 	dispatch() (volttron.platform.jsonrpc.Dispatcher method)

 	Dispatcher (class in volttron.platform.jsonrpc)

 	doc_inherit (in module volttron.utils.docs)

 	DocInherit (class in volttron.utils.docs)

 	drop_peer() (volttron.platform.vip.agent.subsystems.PeerList method)

 	(volttron.platform.vip.agent.subsystems.peerlist.PeerList method)

 	drop_schema() (in module volttron.platform.dbutils.crateutils)

 	dualmethod (class in volttron.platform.vip.agent.decorators)

 	dump() (in module volttron.platform.jsonapi)

 	dump_user() (in module volttron.platform.auth)

 	dumpb() (in module volttron.platform.jsonapi)

 	dumps() (in module volttron.platform.agent.base_historian)

 	(in module volttron.platform.jsonapi)

E

 	
 	enable() (volttron.platform.vip.tracking.Tracker method)

 	encode_peer() (in module volttron.platform.vip.pubsubwrapper)

 	ENDPOINT (volttron.platform.vip.agent.subsystems.web.ResourceType attribute)

 	Error

 	error() (volttron.platform.jsonrpc.Dispatcher method)

 	Event (class in volttron.platform.agent.sched)

 	EventWithTime (class in volttron.platform.agent.sched)

 	ExampleAgent (class in volttron.platform.vip.agent.example)

 	exception() (volttron.platform.jsonrpc.Dispatcher method)

 	
 	execute() (volttron.platform.agent.sched.Queue method)

 	execute_command() (in module volttron.platform.agent.utils)

 	execute_many() (volttron.platform.dbutils.basedb.DbDriver method)

 	execute_stmt() (volttron.platform.dbutils.basedb.DbDriver method)

 	export() (volttron.platform.vip.agent.subsystems.RPC method)

 	(volttron.platform.vip.agent.subsystems.rpc.RPC method)

 	export_pkcs12() (volttron.platform.certs.Certs method)

 	external_platform_add() (volttron.platform.vip.pubsubservice.PubSubService method)

 	external_platform_drop() (volttron.platform.vip.pubsubservice.PubSubService method)

 	ExternalRPCService (class in volttron.platform.vip.externalrpcservice)

F

 	
 	find_by_credentials() (volttron.platform.auth.AuthFile method)

 	finish() (volttron.platform.agent.base.BaseAgent method)

 	(volttron.platform.vip.agent.example.ExampleAgent method)

 	finished (volttron.platform.agent.sched.Event attribute)

 	FNCS (class in volttron.platform.vip.agent.subsystems)

 	(class in volttron.platform.vip.agent.subsystems.volttronfncs)

 	fncs_installed (volttron.platform.vip.agent.subsystems.FNCS attribute)

 	(volttron.platform.vip.agent.subsystems.volttronfncs.FNCS attribute)

 	fncs_version (volttron.platform.vip.agent.subsystems.FNCS attribute)

 	(volttron.platform.vip.agent.subsystems.volttronfncs.FNCS attribute)

 	
 	foo() (volttron.platform.vip.agent.example.ExampleAgent method)

 	format() (volttron.platform.messaging.utils.Topic method)

 	forward() (volttron.platform.vip.agent.compat.CompatPubSub method)

 	freeze() (volttron.utils.frozendict.FrozenDict method)

 	from_errno() (volttron.platform.vip.agent.errors.VIPError class method)

 	from_json() (volttron.platform.messaging.health.Status static method)

 	fromTupples() (volttron.platform.agent.base_market_agent.poly_line_factory.PolyLineFactory static method)

 	FrozenDict (class in volttron.utils.frozendict)

 	function (volttron.platform.agent.sched.Event attribute)

G

 	
 	generate() (volttron.platform.keystore.KeyStore method)

 	generate_keypair_dict() (volttron.platform.keystore.KeyStore static method)

 	get() (volttron.platform.messaging.headers.Headers method)

 	(volttron.platform.messaging.socket.Headers method)

 	(volttron.platform.vip.agent.results.ResultsDictionary method)

 	(volttron.platform.vip.agent.subsystems.ConfigStore method)

 	(volttron.platform.vip.agent.subsystems.configstore.ConfigStore method)

 	(volttron.platform.vip.pubsubservice.ProtectedPubSubTopics method)

 	get_address() (in module volttron.platform)

 	get_admin_cert_names() (volttron.platform.certs.Certs static method)

 	get_agent_keystore_path() (volttron.platform.keystore.KeyStore static method)

 	get_agg_topic_map() (in module volttron.platform.dbutils.mongoutils)

 	(volttron.platform.agent.base_aggregate_historian.AggregateHistorian method)

 	(volttron.platform.dbutils.basedb.DbDriver method)

 	(volttron.platform.dbutils.mysqlfuncts.MySqlFuncts method)

 	(volttron.platform.dbutils.sqlitefuncts.SqlLiteFuncts method)

 	get_agg_topics() (in module volttron.platform.dbutils.mongoutils)

 	(volttron.platform.dbutils.basedb.DbDriver method)

 	(volttron.platform.dbutils.mysqlfuncts.MySqlFuncts method)

 	(volttron.platform.dbutils.sqlitefuncts.SqlLiteFuncts method)

 	get_aggregate_topics() (volttron.platform.agent.base_historian.BaseQueryHistorianAgent method)

 	get_aggregation_list() (volttron.platform.agent.base_aggregate_historian.AggregateHistorian method)

 	(volttron.platform.dbutils.basedb.DbDriver method)

 	(volttron.platform.dbutils.mysqlfuncts.MySqlFuncts method)

 	(volttron.platform.dbutils.sqlitefuncts.SqlLiteFuncts method)

 	get_all_cert_subjects() (volttron.platform.certs.Certs method)

 	get_authorization_approved() (volttron.platform.auth.AuthService method)

 	get_authorization_denied() (volttron.platform.auth.AuthService method)

 	get_authorization_failures() (volttron.platform.auth.AuthService method)

 	get_authorizations() (volttron.platform.auth.AuthService method)

 	get_aware_utc_now() (in module volttron.platform.agent.utils)

 	get_backlog_count() (volttron.platform.agent.base_historian.BackupDatabase method)

 	get_bindings() (volttron.utils.rmq_mgmt.RabbitMQMgmt method)

 	get_capabilities() (volttron.platform.auth.AuthService method)

 	(volttron.platform.vip.agent.subsystems.Auth method)

 	(volttron.platform.vip.agent.subsystems.auth.Auth method)

 	get_categories() (volttron.platform.agent.base_tagging.BaseTaggingService method)

 	get_cert_from_csr() (volttron.platform.certs.Certs method)

 	get_cert_public_key() (volttron.platform.certs.Certs method)

 	(volttron.platform.certs.CertWrapper static method)

 	get_cert_subject() (volttron.platform.certs.Certs method)

 	get_config_path() (in module volttron.platform)

 	get_configs() (volttron.platform.store.ConfigStoreService method)

 	get_connected() (volttron.platform.vip.agent.core.Core method)

 	(volttron.platform.vip.agent.core.RMQCore method)

 	(volttron.platform.vip.agent.core.ZMQCore method)

 	get_connected_platforms() (volttron.platform.vip.routingservice.RoutingService method)

 	get_connection() (volttron.utils.rmq_mgmt.RabbitMQMgmt method)

 	get_connections() (volttron.utils.rmq_mgmt.RabbitMQMgmt method)

 	get_csr_common_name() (volttron.platform.certs.Certs method)

 	get_csr_status() (volttron.platform.certs.Certs method)

 	get_dbfuncts_class() (in module volttron.platform.dbutils.sqlutils)

 	get_default_path() (volttron.platform.keystore.KeyStore static method)

 	get_default_permissions() (volttron.utils.rmq_mgmt.RabbitMQMgmt method)

 	get_examples() (in module volttron.platform)

 	get_exchanges() (volttron.utils.rmq_mgmt.RabbitMQMgmt method)

 	get_exchanges_with_props() (volttron.utils.rmq_mgmt.RabbitMQMgmt method)

 	get_fq_identity() (in module volttron.platform.agent.utils)

 	get_groups() (volttron.platform.auth.AuthService method)

 	get_home() (in module volttron.platform)

 	get_hostname() (in module volttron.utils)

 	get_iam() (volttron.platform.agent.bacnet_proxy_reader.BACnetReader method)

 	get_known_host_serverkey() (in module volttron.platform.vip.agent.utils)

 	get_matching_topic_prefixes() (volttron.platform.agent.base_tagging.BaseTaggingService method)

 	get_messagebus() (in module volttron.platform.agent.utils)

 	
 	get_mongo_client() (in module volttron.platform.dbutils.mongoutils)

 	get_name_for_identity() (volttron.platform.vip.routingservice.RoutingService method)

 	get_no_inst() (volttron.utils.docs.DocInherit method)

 	get_ops() (in module volttron.platform)

 	get_outstanding_to_publish() (volttron.platform.agent.base_historian.AsyncBackupDatabase method)

 	(volttron.platform.agent.base_historian.BackupDatabase method)

 	get_parameter() (volttron.utils.rmq_mgmt.RabbitMQMgmt method)

 	get_passphrase() (in module volttron.platform.certs)

 	get_pending_certs() (volttron.platform.certs.Certs method)

 	get_pending_csr_requests() (volttron.platform.certs.Certs method)

 	get_pk_bytes() (volttron.platform.certs.Certs method)

 	get_platform_config() (in module volttron.platform)

 	get_policies() (volttron.utils.rmq_mgmt.RabbitMQMgmt method)

 	get_policy() (volttron.utils.rmq_mgmt.RabbitMQMgmt method)

 	get_private_key() (volttron.platform.certs.CertWrapper static method)

 	get_protected_topics() (volttron.platform.auth.AuthService method)

 	get_queues() (volttron.utils.rmq_mgmt.RabbitMQMgmt method)

 	get_queues_with_props() (volttron.utils.rmq_mgmt.RabbitMQMgmt method)

 	get_random_key() (in module volttron.utils)

 	get_rejected_certs() (volttron.platform.certs.Certs method)

 	get_remote_certs_dir() (volttron.platform.vip.agent.subsystems.Auth method)

 	(volttron.platform.vip.agent.subsystems.auth.Auth method)

 	get_renamed_topic() (volttron.platform.agent.base_historian.BaseHistorianAgent method)

 	get_roles() (volttron.platform.auth.AuthService method)

 	get_server_keys() (in module volttron.platform.vip.agent.utils)

 	get_services_core() (in module volttron.platform)

 	get_ssl_url_params() (volttron.utils.rmq_mgmt.RabbitMQMgmt method)

 	get_status() (volttron.platform.vip.agent.subsystems.Health method)

 	(volttron.platform.vip.agent.subsystems.health.Health method)

 	get_status_json() (volttron.platform.vip.agent.subsystems.Health method)

 	(volttron.platform.vip.agent.subsystems.health.Health method)

 	get_status_value() (volttron.platform.vip.agent.subsystems.Health method)

 	(volttron.platform.vip.agent.subsystems.health.Health method)

 	get_supported_aggregations() (volttron.platform.agent.base_aggregate_historian.AggregateHistorian method)

 	get_tagging_queries_from_ast() (in module volttron.platform.dbutils.mongoutils)

 	get_tagging_query_from_ast() (volttron.platform.dbutils.sqlitefuncts.SqlLiteFuncts static method)

 	get_tags_by_category() (volttron.platform.agent.base_tagging.BaseTaggingService method)

 	get_tags_by_topic() (volttron.platform.agent.base_tagging.BaseTaggingService method)

 	get_tie_breaker() (volttron.platform.vip.agent.core.BasicCore method)

 	get_timeunit() (in module volttron.platform.agent.base_historian)

 	get_topic_caps() (volttron.platform.vip.pubsubservice.ProtectedPubSubTopics method)

 	get_topic_list() (volttron.platform.agent.base_historian.BaseQueryHistorianAgent method)

 	get_topic_map() (in module volttron.platform.dbutils.mongoutils)

 	(volttron.platform.agent.base_aggregate_historian.AggregateHistorian method)

 	(volttron.platform.dbutils.basedb.DbDriver method)

 	(volttron.platform.dbutils.mysqlfuncts.MySqlFuncts method)

 	(volttron.platform.dbutils.sqlitefuncts.SqlLiteFuncts method)

 	get_topic_permissions_for_user() (volttron.utils.rmq_mgmt.RabbitMQMgmt method)

 	get_topics_by_pattern() (volttron.platform.agent.base_historian.BaseQueryHistorianAgent method)

 	get_topics_by_tags() (volttron.platform.agent.base_tagging.BaseTaggingService method)

 	get_topics_metadata() (volttron.platform.agent.base_historian.BaseQueryHistorianAgent method)

 	get_user_claims() (volttron.platform.vip.agent.subsystems.web.WebSubSystem method)

 	get_user_permissions() (volttron.utils.rmq_mgmt.RabbitMQMgmt method)

 	get_user_props() (volttron.utils.rmq_mgmt.RabbitMQMgmt method)

 	get_user_to_capabilities() (volttron.platform.auth.AuthService method)

 	get_users() (volttron.utils.rmq_mgmt.RabbitMQMgmt method)

 	get_version() (volttron.platform.agent.base_historian.BaseQueryHistorianAgent method)

 	get_virtualhost() (volttron.utils.rmq_mgmt.RabbitMQMgmt method)

 	get_virtualhosts() (volttron.utils.rmq_mgmt.RabbitMQMgmt method)

 	get_volttron_data() (in module volttron.platform)

 	get_volttron_root() (in module volttron.platform)

 	get_with_inst() (volttron.utils.docs.DocInherit method)

 	getvalues() (volttron.platform.vip.agent.subsystems.FNCS method)

 	(volttron.platform.vip.agent.subsystems.volttronfncs.FNCS method)

 	goodbye() (volttron.platform.vip.agent.example.ExampleAgent method)

 	GreenletExit

H

 	
 	handle_error() (volttron.platform.vip.agent.core.Core method)

 	handle_monitor_event() (volttron.platform.vip.routingservice.RoutingService method)

 	handle_sub_message() (volttron.platform.agent.base.BaseAgent method)

 	handle_subsystem() (volttron.platform.vip.externalrpcservice.ExternalRPCService method)

 	(volttron.platform.vip.pubsubservice.PubSubService method)

 	(volttron.platform.vip.router.BaseRouter method)

 	(volttron.platform.vip.routingservice.RoutingService method)

 	Headers (class in volttron.platform.messaging.headers)

 	(class in volttron.platform.messaging.socket)

 	Headers.Key (class in volttron.platform.messaging.headers)

 	(class in volttron.platform.messaging.socket)

 	Health (class in volttron.platform.vip.agent.subsystems)

 	(class in volttron.platform.vip.agent.subsystems.health)

 	
 	Heartbeat (class in volttron.platform.vip.agent.subsystems)

 	(class in volttron.platform.vip.agent.subsystems.heartbeat)

 	Hello (class in volttron.platform.vip.agent.subsystems)

 	(class in volttron.platform.vip.agent.subsystems.hello)

 	hello() (volttron.platform.vip.agent.example.ExampleAgent method)

 	(volttron.platform.vip.agent.subsystems.Hello method)

 	(volttron.platform.vip.agent.subsystems.hello.Hello method)

 	historian_setup() (volttron.platform.agent.base_historian.BaseHistorianAgent method)

 	historian_teardown() (volttron.platform.agent.base_historian.BaseHistorianAgent method)

 	hit() (volttron.platform.vip.tracking.Tracker method)

 	hostname (volttron.utils.rmq_config_params.RMQConfig attribute)

I

 	
 	in_loop() (volttron.platform.vip.agent.compat.CompatPubSub method)

 	init_microsecond_support() (volttron.platform.dbutils.mysqlfuncts.MySqlFuncts method)

 	init_rabbitmq_setup() (volttron.utils.rmq_mgmt.RabbitMQMgmt method)

 	initialize() (volttron.platform.vip.agent.subsystems.FNCS method)

 	(volttron.platform.vip.agent.subsystems.volttronfncs.FNCS method)

 	initialize_aggregate_store() (volttron.platform.agent.base_aggregate_historian.AggregateHistorian method)

 	inotify (class in volttron.platform.lib.inotify)

 	(class in volttron.platform.lib.inotify.green)

 	insert() (volttron.platform.agent.base_historian.BaseHistorianAgent method)

 	insert_agg_meta() (volttron.platform.dbutils.basedb.DbDriver method)

 	insert_agg_topic() (volttron.platform.dbutils.basedb.DbDriver method)

 	insert_agg_topic_stmt() (volttron.platform.dbutils.basedb.DbDriver method)

 	(volttron.platform.dbutils.mysqlfuncts.MySqlFuncts method)

 	(volttron.platform.dbutils.sqlitefuncts.SqlLiteFuncts method)

 	insert_aggregate() (volttron.platform.agent.base_aggregate_historian.AggregateHistorian method)

 	(volttron.platform.dbutils.basedb.DbDriver method)

 	insert_aggregate_stmt() (volttron.platform.dbutils.basedb.DbDriver method)

 	(volttron.platform.dbutils.mysqlfuncts.MySqlFuncts method)

 	(volttron.platform.dbutils.sqlitefuncts.SqlLiteFuncts method)

 	insert_data() (volttron.platform.dbutils.basedb.DbDriver method)

 	insert_data_query() (in module volttron.platform.dbutils.crateutils)

 	(volttron.platform.dbutils.basedb.DbDriver method)

 	(volttron.platform.dbutils.mysqlfuncts.MySqlFuncts method)

 	(volttron.platform.dbutils.sqlitefuncts.SqlLiteFuncts method)

 	insert_meta() (volttron.platform.dbutils.basedb.DbDriver method)

 	insert_meta_query() (volttron.platform.dbutils.basedb.DbDriver method)

 	(volttron.platform.dbutils.mysqlfuncts.MySqlFuncts method)

 	(volttron.platform.dbutils.sqlitefuncts.SqlLiteFuncts method)

 	
 	insert_table_row() (volttron.platform.agent.driven.Results method)

 	insert_topic() (volttron.platform.dbutils.basedb.DbDriver method)

 	insert_topic_query() (in module volttron.platform.dbutils.crateutils)

 	(volttron.platform.dbutils.basedb.DbDriver method)

 	(volttron.platform.dbutils.mysqlfuncts.MySqlFuncts method)

 	(volttron.platform.dbutils.sqlitefuncts.SqlLiteFuncts method)

 	insert_topic_tags() (volttron.platform.agent.base_tagging.BaseTaggingService method)

 	instancemethod() (volttron.platform.vip.agent.decorators.dualmethod method)

 	intersection() (volttron.platform.agent.base_market_agent.poly_line.PolyLine static method)

 	is_connected() (volttron.platform.vip.agent.connection.Connection method)

 	is_file_readable() (in module volttron.utils.rmq_setup)

 	is_instance_running() (in module volttron.platform)

 	is_ip_private() (in module volttron.utils)

 	is_number() (in module volttron.platform.agent.base_historian)

 	is_peer_connected() (volttron.platform.vip.agent.connection.Connection method)

 	is_rabbitmq_available() (in module volttron.platform)

 	is_secure_mode() (in module volttron.platform.agent.utils)

 	is_sim_installed (volttron.platform.agent.base_simulation_integration.base_sim_integration.BaseSimIntegration attribute)

 	is_ssl (volttron.utils.rmq_config_params.RMQConfig attribute)

 	is_supported_aggregation() (volttron.platform.agent.base_aggregate_historian.AggregateHistorian method)

 	is_valid_amqp_port() (volttron.utils.rmq_mgmt.RabbitMQMgmt method)

 	is_valid_identity() (in module volttron.platform.agent.utils)

 	is_valid_mgmt_port() (volttron.utils.rmq_mgmt.RabbitMQMgmt method)

 	isregex() (in module volttron.platform.auth)

 	issue() (volttron.platform.vip.router.BaseRouter method)

 	isvalid() (volttron.platform.keystore.KeyStore method)

 	iter_match_tests() (in module volttron.platform.agent.matching)

J

 	
 	join_market() (volttron.platform.agent.base_market_agent.MarketAgent method)

 	json_result() (in module volttron.platform.jsonrpc)

 	
 	json_validate_request() (in module volttron.platform.jsonrpc)

 	json_validate_response() (in module volttron.platform.jsonrpc)

 	JSONRPC (volttron.platform.vip.agent.subsystems.web.ResourceType attribute)

K

 	
 	KeyDiscoveryAgent (class in volttron.platform.vip.keydiscovery)

 	KeyStore (class in volttron.platform.keystore)

 	kill() (volttron.platform.vip.agent.connection.Connection method)

 	
 	kill_all() (volttron.platform.agent.green.WaitQueue method)

 	killing() (in module volttron.platform.vip.agent.core)

 	KnownHostsStore (class in volttron.platform.keystore)

 	kwargs (volttron.platform.agent.sched.Event attribute)

L

 	
 	last_publish (volttron.platform.vip.agent.connection.Connection attribute)

 	last_publish_failed (volttron.platform.vip.agent.connection.Connection attribute)

 	last_rpc_call (volttron.platform.vip.agent.connection.Connection attribute)

 	last_updated (volttron.platform.messaging.health.Status attribute)

 	link_receiver() (volttron.platform.vip.agent.core.BasicCore method)

 	List (class in volttron.platform.auth)

 	list() (volttron.platform.vip.agent.subsystems.ConfigStore method)

 	(volttron.platform.vip.agent.subsystems.PeerList method)

 	(volttron.platform.vip.agent.subsystems.PubSub method)

 	(volttron.platform.vip.agent.subsystems.RMQPubSub method)

 	(volttron.platform.vip.agent.subsystems.configstore.ConfigStore method)

 	(volttron.platform.vip.agent.subsystems.peerlist.PeerList method)

 	(volttron.platform.vip.agent.subsystems.pubsub.PubSub method)

 	(volttron.platform.vip.agent.subsystems.rmq_pubsub.RMQPubSub method)

 	list_channels_for_connection() (volttron.utils.rmq_mgmt.RabbitMQMgmt method)

 	list_channels_for_vhost() (volttron.utils.rmq_mgmt.RabbitMQMgmt method)

 	list_unique_links() (in module volttron.platform.storeutils)

 	list_with_messagebus() (volttron.platform.vip.agent.subsystems.PeerList method)

 	(volttron.platform.vip.agent.subsystems.peerlist.PeerList method)

 	load() (in module volttron.platform.jsonapi)

 	(volttron.platform.keystore.BaseJSONStore method)

 	load_cert() (volttron.platform.certs.CertWrapper static method)

 	
 	load_config() (in module volttron.platform.agent.utils)

 	load_create_store() (in module volttron.utils.persistance)

 	load_csr() (volttron.platform.certs.Certs method)

 	load_key() (volttron.platform.certs.CertWrapper static method)

 	load_platform_config() (in module volttron.platform.agent.utils)

 	load_rmq_config() (volttron.utils.rmq_config_params.RMQConfig method)

 	load_tag_refs() (volttron.platform.agent.base_tagging.BaseTaggingService method)

 	load_user() (in module volttron.platform.auth)

 	load_valid_tags() (volttron.platform.agent.base_tagging.BaseTaggingService method)

 	loadb() (in module volttron.platform.jsonapi)

 	loads() (in module volttron.platform.agent.base_historian)

 	(in module volttron.platform.jsonapi)

 	local_password (volttron.utils.rmq_config_params.RMQConfig attribute)

 	local_user (volttron.utils.rmq_config_params.RMQConfig attribute)

 	log() (volttron.platform.agent.driven.Results method)

 	log_event() (volttron.platform.agent.base_market_agent.MarketAgent method)

 	lookup_user_id() (volttron.platform.vip.router.BaseRouter method)

 	loop() (volttron.platform.agent.base.BaseAgent method)

 	(volttron.platform.vip.agent.core.BasicCore method)

 	(volttron.platform.vip.agent.core.RMQCore method)

 	(volttron.platform.vip.agent.core.ZMQCore method)

 	(volttron.platform.vip.rmq_connection.RMQRouterConnection method)

 	LOOP_INTERVAL (volttron.platform.agent.base.BaseAgent attribute)

M

 	
 	make_offer() (volttron.platform.agent.base_market_agent.market_registration.MarketRegistration method)

 	(volttron.platform.agent.base_market_agent.MarketAgent method)

 	(volttron.platform.agent.base_market_agent.registration_manager.RegistrationManager method)

 	(volttron.platform.agent.base_market_agent.rpc_proxy.RpcProxy method)

 	make_registration() (volttron.platform.agent.base_market_agent.registration_manager.RegistrationManager method)

 	make_reservation() (volttron.platform.agent.base_market_agent.rpc_proxy.RpcProxy method)

 	make_self_signed_ca() (volttron.platform.certs.CertWrapper static method)

 	make_signed_cert() (volttron.platform.certs.CertWrapper static method)

 	make_time_request() (volttron.platform.agent.base_simulation_integration.base_sim_integration.BaseSimIntegration method)

 	manage_db_size() (volttron.platform.agent.base_historian.BaseHistorianAgent method)

 	(volttron.platform.dbutils.basedb.DbDriver method)

 	(volttron.platform.dbutils.sqlitefuncts.SqlLiteFuncts method)

 	manage_delete_config() (volttron.platform.store.ConfigStoreService method)

 	manage_delete_store() (volttron.platform.store.ConfigStoreService method)

 	manage_get() (volttron.platform.store.ConfigStoreService method)

 	manage_get_metadata() (volttron.platform.store.ConfigStoreService method)

 	manage_list_configs() (volttron.platform.store.ConfigStoreService method)

 	manage_list_stores() (volttron.platform.store.ConfigStoreService method)

 	manage_store() (volttron.platform.store.ConfigStoreService method)

 	MarketAgent (class in volttron.platform.agent.base_market_agent)

 	MarketRegistration (class in volttron.platform.agent.base_market_agent.market_registration)

 	match() (volttron.platform.auth.AuthEntry method)

 	(volttron.platform.auth.List method)

 	(volttron.platform.auth.String method)

 	match_all() (in module volttron.platform.agent.matching)

 	match_contains() (in module volttron.platform.agent.matching)

 	match_end() (in module volttron.platform.agent.matching)

 	
 	match_exact() (in module volttron.platform.agent.matching)

 	match_glob() (in module volttron.platform.agent.matching)

 	match_headers() (in module volttron.platform.agent.matching)

 	match_make_offer() (volttron.platform.agent.base_market_agent.MarketAgent method)

 	match_regex() (in module volttron.platform.agent.matching)

 	match_report_aggregate() (volttron.platform.agent.base_market_agent.MarketAgent method)

 	match_report_clear_price() (volttron.platform.agent.base_market_agent.MarketAgent method)

 	match_report_error() (volttron.platform.agent.base_market_agent.MarketAgent method)

 	match_reservation() (volttron.platform.agent.base_market_agent.MarketAgent method)

 	match_start() (in module volttron.platform.agent.matching)

 	match_subtopic() (in module volttron.platform.agent.matching)

 	match_test() (in module volttron.platform.agent.matching)

 	max() (volttron.platform.agent.base_market_agent.poly_line.PolyLine static method)

 	max_x() (volttron.platform.agent.base_market_agent.poly_line.PolyLine method)

 	max_y() (volttron.platform.agent.base_market_agent.poly_line.PolyLine method)

 	mean() (in module volttron.platform.agent.math_utils)

 	meh() (in module volttron.platform.vip.agent.example)

 	Message (class in volttron.platform.vip.socket)

 	method() (in module volttron.platform.agent.base_historian)

 	(volttron.platform.jsonrpc.Dispatcher method)

 	MethodNotFound

 	mgmt_port (volttron.utils.rmq_config_params.RMQConfig attribute)

 	mgmt_port_ssl (volttron.utils.rmq_config_params.RMQConfig attribute)

 	min() (volttron.platform.agent.base_market_agent.poly_line.PolyLine static method)

 	min_x() (volttron.platform.agent.base_market_agent.poly_line.PolyLine method)

 	min_y() (volttron.platform.agent.base_market_agent.poly_line.PolyLine method)

 	my_instance_name() (volttron.platform.vip.routingservice.RoutingService method)

 	MySqlFuncts (class in volttron.platform.dbutils.mysqlfuncts)

N

 	
 	next_timestep() (volttron.platform.vip.agent.subsystems.FNCS method)

 	(volttron.platform.vip.agent.subsystems.volttronfncs.FNCS method)

 	node_name (volttron.utils.rmq_config_params.RMQConfig attribute)

 	nonblocking() (in module volttron.platform.vip.socket)

 	normalize_aggregation_time_period() (volttron.platform.agent.base_aggregate_historian.AggregateHistorian static method)

 	normtopic() (in module volttron.platform.messaging.utils)

 	notify() (volttron.platform.agent.green.WaitQueue method)

 	(volttron.platform.agent.multithreading.WaitQueue method)

 	(volttron.platform.jsonrpc.Dispatcher method)

 	(volttron.platform.vip.agent.connection.Connection method)

 	(volttron.platform.vip.agent.subsystems.RPC method)

 	(volttron.platform.vip.agent.subsystems.rpc.RPC method)

 	
 	notify_all() (volttron.platform.agent.green.WaitQueue method)

 	(volttron.platform.agent.multithreading.WaitQueue method)

 	now() (in module volttron.platform.agent.base_historian)

O

 	
 	Offer (class in volttron.platform.agent.base_market_agent.offer)

 	on_alternate_queue_bind_ok() (volttron.platform.vip.rmq_connection.RMQRouterConnection method)

 	on_alternate_queue_declare_ok() (volttron.platform.vip.rmq_connection.RMQRouterConnection method)

 	on_any_event() (volttron.utils.AbsolutePathFileReloader method)

 	(volttron.utils.VolttronHomeFileReloader method)

 	on_bind_ok() (volttron.platform.vip.rmq_connection.RMQConnection method)

 	on_cancel_ok() (volttron.platform.vip.rmq_connection.RMQConnection method)

 	on_channel_closed() (volttron.platform.vip.rmq_connection.RMQConnection method)

 	on_channel_open() (volttron.platform.vip.rmq_connection.RMQConnection method)

 	(volttron.platform.vip.rmq_connection.RMQRouterConnection method)

 	on_connection_closed() (volttron.platform.vip.rmq_connection.RMQConnection method)

 	on_connection_open() (volttron.platform.vip.rmq_connection.RMQConnection method)

 	on_delivery_confirmation() (volttron.platform.vip.agent.subsystems.rmq_pubsub.RMQPubSub method)

 	(volttron.platform.vip.agent.subsystems.RMQPubSub method)

 	
 	on_open_error() (volttron.platform.vip.rmq_connection.RMQConnection method)

 	(volttron.platform.vip.rmq_connection.RMQRouterConnection method)

 	on_queue_declare_ok() (volttron.platform.vip.rmq_connection.RMQConnection method)

 	on_start() (volttron.platform.agent.base_tagging.BaseTaggingService method)

 	on_stop() (volttron.platform.vip.proxy_zmq_router.ZMQProxyRouter method)

 	onmessage() (volttron.platform.vip.agent.example.ExampleAgent method)

 	onsetup() (volttron.platform.vip.pubsubwrapper.PubSubWrapper method)

 	open_connection() (volttron.platform.vip.rmq_connection.RMQConnection method)

 	(volttron.platform.vip.rmq_connection.RMQRouterConnection method)

 	(volttron.platform.vip.zmq_connection.ZMQConnection method)

 	out_loop() (volttron.platform.vip.agent.compat.CompatPubSub method)

 	outbound_request_handler() (volttron.platform.vip.proxy_zmq_router.ZMQProxyRouter method)

 	outbound_response_handler() (volttron.platform.vip.proxy_zmq_router.ZMQProxyRouter method)

 	output_format() (volttron.platform.agent.driven.AbstractDrivenAgent class method)

P

 	
 	p_abstime() (in module volttron.platform.agent.base_historian)

 	p_bool_expr_and() (in module volttron.platform.agent.base_tagging)

 	p_bool_expr_eq() (in module volttron.platform.agent.base_tagging)

 	p_bool_expr_ge() (in module volttron.platform.agent.base_tagging)

 	p_bool_expr_gt() (in module volttron.platform.agent.base_tagging)

 	p_bool_expr_id() (in module volttron.platform.agent.base_tagging)

 	p_bool_expr_le() (in module volttron.platform.agent.base_tagging)

 	p_bool_expr_like1() (in module volttron.platform.agent.base_tagging)

 	p_bool_expr_like2() (in module volttron.platform.agent.base_tagging)

 	p_bool_expr_lt() (in module volttron.platform.agent.base_tagging)

 	p_bool_expr_neq() (in module volttron.platform.agent.base_tagging)

 	p_bool_expr_not() (in module volttron.platform.agent.base_tagging)

 	p_bool_expr_or() (in module volttron.platform.agent.base_tagging)

 	p_bool_expr_paren() (in module volttron.platform.agent.base_tagging)

 	p_clause() (in module volttron.platform.agent.base_tagging)

 	p_clause_error() (in module volttron.platform.agent.base_tagging)

 	p_error() (in module volttron.platform.agent.base_historian)

 	(in module volttron.platform.agent.base_tagging)

 	p_expr_div() (in module volttron.platform.agent.base_tagging)

 	p_expr_double_quote_string() (in module volttron.platform.agent.base_tagging)

 	p_expr_fp() (in module volttron.platform.agent.base_tagging)

 	p_expr_minus() (in module volttron.platform.agent.base_tagging)

 	p_expr_mod() (in module volttron.platform.agent.base_tagging)

 	p_expr_number() (in module volttron.platform.agent.base_tagging)

 	p_expr_paren() (in module volttron.platform.agent.base_tagging)

 	p_expr_plus() (in module volttron.platform.agent.base_tagging)

 	p_expr_single_quote_string() (in module volttron.platform.agent.base_tagging)

 	p_expr_times() (in module volttron.platform.agent.base_tagging)

 	p_expr_uminus() (in module volttron.platform.agent.base_tagging)

 	p_query_pair() (in module volttron.platform.agent.base_historian)

 	p_query_single() (in module volttron.platform.agent.base_historian)

 	p_reltime() (in module volttron.platform.agent.base_historian)

 	p_timeref() (in module volttron.platform.agent.base_historian)

 	parse_query() (in module volttron.platform.agent.base_tagging)

 	parse_table_def() (volttron.platform.agent.base_historian.BaseHistorianAgent method)

 	parse_time() (in module volttron.platform.agent.base_historian)

 	(volttron.platform.vip.agent.subsystems.FNCS method)

 	(volttron.platform.vip.agent.subsystems.volttronfncs.FNCS method)

 	pause_simulation() (volttron.platform.agent.base_simulation_integration.base_sim_integration.BaseSimIntegration method)

 	PEER (volttron.platform.vip.agent.compat.CompatPubSub attribute)

 	peer (volttron.platform.vip.agent.connection.Connection attribute)

 	peer_add() (volttron.platform.vip.pubsubservice.PubSubService method)

 	peer_drop() (volttron.platform.vip.pubsubservice.PubSubService method)

 	PeerList (class in volttron.platform.vip.agent.subsystems)

 	(class in volttron.platform.vip.agent.subsystems.peerlist)

 	peers() (volttron.platform.vip.agent.connection.Connection method)

 	period (volttron.platform.agent.sched.RecurringEvent attribute)

 	periodic() (in module volttron.platform.agent.base)

 	(in module volttron.platform.scheduling)

 	(volttron.platform.vip.agent.core.BasicCore method)

 	periodic_timer() (volttron.platform.agent.base.BaseAgent method)

 	PersistentDict (class in volttron.utils.persistance)

 	Ping (class in volttron.platform.vip.agent.subsystems)

 	(class in volttron.platform.vip.agent.subsystems.ping)

 	
 	ping() (volttron.platform.vip.agent.subsystems.Ping method)

 	(volttron.platform.vip.agent.subsystems.ping.Ping method)

 	ping_back() (volttron.platform.agent.base.PublishMixin method)

 	Point (class in volttron.platform.agent.base_market_agent.point)

 	poll (volttron.platform.vip.router.BaseRouter attribute)

 	poll() (volttron.platform.agent.base.BaseAgent method)

 	poll_sockets() (volttron.platform.vip.router.BaseRouter method)

 	PolyLine (class in volttron.platform.agent.base_market_agent.poly_line)

 	PolyLineFactory (class in volttron.platform.agent.base_market_agent.poly_line_factory)

 	pop() (volttron.platform.vip.agent.results.ResultsDictionary method)

 	prctl() (in module volttron.platform.lib.prctl)

 	pretty_print() (in module volttron.platform.agent.base_tagging)

 	price (volttron.platform.agent.base_market_agent.point.Point attribute)

 	print_tb() (volttron.platform.jsonrpc.RemoteError method)

 	private_key_file() (volttron.platform.certs.Certs method)

 	process_raw_config() (in module volttron.platform.store)

 	process_row() (volttron.platform.agent.driven.ConversionMapper method)

 	process_store() (in module volttron.platform.store)

 	prompt_port() (in module volttron.utils.rmq_setup)

 	prompt_response() (in module volttron.utils.prompt)

 	prompt_shovels() (in module volttron.utils.rmq_setup)

 	prompt_upstream_servers() (in module volttron.utils.rmq_setup)

 	ProtectedPubSubTopics (class in volttron.platform.vip.pubsubservice)

 	ProtocolError

 	pstdev() (in module volttron.platform.agent.math_utils)

 	public (volttron.platform.keystore.KeyStore attribute)

 	publish() (volttron.platform.agent.base.PublishMixin method)

 	(volttron.platform.vip.agent.connection.Connection method)

 	(volttron.platform.vip.agent.subsystems.FNCS method)

 	(volttron.platform.vip.agent.subsystems.Health method)

 	(volttron.platform.vip.agent.subsystems.Heartbeat method)

 	(volttron.platform.vip.agent.subsystems.PubSub method)

 	(volttron.platform.vip.agent.subsystems.RMQPubSub method)

 	(volttron.platform.vip.agent.subsystems.health.Health method)

 	(volttron.platform.vip.agent.subsystems.heartbeat.Heartbeat method)

 	(volttron.platform.vip.agent.subsystems.pubsub.PubSub method)

 	(volttron.platform.vip.agent.subsystems.rmq_pubsub.RMQPubSub method)

 	(volttron.platform.vip.agent.subsystems.volttronfncs.FNCS method)

 	PUBLISH_ADDRESS (volttron.platform.vip.agent.compat.CompatPubSub attribute)

 	publish_anon() (volttron.platform.vip.agent.subsystems.FNCS method)

 	(volttron.platform.vip.agent.subsystems.volttronfncs.FNCS method)

 	publish_callback() (volttron.platform.vip.proxy_zmq_router.ZMQProxyRouter method)

 	(volttron.platform.vip.pubsubservice.PubSubService method)

 	publish_ex() (volttron.platform.agent.base.PublishMixin method)

 	publish_json() (volttron.platform.agent.base.PublishMixin method)

 	publish_to_historian() (volttron.platform.agent.base_historian.BaseHistorianAgent method)

 	publish_to_simulation() (volttron.platform.agent.base_simulation_integration.base_sim_integration.BaseSimIntegration method)

 	PublishMixin (class in volttron.platform.agent.base)

 	PubSub (class in volttron.platform.vip.agent.subsystems)

 	(class in volttron.platform.vip.agent.subsystems.pubsub)

 	PubSubService (class in volttron.platform.vip.pubsubservice)

 	PubSubWrapper (class in volttron.platform.vip.pubsubwrapper)

Q

 	
 	qs (volttron.platform.vip.socket.Address attribute)

 	quantity (volttron.platform.agent.base_market_agent.point.Point attribute)

 	Query (class in volttron.platform.vip.agent.subsystems.query)

 	query() (volttron.platform.agent.base_historian.BaseQueryHistorianAgent method)

 	(volttron.platform.dbutils.basedb.DbDriver method)

 	(volttron.platform.dbutils.mysqlfuncts.MySqlFuncts method)

 	(volttron.platform.dbutils.sqlitefuncts.SqlLiteFuncts method)

 	(volttron.platform.vip.agent.subsystems.query.Query method)

 	query_aggregate_topics() (volttron.platform.agent.base_historian.BaseQueryHistorianAgent method)

 	query_categories() (volttron.platform.agent.base_tagging.BaseTaggingService method)

 	
 	query_historian() (volttron.platform.agent.base_historian.BaseQueryHistorianAgent method)

 	query_tags_by_category() (volttron.platform.agent.base_tagging.BaseTaggingService method)

 	query_tags_by_topic() (volttron.platform.agent.base_tagging.BaseTaggingService method)

 	query_topic_list() (volttron.platform.agent.base_historian.BaseQueryHistorianAgent method)

 	query_topics_by_pattern() (volttron.platform.agent.base_historian.BaseQueryHistorianAgent method)

 	(volttron.platform.dbutils.basedb.DbDriver method)

 	(volttron.platform.dbutils.mysqlfuncts.MySqlFuncts method)

 	(volttron.platform.dbutils.sqlitefuncts.SqlLiteFuncts method)

 	query_topics_by_tags() (volttron.platform.agent.base_tagging.BaseTaggingService method)

 	query_topics_metadata() (volttron.platform.agent.base_historian.BaseQueryHistorianAgent method)

 	Queue (class in volttron.platform.agent.sched)

R

 	
 	RabbitMQMgmt (class in volttron.utils.rmq_mgmt)

 	RabbitMQSetupAlreadyError

 	RabbitMQStartError

 	RAW (volttron.platform.vip.agent.subsystems.web.ResourceType attribute)

 	read() (volttron.platform.auth.AuthFile method)

 	(volttron.platform.lib.inotify.green.inotify method)

 	read_allow_entries() (volttron.platform.auth.AuthFile method)

 	read_auth_file() (volttron.platform.auth.AuthService method)

 	read_device_description() (volttron.platform.agent.bacnet_proxy_reader.BACnetReader method)

 	read_device_name() (volttron.platform.agent.bacnet_proxy_reader.BACnetReader method)

 	read_device_properties() (volttron.platform.agent.bacnet_proxy_reader.BACnetReader method)

 	read_tablenames_from_db() (volttron.platform.dbutils.basedb.DbDriver method)

 	receiver() (volttron.platform.vip.agent.core.BasicCore class method)

 	(volttron.platform.vip.agent.dispatch.Signal method)

 	reconnect() (volttron.platform.vip.agent.subsystems.Heartbeat method)

 	(volttron.platform.vip.agent.subsystems.heartbeat.Heartbeat method)

 	reconnect_delay() (volttron.utils.rmq_config_params.RMQConfig method)

 	record_table_definitions() (volttron.platform.agent.base_historian.BaseHistorianAgent method)

 	(volttron.platform.dbutils.mysqlfuncts.MySqlFuncts method)

 	(volttron.platform.dbutils.sqlitefuncts.SqlLiteFuncts method)

 	RecurringEvent (class in volttron.platform.agent.sched)

 	recv_message() (volttron.platform.messaging.socket.Socket method)

 	recv_message_ex() (volttron.platform.messaging.socket.Socket method)

 	recv_vip_object() (volttron.platform.vip.zmq_connection.ZMQConnection method)

 	regex_select() (volttron.platform.dbutils.sqlitefuncts.SqlLiteFuncts method)

 	regexp() (volttron.platform.dbutils.sqlitefuncts.SqlLiteFuncts static method)

 	register() (volttron.platform.vip.agent.core.Core method)

 	(volttron.platform.vip.rmq_connection.RMQConnection method)

 	(volttron.platform.vip.routingservice.RoutingService method)

 	(volttron.platform.vip.zmq_connection.ZMQConnection method)

 	register_endpoint() (volttron.platform.vip.agent.subsystems.web.WebSubSystem method)

 	register_inputs() (volttron.platform.agent.base_simulation_integration.base_sim_integration.BaseSimIntegration method)

 	register_path() (volttron.platform.vip.agent.subsystems.web.WebSubSystem method)

 	register_websocket() (volttron.platform.vip.agent.subsystems.web.WebSubSystem method)

 	RegistrationManager (class in volttron.platform.agent.base_market_agent.registration_manager)

 	remote_cert_bundle_file() (volttron.platform.certs.Certs method)

 	remote_certs_file() (volttron.platform.certs.Certs method)

 	RemoteError

 	remove() (volttron.platform.keystore.BaseJSONStore method)

 	remove_by_credentials() (volttron.platform.auth.AuthFile method)

 	remove_by_index() (volttron.platform.auth.AuthFile method)

 	remove_by_indices() (volttron.platform.auth.AuthFile method)

 	remove_successfully_published() (volttron.platform.agent.base_historian.AsyncBackupDatabase method)

 	(volttron.platform.agent.base_historian.BackupDatabase method)

 	replace_agg_meta_stmt() (volttron.platform.dbutils.basedb.DbDriver method)

 	(volttron.platform.dbutils.mysqlfuncts.MySqlFuncts method)

 	(volttron.platform.dbutils.sqlitefuncts.SqlLiteFuncts method)

 	
 	report_aggregate() (volttron.platform.agent.base_market_agent.market_registration.MarketRegistration method)

 	(volttron.platform.agent.base_market_agent.registration_manager.RegistrationManager method)

 	report_all_handled() (volttron.platform.agent.base_historian.BaseHistorianAgent method)

 	report_clear_price() (volttron.platform.agent.base_market_agent.market_registration.MarketRegistration method)

 	(volttron.platform.agent.base_market_agent.registration_manager.RegistrationManager method)

 	report_error() (volttron.platform.agent.base_market_agent.market_registration.MarketRegistration method)

 	(volttron.platform.agent.base_market_agent.registration_manager.RegistrationManager method)

 	report_handled() (volttron.platform.agent.base_historian.BaseHistorianAgent method)

 	request_cert() (volttron.platform.vip.agent.subsystems.Auth method)

 	(volttron.platform.vip.agent.subsystems.auth.Auth method)

 	request_discovery_info() (volttron.platform.web.discovery.DiscoveryInfo static method)

 	request_offers() (volttron.platform.agent.base_market_agent.market_registration.MarketRegistration method)

 	(volttron.platform.agent.base_market_agent.registration_manager.RegistrationManager method)

 	request_reservations() (volttron.platform.agent.base_market_agent.market_registration.MarketRegistration method)

 	(volttron.platform.agent.base_market_agent.registration_manager.RegistrationManager method)

 	reset() (volttron.platform.vip.agent.subsystems.FNCS method)

 	(volttron.platform.vip.agent.subsystems.volttronfncs.FNCS method)

 	(volttron.platform.vip.socket.Address method)

 	(volttron.platform.vip.tracking.Tracker method)

 	ResourceType (class in volttron.platform.vip.agent.subsystems.web)

 	restart() (volttron.platform.vip.agent.subsystems.Heartbeat method)

 	(volttron.platform.vip.agent.subsystems.heartbeat.Heartbeat method)

 	restart_ssl() (in module volttron.utils.rmq_setup)

 	result() (volttron.platform.jsonrpc.Dispatcher method)

 	Results (class in volttron.platform.agent.driven)

 	ResultsDictionary (class in volttron.platform.vip.agent.results)

 	resume_simulation() (volttron.platform.agent.base_simulation_integration.base_sim_integration.BaseSimIntegration method)

 	rmq_home (volttron.utils.rmq_config_params.RMQConfig attribute)

 	rmq_message_handler() (volttron.platform.vip.rmq_connection.RMQConnection method)

 	RMQConfig (class in volttron.utils.rmq_config_params)

 	RMQConnection (class in volttron.platform.vip.rmq_connection)

 	RMQCore (class in volttron.platform.vip.agent.core)

 	RMQPubSub (class in volttron.platform.vip.agent.subsystems)

 	(class in volttron.platform.vip.agent.subsystems.rmq_pubsub)

 	RMQRouterConnection (class in volttron.platform.vip.rmq_connection)

 	rollback() (volttron.platform.dbutils.basedb.DbDriver method)

 	route() (volttron.platform.vip.router.BaseRouter method)

 	RoutingService (class in volttron.platform.vip.routingservice)

 	RPC (class in volttron.platform.vip.agent.subsystems)

 	(class in volttron.platform.vip.agent.subsystems.rpc)

 	rpc_message_handler() (volttron.platform.vip.proxy_zmq_router.ZMQProxyRouter method)

 	RpcProxy (class in volttron.platform.agent.base_market_agent.rpc_proxy)

 	run() (volttron.platform.agent.base.BaseAgent method)

 	(volttron.platform.agent.driven.AbstractDrivenAgent method)

 	(volttron.platform.vip.agent.core.BasicCore method)

 	(volttron.platform.vip.router.BaseRouter method)

 	run_agent() (in module volttron.platform.agent.utils)

S

 	
 	save_agent_remote_info() (volttron.platform.certs.Certs method)

 	save_cert() (volttron.platform.certs.Certs method)

 	save_key() (volttron.platform.certs.Certs method)

 	save_pending_csr_request() (volttron.platform.certs.Certs method)

 	save_remote_cert() (volttron.platform.certs.Certs method)

 	saybye() (volttron.platform.vip.agent.example.ExampleAgent method)

 	sayhi() (volttron.platform.vip.agent.example.ExampleAgent method)

 	schedule() (volttron.platform.agent.base.BaseAgent method)

 	(volttron.platform.agent.sched.Queue method)

 	(volttron.platform.vip.agent.core.BasicCore method)

 	secret (volttron.platform.keystore.KeyStore attribute)

 	segment_intersection() (volttron.platform.agent.base_market_agent.poly_line.PolyLine static method)

 	segment_intersects() (volttron.platform.agent.base_market_agent.poly_line.PolyLine static method)

 	select() (volttron.platform.dbutils.basedb.DbDriver method)

 	select_all_topics_query() (in module volttron.platform.dbutils.crateutils)

 	select_topics_metadata_query() (in module volttron.platform.dbutils.crateutils)

 	SELL (volttron.platform.agent.base_market_agent.offer.Offer attribute)

 	send() (volttron.platform.async_.AsyncCall method)

 	(volttron.platform.vip.agent.core.BasicCore method)

 	(volttron.platform.vip.agent.dispatch.Signal method)

 	(volttron.platform.vip.agent.subsystems.web.WebSubSystem method)

 	send_alert() (volttron.platform.vip.agent.subsystems.Health method)

 	(volttron.platform.vip.agent.subsystems.health.Health method)

 	send_async() (volttron.platform.vip.agent.core.BasicCore method)

 	send_external() (volttron.platform.vip.routingservice.RoutingService method)

 	send_message() (volttron.platform.messaging.socket.Socket method)

 	send_message_ex() (volttron.platform.messaging.socket.Socket method)

 	send_string() (volttron.platform.messaging.socket.Socket method)

 	send_via_proxy() (volttron.platform.vip.rmq_connection.RMQConnection method)

 	send_vip() (volttron.platform.vip.rmq_connection.RMQConnection method)

 	(volttron.platform.vip.zmq_connection.ZMQConnection method)

 	send_vip_object() (volttron.platform.vip.rmq_connection.RMQConnection method)

 	(volttron.platform.vip.zmq_connection.ZMQConnection method)

 	send_vip_object_via_proxy() (volttron.platform.vip.rmq_connection.RMQConnection method)

 	sendby() (volttron.platform.vip.agent.dispatch.Signal method)

 	serialize() (volttron.platform.jsonrpc.Dispatcher method)

 	serialize_frames() (in module volttron.utils.frame_serialization)

 	server (volttron.platform.vip.agent.connection.Connection attribute)

 	serverkey (volttron.platform.vip.agent.connection.Connection attribute)

 	serverkey() (volttron.platform.keystore.KnownHostsStore method)

 	set() (volttron.platform.vip.agent.subsystems.ConfigStore method)

 	(volttron.platform.vip.agent.subsystems.configstore.ConfigStore method)

 	set_cache() (volttron.platform.dbutils.sqlitefuncts.SqlLiteFuncts method)

 	set_config() (volttron.platform.store.ConfigStoreService method)

 	set_connected() (volttron.platform.vip.agent.core.Core method)

 	(volttron.platform.vip.agent.core.RMQCore method)

 	(volttron.platform.vip.agent.core.ZMQCore method)

 	set_default() (volttron.platform.vip.agent.subsystems.ConfigStore method)

 	(volttron.platform.vip.agent.subsystems.configstore.ConfigStore method)

 	set_groups() (volttron.platform.auth.AuthFile method)

 	set_home() (in module volttron.platform)

 	set_parameter() (volttron.utils.rmq_mgmt.RabbitMQMgmt method)

 	set_period() (volttron.platform.vip.agent.subsystems.Heartbeat method)

 	(volttron.platform.vip.agent.subsystems.heartbeat.Heartbeat method)

 	set_policy() (volttron.utils.rmq_mgmt.RabbitMQMgmt method)

 	set_properties() (volttron.platform.vip.rmq_connection.RMQConnection method)

 	(volttron.platform.vip.zmq_connection.ZMQConnection method)

 	set_result() (volttron.platform.vip.agent.subsystems.rmq_pubsub.RMQPubSub method)

 	(volttron.platform.vip.agent.subsystems.RMQPubSub method)

 	set_roles() (volttron.platform.auth.AuthFile method)

 	set_status() (volttron.platform.vip.agent.subsystems.Health method)

 	(volttron.platform.vip.agent.subsystems.health.Health method)

 	set_topic_permissions_for_user() (volttron.utils.rmq_mgmt.RabbitMQMgmt method)

 	set_user_permissions() (volttron.utils.rmq_mgmt.RabbitMQMgmt method)

 	setdefault() (volttron.platform.messaging.headers.Headers method)

 	(volttron.platform.messaging.socket.Headers method)

 	setup() (volttron.platform.agent.base.BaseAgent method)

 	(volttron.platform.agent.base_tagging.BaseTaggingService method)

 	(volttron.platform.vip.agent.compat.CompatPubSub method)

 	(volttron.platform.vip.agent.core.BasicCore method)

 	(volttron.platform.vip.agent.example.ExampleAgent method)

 	(volttron.platform.vip.router.BaseRouter method)

 	setup_aggregate_historian_tables() (volttron.platform.dbutils.mysqlfuncts.MySqlFuncts method)

 	(volttron.platform.dbutils.sqlitefuncts.SqlLiteFuncts method)

 	setup_conversion_map() (volttron.platform.agent.driven.ConversionMapper method)

 	
 	setup_historian_tables() (volttron.platform.dbutils.basedb.DbDriver method)

 	(volttron.platform.dbutils.mysqlfuncts.MySqlFuncts method)

 	(volttron.platform.dbutils.sqlitefuncts.SqlLiteFuncts method)

 	setup_rabbitmq_volttron() (in module volttron.utils.rmq_setup)

 	setup_zap() (volttron.platform.auth.AuthService method)

 	shutdown() (volttron.platform.agent.driven.AbstractDrivenAgent method)

 	sign_csr() (volttron.platform.certs.Certs method)

 	Signal (class in volttron.platform.vip.agent.dispatch)

 	simulation_complete (volttron.platform.vip.agent.subsystems.FNCS attribute)

 	(volttron.platform.vip.agent.subsystems.volttronfncs.FNCS attribute)

 	simulation_running (volttron.platform.vip.agent.subsystems.FNCS attribute)

 	(volttron.platform.vip.agent.subsystems.volttronfncs.FNCS attribute)

 	simulation_started (volttron.platform.vip.agent.subsystems.FNCS attribute)

 	(volttron.platform.vip.agent.subsystems.volttronfncs.FNCS attribute)

 	sleep() (in module volttron.platform.agent.green)

 	Socket (class in volttron.platform.messaging.socket)

 	(class in volttron.platform.vip)

 	(class in volttron.platform.vip.green)

 	spawn() (in module volttron.platform.vip.agent.decorators)

 	(volttron.platform.vip.agent.core.BasicCore method)

 	spawn_in_thread() (volttron.platform.vip.agent.core.BasicCore method)

 	spawn_later() (volttron.platform.vip.agent.core.BasicCore method)

 	SqlLiteFuncts (class in volttron.platform.dbutils.sqlitefuncts)

 	start() (volttron.platform.vip.agent.subsystems.Heartbeat method)

 	(volttron.platform.vip.agent.subsystems.heartbeat.Heartbeat method)

 	(volttron.platform.vip.router.BaseRouter method)

 	start_agent_thread() (in module volttron.platform.agent.utils)

 	start_process_thread() (volttron.platform.agent.base_historian.BaseHistorianAgent method)

 	start_rabbit() (in module volttron.utils.rmq_setup)

 	start_simulation() (volttron.platform.agent.base_simulation_integration.base_sim_integration.BaseSimIntegration method)

 	(volttron.platform.vip.agent.subsystems.FNCS method)

 	(volttron.platform.vip.agent.subsystems.volttronfncs.FNCS method)

 	start_whois() (volttron.platform.agent.bacnet_proxy_reader.BACnetReader method)

 	start_with_period() (volttron.platform.vip.agent.subsystems.Heartbeat method)

 	(volttron.platform.vip.agent.subsystems.heartbeat.Heartbeat method)

 	starting() (volttron.platform.vip.agent.example.ExampleAgent method)

 	startup() (volttron.platform.vip.keydiscovery.KeyDiscoveryAgent method)

 	(volttron.platform.vip.proxy_zmq_router.ZMQProxyRouter method)

 	Status (class in volttron.platform.messaging.health)

 	status (volttron.platform.messaging.health.Status attribute)

 	stdev() (in module volttron.platform.agent.math_utils)

 	step() (volttron.platform.agent.base.BaseAgent method)

 	stop() (volttron.platform.vip.agent.core.BasicCore method)

 	(volttron.platform.vip.agent.core.Core method)

 	(volttron.platform.vip.agent.subsystems.Heartbeat method)

 	(volttron.platform.vip.agent.subsystems.heartbeat.Heartbeat method)

 	(volttron.platform.vip.router.BaseRouter method)

 	stop_iam_responses() (volttron.platform.agent.bacnet_proxy_reader.BACnetReader method)

 	stop_process_thread() (volttron.platform.agent.base_historian.BaseHistorianAgent method)

 	stop_rabbit() (in module volttron.utils.rmq_setup)

 	stop_simulation() (volttron.platform.agent.base_simulation_integration.base_sim_integration.BaseSimIntegration method)

 	stop_zap() (volttron.platform.auth.AuthService method)

 	stopping() (volttron.platform.agent.base_historian.BaseHistorianAgent method)

 	(volttron.platform.vip.agent.example.ExampleAgent method)

 	store() (volttron.platform.keystore.BaseJSONStore method)

 	store_config() (volttron.platform.store.ConfigStoreService method)

 	String (class in volttron.platform.auth)

 	strip_config_name() (in module volttron.platform.storeutils)

 	strptime_tz() (in module volttron.platform.agent.base_historian)

 	Subject (class in volttron.platform.certs)

 	subscribe() (volttron.platform.agent.base.BaseAgent method)

 	(volttron.platform.vip.agent.connection.Connection method)

 	(volttron.platform.vip.agent.subsystems.ConfigStore method)

 	(volttron.platform.vip.agent.subsystems.PubSub method)

 	(volttron.platform.vip.agent.subsystems.RMQPubSub method)

 	(volttron.platform.vip.agent.subsystems.configstore.ConfigStore method)

 	(volttron.platform.vip.agent.subsystems.pubsub.PubSub method)

 	(volttron.platform.vip.agent.subsystems.rmq_pubsub.RMQPubSub method)

 	SUBSCRIBE_ADDRESS (volttron.platform.vip.agent.compat.CompatPubSub attribute)

 	SubsystemBase (class in volttron.platform.vip.agent.subsystems.base)

 	sum() (volttron.platform.agent.base_market_agent.poly_line.PolyLine static method)

 	sync() (volttron.utils.persistance.PersistentDict method)

 	synchronize() (volttron.platform.vip.agent.subsystems.PubSub method)

 	(volttron.platform.vip.agent.subsystems.RMQPubSub method)

 	(volttron.platform.vip.agent.subsystems.pubsub.PubSub method)

 	(volttron.platform.vip.agent.subsystems.rmq_pubsub.RMQPubSub method)

T

 	
 	t_DQUOTE_STRING() (in module volttron.platform.agent.base_tagging)

 	t_error() (in module volttron.platform.agent.base_historian)

 	(in module volttron.platform.agent.base_tagging)

 	t_FPOINT() (in module volttron.platform.agent.base_tagging)

 	t_ID() (in module volttron.platform.agent.base_tagging)

 	t_LVALUE() (in module volttron.platform.agent.base_historian)

 	t_newline() (in module volttron.platform.agent.base_historian)

 	(in module volttron.platform.agent.base_tagging)

 	t_NUMBER() (in module volttron.platform.agent.base_historian)

 	(in module volttron.platform.agent.base_tagging)

 	t_QSTRING() (in module volttron.platform.agent.base_historian)

 	t_SQUOTE_STRING() (in module volttron.platform.agent.base_tagging)

 	terminate() (volttron.platform.agent.driven.Results method)

 	
 	test_contains() (in module volttron.platform.agent.matching)

 	test_end() (in module volttron.platform.agent.matching)

 	test_exact() (in module volttron.platform.agent.matching)

 	test_glob() (in module volttron.platform.agent.matching)

 	test_regex() (in module volttron.platform.agent.matching)

 	test_subtopic() (in module volttron.platform.agent.matching)

 	Timeout, [1]

 	timer() (volttron.platform.agent.base.BaseAgent method)

 	Topic (class in volttron.platform.messaging.utils)

 	Tracker (class in volttron.platform.vip.tracking)

 	tuppleize() (volttron.platform.agent.base_market_agent.point.Point method)

 	(volttron.platform.agent.base_market_agent.poly_line.PolyLine method)

 	type() (volttron.platform.agent.base_market_agent.offer.Offer method)

U

 	
 	unbind_zap() (volttron.platform.auth.AuthService method)

 	UNKNOWN (volttron.platform.vip.agent.subsystems.web.ResourceType attribute)

 	UnknownSubsystem

 	unpack_legacy_message() (in module volttron.platform.vip.agent.compat)

 	Unreachable

 	unregister_all_routes() (volttron.platform.vip.agent.subsystems.web.WebSubSystem method)

 	unregister_websocket() (volttron.platform.vip.agent.subsystems.web.WebSubSystem method)

 	unsubscribe() (volttron.platform.agent.base.BaseAgent method)

 	(volttron.platform.vip.agent.subsystems.PubSub method)

 	(volttron.platform.vip.agent.subsystems.RMQPubSub method)

 	(volttron.platform.vip.agent.subsystems.pubsub.PubSub method)

 	(volttron.platform.vip.agent.subsystems.rmq_pubsub.RMQPubSub method)

 	unsubscribe_all() (volttron.platform.agent.base.BaseAgent method)

 	(volttron.platform.vip.agent.subsystems.ConfigStore method)

 	(volttron.platform.vip.agent.subsystems.configstore.ConfigStore method)

 	update() (volttron.platform.keystore.BaseJSONStore method)

 	(volttron.platform.messaging.headers.Headers method)

 	(volttron.platform.messaging.socket.Headers method)

 	
 	update_agg_topic() (volttron.platform.dbutils.basedb.DbDriver method)

 	update_agg_topic_stmt() (volttron.platform.dbutils.basedb.DbDriver method)

 	(volttron.platform.dbutils.mysqlfuncts.MySqlFuncts method)

 	(volttron.platform.dbutils.sqlitefuncts.SqlLiteFuncts method)

 	update_aggregate_metadata() (volttron.platform.agent.base_aggregate_historian.AggregateHistorian method)

 	update_by_index() (volttron.platform.auth.AuthFile method)

 	update_ca_db() (volttron.platform.certs.Certs method)

 	update_default_config() (volttron.platform.agent.base_historian.BaseHistorianAgent method)

 	update_platform_config() (in module volttron.platform)

 	update_status() (volttron.platform.messaging.health.Status method)

 	update_topic() (volttron.platform.dbutils.basedb.DbDriver method)

 	update_topic_query() (in module volttron.platform.dbutils.crateutils)

 	(volttron.platform.dbutils.basedb.DbDriver method)

 	(volttron.platform.dbutils.mysqlfuncts.MySqlFuncts method)

 	(volttron.platform.dbutils.sqlitefuncts.SqlLiteFuncts method)

 	use_existing_certs (volttron.utils.rmq_config_params.RMQConfig attribute)

 	use_parent_doc() (volttron.utils.docs.DocInherit method)

V

 	
 	valid_credentials() (volttron.platform.auth.AuthEntry static method)

 	valid_mechanism() (volttron.platform.auth.AuthEntry static method)

 	validate_key_pair() (volttron.platform.certs.Certs static method)

 	validate_uuid4() (in module volttron.utils.valid_uuid)

 	vectorize() (volttron.platform.agent.base_market_agent.poly_line.PolyLine method)

 	verify_cert() (volttron.platform.certs.Certs method)

 	version (volttron.platform.auth.AuthFile attribute)

 	version() (volttron.platform.agent.base_historian.BaseQueryHistorianAgent method)

 	(volttron.platform.vip.agent.core.Core method)

 	vformat() (volttron.platform.messaging.utils.Topic method)

 	vip_loop() (volttron.platform.vip.proxy_zmq_router.ZMQProxyRouter method)

 	vip_message_handler() (volttron.platform.vip.agent.core.RMQCore method)

 	VIPError

 	virtual_host (volttron.utils.rmq_config_params.RMQConfig attribute)

 	volttron (module)

 	volttron.platform (module)

 	volttron.platform.agent (module)

 	volttron.platform.agent.bacnet_proxy_reader (module)

 	volttron.platform.agent.base (module)

 	volttron.platform.agent.base_aggregate_historian (module)

 	volttron.platform.agent.base_historian (module)

 	volttron.platform.agent.base_market_agent (module)

 	volttron.platform.agent.base_market_agent.buy_sell (module)

 	volttron.platform.agent.base_market_agent.error_codes (module)

 	volttron.platform.agent.base_market_agent.market_registration (module)

 	volttron.platform.agent.base_market_agent.offer (module)

 	volttron.platform.agent.base_market_agent.point (module)

 	volttron.platform.agent.base_market_agent.poly_line (module)

 	volttron.platform.agent.base_market_agent.poly_line_factory (module)

 	volttron.platform.agent.base_market_agent.registration_manager (module)

 	volttron.platform.agent.base_market_agent.rpc_proxy (module)

 	volttron.platform.agent.base_simulation_integration (module)

 	volttron.platform.agent.base_simulation_integration.base_sim_integration (module)

 	volttron.platform.agent.base_tagging (module)

 	volttron.platform.agent.cron (module)

 	volttron.platform.agent.driven (module)

 	volttron.platform.agent.exit_codes (module)

 	volttron.platform.agent.green (module)

 	volttron.platform.agent.known_identities (module)

 	volttron.platform.agent.matching (module)

 	volttron.platform.agent.math_utils (module)

 	volttron.platform.agent.multithreading (module)

 	volttron.platform.agent.sched (module)

 	volttron.platform.agent.utils (module)

 	volttron.platform.async_ (module)

 	volttron.platform.auth (module)

 	volttron.platform.certs (module)

 	volttron.platform.dbutils (module)

 	volttron.platform.dbutils.basedb (module)

 	volttron.platform.dbutils.crateutils (module)

 	volttron.platform.dbutils.mongoutils (module)

 	volttron.platform.dbutils.mysqlfuncts (module)

 	volttron.platform.dbutils.sqlitefuncts (module)

 	volttron.platform.dbutils.sqlutils (module)

 	volttron.platform.deployment (module)

 	volttron.platform.jsonapi (module)

 	volttron.platform.jsonrpc (module)

 	volttron.platform.keystore (module)

 	volttron.platform.lib (module)

 	volttron.platform.lib.inotify (module)

 	volttron.platform.lib.inotify.green (module)

 	volttron.platform.lib.kwonlyargs (module)

 	
 	volttron.platform.lib.prctl (module)

 	volttron.platform.messaging (module)

 	volttron.platform.messaging.headers (module)

 	volttron.platform.messaging.health (module)

 	volttron.platform.messaging.socket (module)

 	volttron.platform.messaging.topics (module)

 	volttron.platform.messaging.utils (module)

 	volttron.platform.scheduling (module)

 	volttron.platform.store (module)

 	volttron.platform.storeutils (module)

 	volttron.platform.vip (module)

 	volttron.platform.vip.agent (module)

 	volttron.platform.vip.agent.compat (module)

 	volttron.platform.vip.agent.connection (module)

 	volttron.platform.vip.agent.core (module)

 	volttron.platform.vip.agent.decorators (module)

 	volttron.platform.vip.agent.dispatch (module)

 	volttron.platform.vip.agent.errors (module)

 	volttron.platform.vip.agent.example (module)

 	volttron.platform.vip.agent.results (module)

 	volttron.platform.vip.agent.subsystems (module)

 	volttron.platform.vip.agent.subsystems.auth (module)

 	volttron.platform.vip.agent.subsystems.base (module)

 	volttron.platform.vip.agent.subsystems.channel (module)

 	volttron.platform.vip.agent.subsystems.configstore (module)

 	volttron.platform.vip.agent.subsystems.health (module)

 	volttron.platform.vip.agent.subsystems.heartbeat (module)

 	volttron.platform.vip.agent.subsystems.hello (module)

 	volttron.platform.vip.agent.subsystems.peerlist (module)

 	volttron.platform.vip.agent.subsystems.ping (module)

 	volttron.platform.vip.agent.subsystems.pubsub (module)

 	volttron.platform.vip.agent.subsystems.query (module)

 	volttron.platform.vip.agent.subsystems.rmq_pubsub (module)

 	volttron.platform.vip.agent.subsystems.rpc (module)

 	volttron.platform.vip.agent.subsystems.volttronfncs (module)

 	volttron.platform.vip.agent.subsystems.web (module)

 	volttron.platform.vip.agent.utils (module)

 	volttron.platform.vip.externalrpcservice (module)

 	volttron.platform.vip.green (module)

 	volttron.platform.vip.keydiscovery (module)

 	volttron.platform.vip.proxy_zmq_router (module)

 	volttron.platform.vip.pubsubservice (module)

 	volttron.platform.vip.pubsubwrapper (module)

 	volttron.platform.vip.rmq_connection (module)

 	volttron.platform.vip.router (module)

 	volttron.platform.vip.routingservice (module)

 	volttron.platform.vip.socket (module)

 	volttron.platform.vip.tracking (module)

 	volttron.platform.vip.zmq_connection (module)

 	volttron.platform.vpm (module)

 	volttron.platform.web.discovery (module)

 	volttron.utils (module)

 	volttron.utils.docs (module)

 	volttron.utils.frame_serialization (module)

 	volttron.utils.frozendict (module)

 	volttron.utils.persistance (module)

 	volttron.utils.prompt (module)

 	volttron.utils.rmq_config_params (module)

 	volttron.utils.rmq_mgmt (module)

 	volttron.utils.rmq_setup (module)

 	volttron.utils.valid_uuid (module)

 	VolttronHomeFileReloader (class in volttron.utils)

W

 	
 	wait() (volttron.platform.agent.green.WaitQueue method)

 	(volttron.platform.agent.multithreading.WaitQueue method)

 	WaitQueue (class in volttron.platform.agent.green)

 	(class in volttron.platform.agent.multithreading)

 	
 	watchfile (volttron.utils.AbsolutePathFileReloader attribute)

 	WebSubSystem (class in volttron.platform.vip.agent.subsystems.web)

 	write_env_file() (in module volttron.utils.rmq_setup)

 	write_rmq_config() (volttron.utils.rmq_config_params.RMQConfig method)

X

 	
 	x (volttron.platform.agent.base_market_agent.point.Point attribute)

 	
 	x() (volttron.platform.agent.base_market_agent.poly_line.PolyLine method)

Y

 	
 	y (volttron.platform.agent.base_market_agent.point.Point attribute)

 	
 	y() (volttron.platform.agent.base_market_agent.poly_line.PolyLine method)

Z

 	
 	zap_loop() (volttron.platform.auth.AuthService method)

 	ZMQConnection (class in volttron.platform.vip.zmq_connection)

 	
 	ZMQCore (class in volttron.platform.vip.agent.core)

 	ZMQProxyRouter (class in volttron.platform.vip.proxy_zmq_router)

AIP - Agent Instantiation and Packaging

Used Environmental Variables

	AGENT_VIP_IDENTITY - The router address an agent will attempt to connect to.

	AGENT_CONFIG - The path to a configuration file to use during agent launch.

	VOLTTRON_HOME - The home directory where the volttron instances is located.

Documentation coming soon!

volttron

	volttron package
	Subpackages
	volttron.platform package
	Subpackages

	Submodules

	volttron.platform.aip module

	volttron.platform.async_ module

	volttron.platform.auth module

	volttron.platform.certs module

	volttron.platform.config module

	volttron.platform.control module

	volttron.platform.deployment module

	volttron.platform.instance_setup module

	volttron.platform.jsonapi module

	volttron.platform.jsonrpc module

	volttron.platform.keystore module

	volttron.platform.main module

	volttron.platform.packages module

	volttron.platform.packaging module

	volttron.platform.resmon module

	volttron.platform.scheduling module

	volttron.platform.store module

	volttron.platform.storeutils module

	volttron.platform.vpm module

	volttron.utils package
	Submodules

	volttron.utils.docs module

	volttron.utils.frame_serialization module

	volttron.utils.frozendict module

	volttron.utils.persistance module

	volttron.utils.prompt module

	volttron.utils.rmq_config_params module

	volttron.utils.rmq_mgmt module

	volttron.utils.rmq_setup module

	volttron.utils.valid_uuid module

volttron.platform.agent.base_market_agent package

	
class volttron.platform.agent.base_market_agent.MarketAgent(verbose_logging=True, **kwargs)

	Bases: volttron.platform.vip.agent.Agent

The MarketAgents serves as the base class for any agent that wants to praticipate in
an auction market. By inheriting from this agent all the remote communication
with the MarketService is handled and the sub-class can be unconcerned with those details.

	
join_market(market_name, buyer_seller, reservation_callback, offer_callback, aggregate_callback, price_callback, error_callback)

	This routine is called once to join a market as a buyer or a seller.
The agent supplies call-back functions that the MarketAgents calls as the market process proceeds.

	Parameters

	
	market_name – The name of the market commodity.

	buyer_seller – A string indicating whether the agent is buying from or selling to the market.

The agent shall use the pre-defined strings provided.

	Parameters

	reservation_callback – This callback is called at the beginning of each round of bidding and clearing.

The agent can choose whether or not to participate in this round.
If the agent wants to participate it returns true otherwise it returns false.
If the agent does not specify a callback routine a reservation will be made for each round automatically.
A market will only exist if there are reservations for at least one buyer and at least one seller.
If the market fails to achieve the minimum participation the error callback will be called.

	Parameters

	offer_callback – If the agent has made a reservation for the market this routine is called.

If the agent wishes to make an offer at this time the market agent computes either supply or demand curves
as appropriate and offers them to the market service by calling the make offer method.
For each market joined either an offer callback or an aggregate callback is required.
You can’t supply both for any single market.

	Parameters

	aggregate_callback – When a market has received all its buy offers it calculates an aggregate

demand curve. When the market receives all of its sell offers it calculates an aggregate supply curve.
This callback delivers the aggregate curve to the market agent whenever the appropriate curve
becomes available. If the market agent want to use this to make an offer it would do that using
the make offer method. For each market joined either an offer callback or an aggregate callback is required.
You can’t supply both for any single market.

	Parameters

	
	price_callback – This callback is called when the market clears. The price callback is optional.

	error_callback – This callback is called at appropriate time points or when an error occurs.

If a market fails to form this will be called at the offer time.
If the market doesn’t receive all its offers this will be called at market clear time.
If the market fails to clear this would be called at the next reservation time.
This allows agents to respond at or near the normal time points. The error callback is optional.

	
log_event(method_name, peer, sender, bus, topic, headers, decoded_message)

	

	
make_offer(market_name, buyer_seller, curve)

	This call makes an offer with the MarketService.

	Parameters

	
	market_name – The name of the market commodity.

	buyer_seller – A string indicating whether the agent is buying from or selling to the market.

The agent shall use the pre-defined strings provided.

	Parameters

	curve – The demand curve for buyers or the supply curve for sellers.

	
match_make_offer(peer, sender, bus, topic, headers, message)

	

	
match_report_aggregate(peer, sender, bus, topic, headers, message)

	

	
match_report_clear_price(peer, sender, bus, topic, headers, message)

	

	
match_report_error(peer, sender, bus, topic, headers, message)

	

	
match_reservation(peer, sender, bus, topic, headers, message)

	

Submodules

volttron.platform.agent.base_market_agent.buy_sell module

volttron.platform.agent.base_market_agent.error_codes module

volttron.platform.agent.base_market_agent.market_registration module

	
class volttron.platform.agent.base_market_agent.market_registration.MarketRegistration(market_name, buyer_seller, reservation_callback, offer_callback, aggregate_callback, price_callback, error_callback, verbose_logging=True)

	Bases: object [https://docs.python.org/2.7/library/functions.html#object]

	
make_offer(buyer_seller, curve, rpc_proxy)

	

	
report_aggregate(timestamp, buyer_seller, aggregate_curve)

	

	
report_clear_price(timestamp, price, quantity)

	

	
report_error(timestamp, error_code, error_message, aux)

	

	
request_offers(timestamp)

	

	
request_reservations(timestamp, rpc_proxy)

	

volttron.platform.agent.base_market_agent.offer module

	
class volttron.platform.agent.base_market_agent.offer.Offer(offer_type, commodity, curve)

	Bases: object [https://docs.python.org/2.7/library/functions.html#object]

	
BUY = 'BUY'

	

	
SELL = 'SELL'

	

	
commodity()

	

	
curve()

	

	
type()

	

volttron.platform.agent.base_market_agent.point module

	
class volttron.platform.agent.base_market_agent.point.Point(quantity, price)

	Bases: tuple

	
price

	Alias for field number 1

	
quantity

	Alias for field number 0

	
tuppleize()

	

	
x

	Alias for field number 0

	
y

	Alias for field number 1

volttron.platform.agent.base_market_agent.poly_line module

	
class volttron.platform.agent.base_market_agent.poly_line.PolyLine

	Bases: object [https://docs.python.org/2.7/library/functions.html#object]

	
add(point)

	

	
static between(a, b, c)

	

	
static ccw(p1, p2, p3)

	

	
static compare(demand_curve, supply_curve)

	

	
contains_none()

	

	
static determinant(point1, point2)

	

	
static intersection(pl_1, pl_2)

	

	
static max(x1, x2)

	

	
max_x()

	

	
max_y()

	

	
static min(x1, x2)

	

	
min_x()

	

	
min_y()

	

	
static segment_intersection(line1, line2)

	

	
static segment_intersects(l1, l2)

	

	
static sum(x1, x2)

	

	
tuppleize()

	

	
vectorize()

	

	
x(y, left=None, right=None)

	

	
y(x, left=None, right=None)

	

	
volttron.platform.agent.base_market_agent.poly_line.cmp(a, b)

	

volttron.platform.agent.base_market_agent.poly_line_factory module

	
class volttron.platform.agent.base_market_agent.poly_line_factory.PolyLineFactory

	Bases: object [https://docs.python.org/2.7/library/functions.html#object]

	
static combine(lines, increment)

	

	
static fromTupples(points)

	

volttron.platform.agent.base_market_agent.registration_manager module

	
class volttron.platform.agent.base_market_agent.registration_manager.RegistrationManager(rpc_proxy)

	Bases: object [https://docs.python.org/2.7/library/functions.html#object]

The ReservationManager manages a list of MarketReservations for the MarketAgents.
This class exists to hide the features of the underlying collection that are not relevant to
managing market reservations.

	
make_offer(market_name, buyer_seller, curve)

	

	
make_registration(market_name, buyer_seller, reservation_callback, offer_callback, aggregate_callback, price_callback, error_callback)

	

	
report_aggregate(timestamp, market_name, buyer_seller, aggregate_curve)

	

	
report_clear_price(timestamp, market_name, price, quantity)

	

	
report_error(timestamp, market_name, error_code, error_message, aux)

	

	
request_offers(timestamp, unformed_markets)

	

	
request_reservations(timestamp)

	

volttron.platform.agent.base_market_agent.rpc_proxy module

	
class volttron.platform.agent.base_market_agent.rpc_proxy.RpcProxy(rpc_call, verbose_logging=True)

	Bases: object [https://docs.python.org/2.7/library/functions.html#object]

The purpose of the RpcProxy is to allow the MarketRegistration to make
RPC calls on the agent that subclasses of the agent can’t see and therefore
can’t make.

	
make_offer(market_name, buyer_seller, curve)

	This call makes an offer with the MarketService.

	Parameters

	
	market_name – The name of the market commodity.

	buyer_seller – A string indicating whether the agent is buying from or selling to the market.

The agent shall use the pre-defined strings provided.

	Parameters

	curve – The demand curve for buyers or the supply curve for sellers.

	
make_reservation(market_name, buyer_seller)

	This call makes a reservation with the MarketService. This allows the agent to submit a bid and receive
a cleared market price.

	Parameters

	
	market_name – The name of the market commodity.

	buyer_seller – A string indicating whether the agent is buying from or selling to the market.

The agent shall use the pre-defined strings provided.

volttron.platform.agent.base_simulation_integration package

Submodules

volttron.platform.agent.base_simulation_integration.base_sim_integration module

	
class volttron.platform.agent.base_simulation_integration.base_sim_integration.BaseSimIntegration(config)

	Bases: object [https://docs.python.org/2.7/library/functions.html#object]

	
is_sim_installed

	

	
make_time_request(time_request=None, **kwargs)

	

	
pause_simulation(timeout=None, **kwargs)

	

	
publish_to_simulation(topic, message, **kwargs)

	

	
register_inputs(config=None, callback=None, **kwargs)

	

	
resume_simulation(*args, **kwargs)

	

	
start_simulation(*args, **kwargs)

	

	
stop_simulation(*args, **kwargs)

	

volttron.platform.agent package

Subpackages

	volttron.platform.agent.base_market_agent package
	Submodules

	volttron.platform.agent.base_market_agent.buy_sell module

	volttron.platform.agent.base_market_agent.error_codes module

	volttron.platform.agent.base_market_agent.market_registration module

	volttron.platform.agent.base_market_agent.offer module

	volttron.platform.agent.base_market_agent.point module

	volttron.platform.agent.base_market_agent.poly_line module

	volttron.platform.agent.base_market_agent.poly_line_factory module

	volttron.platform.agent.base_market_agent.registration_manager module

	volttron.platform.agent.base_market_agent.rpc_proxy module

	volttron.platform.agent.base_simulation_integration package
	Submodules

	volttron.platform.agent.base_simulation_integration.base_sim_integration module

Submodules

volttron.platform.agent.bacnet_proxy_reader module

	
class volttron.platform.agent.bacnet_proxy_reader.BACnetReader(vip, bacnet_proxy_identity, iam_response_fn=None, config_response_fn=None, batch_size=20)

	Bases: object [https://docs.python.org/2.7/library/functions.html#object]

The BACnetReader

	
get_iam(device_id, callback, address=None, timeout=10)

	

	
read_device_description(address, device_id)

	Reads the device name from the specified address and device_id

	Parameters

	
	address – Address of the bacnet device

	device_id – The device id of the bacnet device.

	Returns

	The device desciption or an empty string

	
read_device_name(address, device_id)

	Reads the device name from the specified address and device_id

	Parameters

	
	address – Address of the bacnet device

	device_id – The device id of the bacnet device.

	Returns

	The device name or the string “MISSING DEVICE NAME”

	
read_device_properties(target_address, device_id, filter=None)

	Starts the processes of reading a device’s meta data.

The device will first be queried for all of it’s objects. For each
of the returned indexes only the properties that have a
presentValue as a property will be used. Processing of the objects
will continue in batches until all of the device points have been
received.

Data will ultimately be written through the self._emit_reresponses
function. The self._response_function that was set in the
constructor of the object will be used to return the data to the
caller.

	Parameters

	
	target_address – The address of the bacnet device

	device_id – The device_id of the bacnet device

	filter – A list of two-tuples with (bacnet_type, [index])
where the bacnet_type is one of the bacnet_type strings and the
[index] is an array of indexes to return.

	
start_whois(low_device_id=None, high_device_id=None, target_address=None)

	

	
stop_iam_responses()

	

volttron.platform.agent.base module

VOLTTRON platform™ base agent and helper classes/functions.

	
volttron.platform.agent.base.periodic(period, *args, **kwargs)

	Decorator to set a method up as a periodic callback.

The decorated method will be called with the given arguments every
period seconds while the agent is executing its run loop.

	
class volttron.platform.agent.base.BaseAgent(subscribe_address, **kwargs)

	Bases: volttron.platform.agent.base.AgentBase

Base class for creating VOLTTRON platform™ agents.

This class can be used as is, but it won’t do much. It will sit and
do nothing but listen for messages and exit when the platform
shutdown message is received. That is it.

	
LOOP_INTERVAL = 60

	

	
closed

	Return whether the subscription channel is closed.

	
finish()

	Finish for the agent execution loop.

Extend this method with code that must run once after the main
loop. Be sure to call the base class implementation from the
overridden method.

	
handle_sub_message(block=False)

	Handle incoming messages on the subscription socket.

Receives a multipart message containing a topic, headers,
and zero or more message parts. For each prefix (key) in
subscriptions map matching the beginning of the topic, the
associated callback will be called if either no test is
associated with the callback or the test function returns
a value evaluating to True.

See the class documentation for more information on the
signature for test and callback functions.

	
loop()

	Main agent execution loop.

This method should rarely need to be overridden. Instead,
override the step method to customize execution behavior. The
default implementation loops until self.closed() returns True
calling self.step() each iteration.

	
periodic_timer(period, function, *args, **kwargs)

	Create a periodic timer to call function every period seconds.

Like the timer method except that the timer is automatically
rearmed after the function completes.

	
poll(timeout=None)

	Polls for events while handling timers.

poll() will wait up to timeout seconds for sockets or files
registered with self.reactor to become ready. A timeout of None
will cause poll to wait an infinite amount of time. While
waiting for poll events, scheduled events will be handled,
potentially causing the wait time to slip a bit.

	
run()

	Entry point for running agent.

Subclasses should not override this method. Instead, the setup,
step, and finish methods should be overridden to customize
behavior.

	
schedule(time, event)

	Schedule an event to run at the given wall time.

time must be a datetime object or a Unix time value as returned
by time.time(). event must be a callable accepting a single
argument, the time the event was scheduled to run, and must
return a time to be scheduled next or None to not reschedule.
sched.Event and sched.RecurringEvent are examples of this
interface and may be used here. Generators send functions are
also be good candidates for event functions.

	
setup()

	Setup for the agent execution loop.

Extend this method with code that must run once before the main
loop. Be sure to call the base class implementation from the
overridden method.

	
step(timeout=None)

	Performs a single step in the main agent loop.

Override this method to customize agent behavior. The default
method blocks indefinitely until at least one socket in the
reactor is ready and then run each associated callback. The
method can be called from the overridden method in a subclass
with the behavior customized by passing in different timeout.
timeout is the maximum number of seconds (can be fractional) to
wait or None to wait indefinitely. Returns the number of events
fired or zero if a timeout occured.

	
subscribe(prefix, callback=None, test=None)

	Subscribe to topic and register callback.

Subscribes to topics beginning with prefix. If callback is
supplied, it should be a function taking four arguments,
callback(topic, headers, message, match), where topic is the
full message topic, headers is a case-insensitive dictionary
(mapping) of message headers, message is a possibly empty list
of message parts, and match is the return value of the test
function or None if test is None.

If test is given, it should be a function taking two arguments,
test(topic, prefix), where topic is the complete topic of the
incoming message and prefix is the string which caused the
subscription match. The test function should return a true
value if the callback should be called or a false value
otherwise. The result of the test will be passed into the
callback function where the results can be used.

Returns and ID number which can be used later to unsubscribe.

	
timer(interval, function, *args, **kwargs)

	Create a timer to call function after interval seconds.

interval is specified in seconds and can include fractional part.
function is a function that takes the optional args and kwargs.
Returns a timer object that can be used to modify the callback
parameters or to cancel using the cancel() method.

	
unsubscribe(handler_id, prefix=None)

	Remove subscription handler by its ID.

Remove all handlers matching the given handler ID, which is the
ID returned by the subscribe method. If all handlers for a
topic prefix are removed, the topic is also unsubscribed.

	
unsubscribe_all(prefix)

	Remove all handlers for the given prefix and unsubscribe.

If prefix is None, unsubscribe from all topics and remove all
handlers. Otherwise, unsubscribe from the given topic and
remove all handlers for that topic prefix.

	
class volttron.platform.agent.base.PublishMixin(publish_address, **kwargs)

	Bases: volttron.platform.agent.base.AgentBase

Agent mix-in for publishing to the VOLTTRON publish socket.

Connects the agent to the publish channel and provides several
publish methods.

Include before BaseAgent class in subclass list.

	
ping_back(callback, timeout=None, period=1)

	

	
publish(topic, headers, *msg_parts, **kwargs)

	Publish a message to the publish channel. Adds volttron platform
version compatibility information to header as variables
min_compatible_version and max_compatible version

	
publish_ex(topic, headers, *msg_tuples, **kwargs)

	Publish messages given as (content-type, message) tuples. Adds
volttron platform version compatibility information to header as
variables min_compatible_version and max_compatible version

	
publish_json(topic, headers, *msg_parts, **kwargs)

	Publish JSON encoded message. Adds volttron platform version
compatibility information to header as variables
min_compatible_version and max_compatible version

volttron.platform.agent.base_aggregate_historian module

	
class volttron.platform.agent.base_aggregate_historian.AggregateHistorian(config_path, **kwargs)

	Bases: volttron.platform.vip.agent.Agent

Base agent to aggregate data in historian based on a specific time period.
Different subclasses of this agent is needed to interact with different
type of historians. Subclasses should implement the following methods

	get_topic_map()

	get_agg_topic_map()

	initialize_aggregate_store()

	update_aggregate_metadata()

	collect_aggregate()

	insert_aggregate()

	get_aggregation_list()

	
collect_aggregate(topic_ids, agg_type, start_time, end_time)

	Collect the aggregate data by querying the historian’s data store

	Parameters

	
	topic_ids – list of topic ids for which aggregation should be
performed.

	agg_type – type of aggregation

	start_time – start time for query (inclusive)

	end_time – end time for query (exclusive)

	Returns

	a tuple of (aggregated value, count of record over which

this aggregation was computed)

	
collect_aggregate_data(collection_time, agg_time_period, use_calendar_periods, points)

	Method that does the collection and computation of aggregate data based
on raw date in historian’s data table. This method is called
for the first time when a agent is configured with a new
configuration or when the config in config store is updated. After the
collection of aggregate data, this methods schedules itself to be
called after a specific period of time. The time interval is
calculated by
compute_next_collection_time()
This method in turn calls the platform historian’s
- :py:method:`get_topics_by_pattern()` <BaseHistorian.get_topics_by_pattern>

and the following methods implemented by child classes:

	collect_aggregate()

	insert_aggregate()

	Parameters

	
	collection_time – time of aggregation collection

	agg_time_period (param) – time agg_time_period for which data
needs to be collected and aggregated

	use_calendar_periods (param) – flag that indicates if time
agg_time_period should be aligned
to calendar times

	points (param) – list of points for which aggregate data needs
to be collected. Each element in the list is a
dictionary containing
topic_names/topic_name_pattern,
aggregation_type(ex. sum, avg etc.), and
min_count(minimum number of raw data to be
present within the given time agg_time_period
for the aggregate to be computed. If
count is less than minimum no aggregate is
computed for that agg_time_period)

	
static compute_aggregation_time_slice(collection_time, agg_period, use_calender_time_periods)

	Computes the start and end time for querying the historians data table
for computing aggregates. Start and end time depend on whether the time
periods should align to calendar time periods. For example a daily
average could be computed for data collected between 12am to 11.59am of
a specific date or data between (collection_time - 24 hours) and
current_time. Setting use_calendar_time_periods to true results in
former.

	Parameters

	
	collection_time – Time of aggregation collection

	agg_period – time period of the aggregation

	use_calender_time_periods – boolean to indicate if the time
period should align to the calendar
time periods

	Returns

	start and end time of aggregation. start time is inclusive

and end time is not.

	
static compute_next_collection_time(collection_time, agg_period, use_calendar_periods)

	compute the next collection time based on current time in utc and
aggregation time period.

	Parameters

	
	collection_time – time of aggregate collection

	agg_period – period string from AggregateHistorian config

	use_calendar_periods – boolean to say if aggregate period
should be based on calendar periods.
For example: Week = Sunday to Saturday,
Hourly average would be 1AM= 2AM, 2AM-3AM
etc.

	Returns

	next collection time in utc

	
configure(config_name, action, config)

	Converts aggregation time period into seconds, validates
configuration values and calls the collect aggregate method for the
first time

	Parameters

	
	config_name – name of the config entry in store. We only use
one config store entry with the default name config

	action – “NEW or “UPDATE” code treats both the same way

	config – configuration as json object

	
get_agg_topic_map()

	Query the aggregate_topics table and create a map of
(topic name, aggregation type, aggregation time period) to
topic id. This should be done as part of init

	Returns

	Returns a list of topic_map containing

{(agg_topic_name.lower(), agg_type, agg_time_period) :id}

	
get_aggregation_list()

	Returns a list of supported aggregations

	Returns

	list of supported aggregations

	
get_supported_aggregations()

	

	
get_topic_map()

	Query the topics table and create a map of topic name to topic id.
This should be done as part of init

	Returns

	Returns a list of topic_map containing {topic_name.lower():id}

	
initialize_aggregate_store(aggregation_topic_name, agg_type, agg_time_period, topics_meta)

	Create the data structure (table or collection) that is going to store
the aggregate data for the give aggregation type and aggregation
time period

	Parameters

	
	aggregation_topic_name – Unique topic name for this
aggregation. If aggregation is done
over multiple points it is a
unique name given by user, else it is
same as topic_name for which
aggregation is done

	agg_type – The type of aggregation. For example, avg, sum etc.

	agg_time_period – The time period of aggregation

	topics_meta – String that represents the list of topics across
which this aggregation is computed. It could be
topic name pattern or list of topics. This
information should go into metadata table

	Returns

	Return a aggregation_topic_id after inserting
aggregation_topic_name into topics table

	
insert_aggregate(agg_topic_id, agg_type, agg_time_period, end_time, value, topic_ids)

	Insert aggregate data collected for a specific time period into
database. Data is inserted into <agg_type>_<period> table

	Parameters

	
	agg_topic_id – If len(topic_ids) is 1. This would be the same
as the topic_ids[0]. Else this id corresponds to
the unique topic name given by user for this
aggregation across multiple points.

	agg_type – type of aggregation

	agg_time_period – The time period of aggregation

	end_time – end time used for query records that got aggregated

	topic_ids – topic ids for which aggregation was computed

	value – aggregation result

	
is_supported_aggregation(agg_type)

	Checks if the given aggregation is supported by the historian’s
data store

	Parameters

	agg_type – The type of aggregation to be computed

	Returns

	True is supported False otherwise

	
static normalize_aggregation_time_period(time_period)

	Validates and normalizes aggregation time period. For example,
if aggregation time period is given as 48h it will get converted
into 2d

	Parameters

	time_period – time period string to be validated and normalized

	Returns

	normalized time period

	
update_aggregate_metadata(agg_id, aggregation_topic_name, topic_meta)

	Update aggregation_topic_name and topic_meta data for the given
agg_id.

	Parameters

	
	agg_id – Aggregation topic id for which update should be done

	aggregation_topic_name – New aggregation_topic_name

	topic_meta – new topic metadata

volttron.platform.agent.base_historian module

Historian Development

Support for storing and retrieving historical device and analysis data
published to the message bus is handled with Historian Agents. If a new type
of data store or a new way of storing data is desired a new type of Historian
Agent should created.

Historian Agents are implemented by subclassing BaseHistorian.

Agents that need short term storage of device data should subscribe to device
data and use internal data structures for storage. Agents which need long
term Historical data that predates the startup of the Agent should interact
with a Historian Agent in order to obtain that data as needed.

While it is possible to create an Agent from scratch which handles gathering
and storing device data it will miss out on the benefits of creating a proper
Historian Agent that subclassing BaseHistorian.
The BaseHistorian class provides the following features:

	A separate thread for all communication with a data store removing the need
to use or implement special libraries to work with gevent.

	Automatically subscribe to and process device publishes.

	Automatically backup data retrieved off the message bus to a disk cache.
Cached data will only be removed once it is successfully published to a data
store.

	Existing Agents that publish analytical data for storage or query for
historical data will be able to use the new Historian without any code
changes.

	Data can be graphed in VOLTTRON Central.

Creating a New Historian

To create a new Historian create a new Agent that subclasses
BaseHistorian. BaseHistorian inherits from
volttron.platform.vip.agent.Agent so including it in the class
parents is not needed.

The new Agent must implement the following methods:

	BaseHistorianAgent.publish_to_historian()

	BaseQueryHistorianAgent.query_topic_list()

	BaseQueryHistorianAgent.query_historian()

	BaseQueryHistorianAgent.query_topics_metadata()

If this historian has a corresponding AggregateHistorian
(see AggregateHistorian) implement the following method in addition
to the above ones:
- BaseQueryHistorianAgent.record_table_definitions()
- BaseQueryHistorianAgent.query_aggregate_topics()

While not required this method may be overridden as needed:
- BaseHistorianAgent.historian_setup()

Optionally a Historian Agent can inherit from BaseHistorianAgent
instead of BaseHistorian if support for querying data is not
needed for the data store. If this route is taken then VOLTTRON Central
will not be able to graph data from the store. It is possible to run more than
one Historian agent at a time to store data in more than one place. If needed
one can be used to allow querying while another is used to put data in the
desired store that does not allow querying.

Historian Execution Flow

At startup the BaseHistorian class starts a new thread to handle
all data caching and publishing (the publishing thread). The main thread then
subscribes to all Historian related topics on the message bus. Whenever
subscribed data comes in it is published to a Queue to be be processed by the
publishing thread as soon as possible.

At startup the publishing thread calls two methods:

	BaseHistorianAgent.historian_setup() to give the implemented

historian a chance to setup any connections in the thread. This method can
also be used to load an initial data into memory
- BaseQueryHistorianAgent.record_table_definitions() to give the
implemented Historian a chance to record the table/collection names into a
meta table/collection with the named passed as parameter. The implemented
historian is responsible for creating the meta table if it does not exist.

The process thread then enters the following logic loop:

Wait for data to appear in the Queue. Proceed if data appears or a
`retry_period` time elapses.
If new data appeared in Queue:
 Save new data to cache.
While data is in cache:
 Publish data to store by calling
 :py:meth:`BaseHistorianAgent.publish_to_historian`.
 If no data was published:
 Go back to start and check Queue for data.
 Remove published data from cache.
 If we have been publishing for `max_time_publishing`:
 Go back to start and check Queue for data.

The logic will also forgo waiting the retry_period for new data to appear
when checking for new data if publishing has been successful and there is
still data in the cache to be publish. If
BaseHistorianAgent.historian_setup() or
BaseQueryHistorianAgent.record_table_definitions() throw exception
and alert is raised but the process loop continues to wait for data and
caches it. The process loop will periodically try to call the two methods
again until successful. Exception thrown by
BaseHistorianAgent.publish_to_historian() would also raise alerts
and process loop will continue to back up data.

Storing Data

The BaseHistorian will call
BaseHistorianAgent.publish_to_historian() as the time series data
becomes available. Data is batched in a groups up to submit_size_limit.

After processing the list or individual items in the list
BaseHistorianAgent.publish_to_historian() must call
BaseHistorianAgent.report_handled() to report an individual point
of data was published or BaseHistorianAgent.report_all_handled() to
report that everything from the batch was successfully published. This tells
the BaseHistorianAgent class what to remove from the cache and if
any publishing was successful.

The to_publish_list argument of
BaseHistorianAgent.publish_to_historian() is a list of records that
takes the following form:

[
 {
 '_id': 1,
 'timestamp': timestamp1.replace(tzinfo=pytz.UTC),
 'source': 'scrape',
 'topic': "pnnl/isb1/hvac1/thermostat",
 'value': 73.0,
 'meta': {"units": "F", "tz": "UTC", "type": "float"}
 },
 {
 '_id': 2,
 'timestamp': timestamp2.replace(tzinfo=pytz.UTC),
 'source': 'scrape',
 'topic': "pnnl/isb1/hvac1/temperature",
 'value': 74.1,
 'meta': {"units": "F", "tz": "UTC", "type": "float"}
 },
 ...
]

As records are published to the data store
BaseHistorianAgent.publish_to_historian() must call
BaseHistorianAgent.report_handled() with the record or list of
records that was published or BaseHistorianAgent.report_all_handled()
if everything was published.

Querying Data

	When an request is made to query data the
BaseQueryHistorianAgent.query_historian() method is called.

	When a request is made for the list of topics in the store
BaseQueryHistorianAgent.query_topic_list() will be called.

	When a request is made to get the metadata of a topic
BaseQueryHistorianAgent.query_topics_metadata() will be called.

	When a request is made for the list of aggregate topics available
BaseQueryHistorianAgent.query_aggregate_topics() will be called

Other Notes

Implemented Historians must be tolerant to receiving the same data for
submission twice. While very rare, it is possible for a Historian to be
forcibly shutdown after data is published but before it is removed from the
cache. When restarted the BaseHistorian will submit
the same date over again.

	
class volttron.platform.agent.base_historian.AsyncBackupDatabase(*args, **kwargs)

	Bases: volttron.platform.agent.base_historian.BackupDatabase

Wrapper around BackupDatabase to allow it to run in the main Historian gevent loop.
Wraps the more expensive methods in threadpool.apply calls.

	
backup_new_data(new_publish_list)

	
	Parameters

	new_publish_list (iterable) – An iterable of records to cache to disk.

	Returns

	True if records the cache has reached a full state.

	Return type

	bool [https://docs.python.org/2.7/library/functions.html#bool]

	
get_outstanding_to_publish(size_limit)

	Retrieve up to size_limit records from the cache.

	Parameters

	size_limit (int [https://docs.python.org/2.7/library/functions.html#int]) – Max number of records to retrieve.

	Returns

	List of records for publication.

	Return type

	list

	
remove_successfully_published(successful_publishes, submit_size)

	Removes the reported successful publishes from the backup database.
If None is found in successful_publishes we assume that everything
was published.

	Parameters

	
	successful_publishes (list) – List of records that was published.

	submit_size (int [https://docs.python.org/2.7/library/functions.html#int]) – Number of things requested from previous call to
get_outstanding_to_publish()

	
class volttron.platform.agent.base_historian.BackupDatabase(owner, backup_storage_limit_gb, backup_storage_report, check_same_thread=True)

	Bases: object [https://docs.python.org/2.7/library/functions.html#object]

A creates and manages backup cache for the
BaseHistorianAgent class.

Historian implementors do not need to use this class. It is for internal
use only.

	
backup_new_data(new_publish_list)

	
	Parameters

	new_publish_list (iterable) – An iterable of records to cache to disk.

	Returns

	True if records the cache has reached a full state.

	Return type

	bool [https://docs.python.org/2.7/library/functions.html#bool]

	
close()

	

	
get_backlog_count()

	Retrieve the current number of records in the cashe.

	
get_outstanding_to_publish(size_limit)

	Retrieve up to size_limit records from the cache.

	Parameters

	size_limit (int [https://docs.python.org/2.7/library/functions.html#int]) – Max number of records to retrieve.

	Returns

	List of records for publication.

	Return type

	list

	
remove_successfully_published(successful_publishes, submit_size)

	Removes the reported successful publishes from the backup database.
If None is found in successful_publishes we assume that everything
was published.

	Parameters

	
	successful_publishes (list) – List of records that was published.

	submit_size (int [https://docs.python.org/2.7/library/functions.html#int]) – Number of things requested from previous call to
get_outstanding_to_publish()

	
class volttron.platform.agent.base_historian.BaseHistorian(**kwargs)

	Bases: volttron.platform.agent.base_historian.BaseHistorianAgent, volttron.platform.agent.base_historian.BaseQueryHistorianAgent

	
class volttron.platform.agent.base_historian.BaseHistorianAgent(retry_period=300.0, submit_size_limit=1000, max_time_publishing=30.0, backup_storage_limit_gb=None, backup_storage_report=0.9, topic_replace_list=[], gather_timing_data=False, readonly=False, process_loop_in_greenlet=False, capture_device_data=True, capture_log_data=True, capture_analysis_data=True, capture_record_data=True, message_publish_count=10000, history_limit_days=None, storage_limit_gb=None, sync_timestamp=False, custom_topics={}, device_data_filter={}, all_platforms=False, **kwargs)

	Bases: volttron.platform.vip.agent.Agent

This is the base agent for historian Agents.

It automatically subscribes to all device publish topics.

Event processing occurs in its own thread as to not block the main
thread. Both the historian_setup and publish_to_historian happen in
the same thread.

By default the base historian will listen to 4 separate root topics (
datalogger/, record/, analysis/, and device/.
Messages published to datalogger will be assumed to be timepoint data that
is composed of units and specific types with the assumption that they have
the ability to be graphed easily. Messages published to devices
are data that comes directly from drivers. Data sent to analysis/* topics
is result of analysis done by applications. The format of data sent to
analysis/* topics is similar to data sent to device/* topics.
Messages that are published to record will be handled as string data and
can be customized to the user specific situation. Refer to
Historian-Topic-Syntax for data syntax

This base historian will cache all received messages to a local database
before publishing it to the historian. This allows recovery for
unexpected happenings before the successful writing of data to the
historian.

	
configure(configuration)

	Optional, may be implemented by a concrete implementation to add support for the configuration store.
Values should be stored in this function only.

The process thread is stopped before this is called if it is running. It is started afterwards.

historian_setup is called after this is called.

	
get_renamed_topic(input_topic)

	replace topic name based on configured topic replace list, is any
:param input_topic:
:return:

	
historian_setup()

	Optional setup routine, run in the processing thread before
main processing loop starts. Gives the Historian a chance to setup
connections in the publishing thread.

	
historian_teardown()

	Optional teardown routine, run in the processing thread if the main
processing loop is stopped. This happened whenever a new configuration
arrives from the config store.

	
insert(records)

	RPC method to allow remote inserts to the local cache

	Parameters

	records (list of dictionaries) – List of items to be added to the local event queue

	
manage_db_size(history_limit_timestamp, storage_limit_gb)

	Called in the process thread after data is published.
This can be overridden in historian implementations
to apply the storage_limit_gb and history_limit_days
settings to the storage medium.

	Parameters

	
	history_limit_timestamp – remove all data older than this timestamp

	storage_limit_gb – remove oldest data until database is smaller than this value.

	
parse_table_def(tables_def)

	

	
publish_to_historian(to_publish_list)

	Main publishing method for historian Agents.

	Parameters

	to_publish_list (list) – List of records

to_publish_list takes the following form:

[
 {
 'timestamp': timestamp1.replace(tzinfo=pytz.UTC),
 'source': 'scrape',
 'topic': "pnnl/isb1/hvac1/thermostat",
 'value': 73.0,
 'meta': {"units": "F", "tz": "UTC", "type": "float"}
 },
 {
 'timestamp': timestamp2.replace(tzinfo=pytz.UTC),
 'source': 'scrape',
 'topic': "pnnl/isb1/hvac1/temperature",
 'value': 74.1,
 'meta': {"units": "F", "tz": "UTC", "type": "float"}
 },
 ...
]

The contents of meta is not consistent. The keys in the meta data
values can be different and can
change along with the values of the meta data. It is safe to assume
that the most recent value of
the “meta” dictionary are the only values that are relevant. This is
the way the cache
treats meta data.

Once one or more records are published either
BaseHistorianAgent.report_all_handled() or
BaseHistorianAgent.report_handled() must be called to
report records as being published.

	
record_table_definitions(meta_table_name)

	Record the table or collection names in which data, topics and
metadata are stored into the metadata table. This is essentially
information from information from configuration item
‘table_defs’. The metadata table contents will be used by the
corresponding aggregate historian(if any)

	Parameters

	meta_table_name – table name into which the table names and

table name prefix for data, topics, and meta tables should be inserted

	
report_all_handled()

	Call this from BaseHistorianAgent.publish_to_historian()
to report that all records passed to
BaseHistorianAgent.publish_to_historian()
have been successfully published and should be removed from the cache.

	
report_handled(record)

	Call this from BaseHistorianAgent.publish_to_historian() to
report a record or
list of records has been successfully published and should be
removed from the cache.

	Parameters

	record (dict [https://docs.python.org/2.7/library/stdtypes.html#dict] or list) – Record or list of records to remove from cache.

	
start_process_thread()

	

	
stop_process_thread()

	

	
stopping(sender, **kwargs)

	Release subscription to the message bus because we are no longer able
to respond to messages now.

	
update_default_config(config)

	May be called by historians to add to the default configuration for its
own use.

	
class volttron.platform.agent.base_historian.BaseQueryHistorianAgent(**kwargs)

	Bases: volttron.platform.vip.agent.Agent

This is the base agent for historian Agents that support querying of
their data stores.

	
get_aggregate_topics()

	RPC call to get the list of aggregate topics

	Returns

	List of aggregate topics in the data store. Each list
element contains (topic_name, aggregation_type,
aggregation_time_period, metadata)

	Return type

	list

	
get_topic_list()

	RPC call to get a list of topics in data store

	Returns

	List of topics in the data store.

	Return type

	list

	
get_topics_by_pattern(topic_pattern)

	Find the list of topics and its id for a given topic_pattern

	Returns

	returns list of dictionary object {topic_name:id}

	
get_topics_metadata(topics)

	RPC call to get one or more topic’s metadata

	Parameters

	topics – single topic or list of topics for which metadata is
requested

	Returns

	List of aggregate topics in the data store. Each list
element contains (topic_name, aggregation_type,
aggregation_time_period, metadata)

	Return type

	list

	
get_version()

	RPC call to get the version of the historian

	Returns

	version number of the historian used

	Return type

	string

	
query(topic=None, start=None, end=None, agg_type=None, agg_period=None, skip=0, count=None, order='FIRST_TO_LAST')

	RPC call to query an Historian for time series data.

	Parameters

	
	topic (str [https://docs.python.org/2.7/library/functions.html#str] or list) – Topic or topics to query for.

	start (str [https://docs.python.org/2.7/library/functions.html#str]) – Start time of the query. Defaults to None which is the
beginning of time.

	end (str [https://docs.python.org/2.7/library/functions.html#str]) – End time of the query. Defaults to None which is the
end of time.

	skip (int [https://docs.python.org/2.7/library/functions.html#int]) – Skip this number of results.

	count (int [https://docs.python.org/2.7/library/functions.html#int]) – Limit results to this value.

	order (str [https://docs.python.org/2.7/library/functions.html#str]) – How to order the results, either “FIRST_TO_LAST” or
“LAST_TO_FIRST”

	agg_type – If this is a query for aggregate data, the type of
aggregation (for example, sum, avg)

	agg_period – If this is a query for aggregate data, the time
period of aggregation

	Returns

	Results of the query

	Return type

	dict [https://docs.python.org/2.7/library/stdtypes.html#dict]

Return values will have the following form:

{
 "values": [(<timestamp string1>: value1),
 (<timestamp string2>: value2),
 ...],
 "metadata": {"key1": value1,
 "key2": value2,
 ...}
}

The string arguments can be either the output from
volttron.platform.agent.utils.format_timestamp() or the
special string “now”.

Times relative to “now” may be specified with a relative time string
using the Unix “at”-style specifications. For instance “now -1h” will
specify one hour ago.
“now -1d -1h -20m” would specify 25 hours and 20 minutes ago.

	
query_aggregate_topics()

	This function is called by
BaseQueryHistorianAgent.get_aggregate_topics()
to find out the available aggregates in the data store

	Returns

	List of tuples containing (topic_name, aggregation_type,
aggregation_time_period, metadata)

	Return type

	list

	
query_historian(topic, start=None, end=None, agg_type=None, agg_period=None, skip=0, count=None, order=None)

	This function is called by BaseQueryHistorianAgent.query()
to actually query the data store and must return the results of a
query in the following format:

Single topic query:

{
"values": [(timestamp1, value1),
 (timestamp2:,value2),
 ...],
 "metadata": {"key1": value1,
 "key2": value2,
 ...}
}

Multiple topics query:

{
"values": {topic_name:[(timestamp1, value1),
 (timestamp2:,value2),
 ...],
 topic_name:[(timestamp1, value1),
 (timestamp2:,value2),
 ...],
 ...}
 "metadata": {} #empty metadata
}

Timestamps must be strings formatted by
volttron.platform.agent.utils.format_timestamp().

“metadata” is not required. The caller will normalize this to {} for
you if it is missing.

	Parameters

	
	topic (str [https://docs.python.org/2.7/library/functions.html#str] or list) – Topic or list of topics to query for.

	start (datetime) – Start of query timestamp as a datetime.

	end (datetime) – End of query timestamp as a datetime.

	agg_type – If this is a query for aggregate data, the type of
aggregation (for example, sum, avg)

	agg_period – If this is a query for aggregate data, the time
period of aggregation

	skip (int [https://docs.python.org/2.7/library/functions.html#int]) – Skip this number of results.

	count (int [https://docs.python.org/2.7/library/functions.html#int]) – Limit results to this value. When the query is for
multiple topics, count applies to individual topics. For
example, a query on 2 topics with count=5 will return 5
records for each topic

	order (str [https://docs.python.org/2.7/library/functions.html#str]) – How to order the results, either “FIRST_TO_LAST” or
“LAST_TO_FIRST”

	Returns

	Results of the query

	Return type

	dict [https://docs.python.org/2.7/library/stdtypes.html#dict]

	
query_topic_list()

	This function is called by
BaseQueryHistorianAgent.get_topic_list()
to actually topic list from the data store.

	Returns

	List of topics in the data store.

	Return type

	list

	
query_topics_by_pattern(topic_pattern)

	Find the list of topics and its id for a given topic_pattern

	Returns

	returns list of dictionary object {topic_name:id}

	
query_topics_metadata(topics)

	This function is called by
BaseQueryHistorianAgent.get_topics_metadata()
to find out the metadata for the given topics

	Parameters

	topics (str [https://docs.python.org/2.7/library/functions.html#str] or list) – single topic or list of topics

	Returns

	dictionary with the format

{topic_name: {metadata_key:metadata_value, ...},
topic_name: {metadata_key:metadata_value, ...} ...}

	Return type

	dict [https://docs.python.org/2.7/library/stdtypes.html#dict]

	
version()

	Return the current version number of the historian
:return: version number

	
volttron.platform.agent.base_historian.add_timing_data_to_header(headers, agent_id, phase)

	

	
volttron.platform.agent.base_historian.dumps(data)

	

	
volttron.platform.agent.base_historian.get_timeunit(t)

	

	
volttron.platform.agent.base_historian.is_number(x)

	

	
volttron.platform.agent.base_historian.loads(data_string)

	

	
volttron.platform.agent.base_historian.method(self, check_same_thread)

	Creates a backup database for the historian if doesn’t exist.

	
volttron.platform.agent.base_historian.now(tzstr='UTC')

	Returns an aware datetime object with the current time in
tzstr timezone

	
volttron.platform.agent.base_historian.p_abstime(t)

	abstime : NUMBER
| QSTRING
| NOW

	
volttron.platform.agent.base_historian.p_error(p)

	

	
volttron.platform.agent.base_historian.p_query_pair(t)

	query : ‘(‘ timeref ‘,’ timeref ‘)’

	
volttron.platform.agent.base_historian.p_query_single(t)

	query : timeref

	
volttron.platform.agent.base_historian.p_reltime(t)

	reltime : NUMBER LVALUE
| NUMBER LVALUE reltime

	
volttron.platform.agent.base_historian.p_timeref(t)

	timeref : abstime
| abstime reltime

	
volttron.platform.agent.base_historian.parse_time(ts)

	

	
volttron.platform.agent.base_historian.strptime_tz(str, format='%x %X', tzstr='Local')

	Returns an aware datetime object. tzstr is a timezone string such as
‘US/Pacific’ or ‘Local’ by default which uses the local timezone.

	
volttron.platform.agent.base_historian.t_LVALUE(t)

	[a-zA-Z~$_][a-zA-Z0-9/%_-]*

	
volttron.platform.agent.base_historian.t_NUMBER(t)

	([+-]?([0-9]*.)?[0-9]+)

	
volttron.platform.agent.base_historian.t_QSTRING(t)

	(“[^”\]*?(.[^”\]*?)*?”)|(‘[^’\]*?(.[^’\]*?)*?’)

	
volttron.platform.agent.base_historian.t_error(t)

	

	
volttron.platform.agent.base_historian.t_newline(t)

	[nr]+

volttron.platform.agent.base_tagging module

Base class for tagging service implementation. Tagging Service provides api’s
for users to associate haystack based tags and values to topic names and
topic name prefixes.

Implementing classes should implement the following methods

	BaseTaggingService.setup()

	BaseTaggingService.load_valid_tags()

	BaseTaggingService.load_tag_refs()

	BaseTaggingService.query_categories()

	BaseTaggingService.query_tags_by_category()

	BaseTaggingService.query_tags_by_topic()

	BaseTaggingService.query_topics_by_tags()

	BaseTaggingService.insert_topic_tags()

On start calls the following methods

	BaseTaggingService.setup()

	BaseTaggingService.load_valid_tags()

	BaseTaggingService.load_tag_refs()

Querying for topics based on tags

Base tagging service provides a parser to parse query
condition for querying topics based on tags. Please see documentation of
BaseTaggingService.get_topics_by_tags() for syntax definition of query

	
class volttron.platform.agent.base_tagging.BaseTaggingService(historian_vip_identity=None, **kwargs)

	Bases: volttron.platform.vip.agent.Agent

This is the base class for tagging service implementations. There can
be different implementations based on backend/data store used to persist
the tag details

	
add_tags(tags, update_version=False)

	Add tags to multiple topics.
Calls method BaseTaggingService.insert_topic_tags().
Implementing methods could use
BaseTaggingService.get_matching_topic_prefixes() to get the
list of topic prefix or topic names for a given topic pattern.

	Parameters

	
	tags (dict [https://docs.python.org/2.7/library/stdtypes.html#dict]) – dictionary object or file containing the topic and the
tag details. Dictionary object or the file content should be of the
format
<topic_name or prefix or topic_name pattern>: {<valid tag>:<value>,
… }, … }

	update_version (bool [https://docs.python.org/2.7/library/functions.html#bool]) – True/False. Defaults to False.
If set to True and if any of the tags update an existing tag
value the older value would be preserved as part of tag version
history. Note: this feature is not implemented in the current
version of sqlite and mongodb tagging service.

	
add_topic_tags(topic_prefix, tags, update_version=False)

	Add tags to specific topic name or topic name prefix. Calls the method
BaseTaggingService.add_tags().

Note: Use of this api require’s a configured historian to be running.
This can be configured using the optional historian_id
configuration.If not configured, defaults to platform.historian. This
api makes RPC calls to historian to get_topic_list api to
get the list of topics. This is used to find topic/topic prefix
matching any given input topic pattern or specific topic prefix.

	Parameters

	
	topic_prefix (str [https://docs.python.org/2.7/library/functions.html#str]) – topic name or topic name prefix

	tags (dict [https://docs.python.org/2.7/library/stdtypes.html#dict]) – dictionary of tag and value in the format
{<valid tag>:value, <valid_tag>: value,… }

	update_version (bool [https://docs.python.org/2.7/library/functions.html#bool]) – True/False. Default to False.
If set to True and if any of the tags update an existing tag
value the older value would be preserved as part of tag version history

	
get_categories(include_description=False, skip=0, count=None, order='FIRST_TO_LAST')

	Get the available list tag categories. category can have multiple tags
and tags could belong to multiple categories

	Parameters

	
	include_description (bool [https://docs.python.org/2.7/library/functions.html#bool]) – indicate if result should include
available description for categories returned

	skip (int [https://docs.python.org/2.7/library/functions.html#int]) – number of tags to skip. usually used with order

	count (int [https://docs.python.org/2.7/library/functions.html#int]) – limit on the number of tags to return

	order (str [https://docs.python.org/2.7/library/functions.html#str]) – order of result - “FIRST_TO_LAST” or “LAST_TO_FIRST”

	Returns

	list of category names if include_description is False,
list of (category name, description) if include_description is True

	Return type

	list

	
get_matching_topic_prefixes(topic_pattern)

	Queries the configured/platform historian to get the list of topics
that match the given topic pattern. So use of this api require’s
the configured historian (or platform.historian if specific historian id
is not specified) to be running. This api makes RPC calls to
platform.historian’s BaseHistorian.get_topic_list() to get
the list of topics. This is used to find topic/topic prefix matching
any given input topic pattern.

Pattern matching done here is not true string pattern matching.
Matches are applied to different topic_prefix.
For example, ‘campus/building1/device*’ would match
campus/building1/device1 and not campus/building1/device1/p1. Works
only if separator is /. Else tags are always applied
to full topic names

	Parameters

	topic_pattern (str [https://docs.python.org/2.7/library/functions.html#str]) – pattern to match again

	Returns

	list of topic prefixes.

	
get_tags_by_category(category, include_kind=False, include_description=False, skip=0, count=None, order='FIRST_TO_LAST')

	Get the list of tags for a given category name. category can have
multiple tags and tags could belong to multiple categories

	Parameters

	
	category (str [https://docs.python.org/2.7/library/functions.html#str]) – name of the category for which associated tags
should be returned

	include_kind (bool [https://docs.python.org/2.7/library/functions.html#bool]) – indicate if result should include the
kind/datatype for tags returned

	include_description (bool [https://docs.python.org/2.7/library/functions.html#bool]) – indicate if result should include
available description for tags returned

	skip (int [https://docs.python.org/2.7/library/functions.html#int]) – number of tags to skip. usually used with order

	count (int [https://docs.python.org/2.7/library/functions.html#int]) – limit on the number of tags to return

	order (str [https://docs.python.org/2.7/library/functions.html#str]) – order of result - “FIRST_TO_LAST” or “LAST_TO_FIRST”

	Returns

	Will return one of the following

	list of tag names

	list of (tags, its data type/kind) if include_kind is True

	list of (tags, description) if include_description is True

	list of (tags, its data type/kind, description) if include_kind
is True and include_description is true

	Return type

	list

	
get_tags_by_topic(topic_prefix, include_kind=False, include_description=False, skip=0, count=None, order='FIRST_TO_LAST')

	Get the list of tags for a given topic prefix or name.

	Parameters

	
	topic_prefix (str [https://docs.python.org/2.7/library/functions.html#str]) – topic_prefix for which associated tags should
be returned

	include_kind (bool [https://docs.python.org/2.7/library/functions.html#bool]) – indicate if result should include the
kind/datatype for tags returned

	include_description (bool [https://docs.python.org/2.7/library/functions.html#bool]) – indicate if result should include
available description for tags returned

	skip (int [https://docs.python.org/2.7/library/functions.html#int]) – number of tags to skip. usually used with order

	count (int [https://docs.python.org/2.7/library/functions.html#int]) – limit on the number of tags to return

	order (str [https://docs.python.org/2.7/library/functions.html#str]) – order of result - “FIRST_TO_LAST” or “LAST_TO_FIRST”

	Returns

	Will return one of the following

	list of (tag name, value)

	list of (tag name, value, data type/kind) if include_kind is True

	list of (tag name, value, description) if include_description is True

	list of (tags, value, data type/kind, description) if

include_kind is True and include_description is true

	Return type

	list

	
get_topics_by_tags(and_condition=None, or_condition=None, condition=None, skip=0, count=None, order=None)

	Get list of topic names and topic name prefixes based on gives tags
and values. This method parses the query condition creates an
abstract syntax tree that represents the unambiguous query and calls
method BaseTaggingService.query_topics_by_tags() of the
implementing service to further process the ast and return list of
topic prefixes

	Parameters

	
	and_condition (dict [https://docs.python.org/2.7/library/stdtypes.html#dict] or list) – dictionary of tag and its corresponding values
that should be matched using equality operator or a list of tags
that should exists/be true. Tag conditions are combined with AND
condition. Only topics that match all the tags in the list would be
returned

	or_condition (dict [https://docs.python.org/2.7/library/stdtypes.html#dict] or list) – dictionary of tag and its corresponding values
that should be matched using equality operator or a list tags that
should exist/be true. Tag conditions are combined with OR condition.
Topics that match any of the tags in the list would be returned.
If both and_condition and or_condition are provided then they
are combined using AND operator.

	condition (str [https://docs.python.org/2.7/library/functions.html#str]) – conditional statement to be used for matching tags.
If this parameter is provided the above two parameters are ignored.
The value for this parameter should be an expression that contains one
or more query conditions combined together with an “AND” or “OR”.
Query conditions can be grouped together using parenthesis.
Each condition in the expression should conform to one of the
following format:

	<tag name/ parent.tag_name> <binary_operator> <value>

	<tag name/ parent.tag_name>

	<tag name/ parent.tag_name> LIKE <regular expression within
single quotes

	parent tag used in query(using format parent.tag_name) should be
of type/kind Ref. For example, campusRef.geoPostalCode = “99353”

	the word NOT can be prefixed before any of the above three to
negate the condition.

	expressions can be grouped with parenthesis.

	Example

	condition="(tag1 = 1 or tag1 = 2) and (tag2 < '' and tag2 >
'') and tag3 and (tag4 LIKE '^a.*b$')"

condition="NOT (tag5='US' OR tag5='UK') AND NOT tag3 AND
NOT (tag4 LIKE 'a.*')"

condition="campusRef.geoPostalCode='20500' and equip and boiler"

	skip (int [https://docs.python.org/2.7/library/functions.html#int]) – number of tags to skip. usually used with order

	count (int [https://docs.python.org/2.7/library/functions.html#int]) – limit on the number of tags to return

	order (str [https://docs.python.org/2.7/library/functions.html#str]) – order of result - “FIRST_TO_LAST” or
“LAST_TO_FIRST”

	Returns

	list of topics/topic_prefix that match the given query
conditions

	Return type

	list

	
insert_topic_tags(tags, update_version=False)

	Add tags to multiple topics.

	Parameters

	
	tags (dict [https://docs.python.org/2.7/library/stdtypes.html#dict]) – dictionary object or file containing the topic
and the tag details. dictionary object or the file content should be
of the format:

<topic_name or prefix or topic_name pattern>: {<valid
tag>:<value>, ... }, ... }

	update_version (bool [https://docs.python.org/2.7/library/functions.html#bool]) – True/False. Default to False.
If set to True and if any of the tags update an existing tag
value the older value would be preserved as part of tag
version history. Note: this feature is not implemented in the current
version of sqlite and mongodb tagging service.

	
load_tag_refs()

	Called right after setup to load a dictionary of reference tags and
its corresponding parent tag. Implementing methods should load
self.tag_refs with tag and parent tag information

	
load_valid_tags()

	Called right after setup to load a dictionary of valid tags. It
should load self.valid_tags with tag and type information

	
on_start(sender, **kwargs)

	Called on start of agent. Calls the methods

	BaseTaggingService.setup()

	BaseTaggingService.load_valid_tags()

	BaseTaggingService.load_tag_refs()

	
query_categories(include_description=False, skip=0, count=None, order='FIRST_TO_LAST')

	Get the available list tag categories. category can have
multiple tags and tags could belong to multiple categories

	Parameters

	
	include_description (bool [https://docs.python.org/2.7/library/functions.html#bool]) – indicate if result should include
available description for categories returned

	skip (int [https://docs.python.org/2.7/library/functions.html#int]) – number of tags to skip. usually used with order

	count (int [https://docs.python.org/2.7/library/functions.html#int]) – limit on the number of tags to return

	order (str [https://docs.python.org/2.7/library/functions.html#str]) – order of result - “FIRST_TO_LAST” or “LAST_TO_FIRST”

	Returns

	list of category names if include_description is False,
list of (category name, description) if include_description is True

	Return type

	list

	
query_tags_by_category(category, include_kind=False, include_description=False, skip=0, count=None, order='FIRST_TO_LAST')

	Get the list of tags for a given category name. category can have
multiple tags and tags could belong to multiple categories

	Parameters

	
	category (str [https://docs.python.org/2.7/library/functions.html#str]) – name of the category for which associated tags
should be returned

	include_kind (bool [https://docs.python.org/2.7/library/functions.html#bool]) – indicate if result should include the
kind/datatype for tags returned

	include_description (bool [https://docs.python.org/2.7/library/functions.html#bool]) – indicate if result should include
available description for tags returned

	skip (int [https://docs.python.org/2.7/library/functions.html#int]) – number of tags to skip. usually used with order

	count (int [https://docs.python.org/2.7/library/functions.html#int]) – limit on the number of tags to return

	order (str [https://docs.python.org/2.7/library/functions.html#str]) – order of result - “FIRST_TO_LAST” or “LAST_TO_FIRST”

	Returns

	Will return one of the following

	list of tag names

	list of (tags, its data type/kind) if include_kind is True

	list of (tags, description) if include_description is True

	list of (tags, its data type/kind, description) if
include_kind is True and include_description is true

	Return type

	list

	
query_tags_by_topic(topic_prefix, include_kind=False, include_description=False, skip=0, count=None, order='FIRST_TO_LAST')

	Get the list of tags for a given topic prefix or name.

	Parameters

	
	topic_prefix (str [https://docs.python.org/2.7/library/functions.html#str]) – topic_prefix for which associated tags should
be returned

	include_kind (bool [https://docs.python.org/2.7/library/functions.html#bool]) – indicate if result should include the
kind/datatype for tags returned

	include_description (bool [https://docs.python.org/2.7/library/functions.html#bool]) – indicate if result should include
available description for tags returned

	skip (int [https://docs.python.org/2.7/library/functions.html#int]) – number of tags to skip. usually used with order

	count (int [https://docs.python.org/2.7/library/functions.html#int]) – limit on the number of tags to return

	order (str [https://docs.python.org/2.7/library/functions.html#str]) – order of result - “FIRST_TO_LAST” or “LAST_TO_FIRST”

	Returns

	Will return one of the following

	list of (tag name, value)

	list of (tag name, value, data type/kind) if include_kind is True

	list of (tag name, value, description) if
include_description is True

	list of (tags, value, data type/kind, description) if
include_kind is True and include_description is true

	Return type

	list

	
query_topics_by_tags(ast, skip=0, count=None, order=None)

	Get list of topic names and topic name prefixes based on query
condition. Query condition is passed as an abstract syntax tree.

	Parameters

	
	ast (tuple) – Abstract syntax tree that represents conditional statement
to be used for matching tags. The abstract syntax tree represents
query condition that is created using the following specification

Query condition is a boolean expression that contains one
or more query conditions combined together with an “AND” or “OR”.
Query conditions can be grouped together using parenthesis.
Each condition in the expression should conform to one of the
following format:

	<tag name/ parent.tag_name> <binary_operator> <value>

	<tag name/ parent.tag_name>

	<tag name/ parent.tag_name> LIKE <regular expression
within single quotes

	the word NOT can be prefixed before any of the above
three to negate the condition.

	expressions can be grouped with parenthesis. For example

condition="(tag1 = 1 or tag1 = 2) and (tag2 < '' and tag2 >
'') and tag3 and (tag4 LIKE '^a.*b$')"
condition="NOT (tag5='US' OR tag5='UK') AND NOT tag3 AND
NOT (tag4 LIKE 'a.*')"
condition="campusRef.geoPostalCode='20500' and equip and
boiler"

	skip (int [https://docs.python.org/2.7/library/functions.html#int]) – number of tags to skip. usually used with order

	count (int [https://docs.python.org/2.7/library/functions.html#int]) – limit on the number of tags to return

	order (str [https://docs.python.org/2.7/library/functions.html#str]) – order of result - “FIRST_TO_LAST” or “LAST_TO_FIRST”

	Returns

	list of topics/topic_prefix that match the given query
conditions

	Return type

	list

	
setup()

	Called on start of agent
Method to establish database connection, do any initial
bootstrap necessary. Example - load master list of tags, units,
categories etc. into data store/memory

	
volttron.platform.agent.base_tagging.p_bool_expr_and(p)

	bool_expr : bool_expr AND bool_expr

	
volttron.platform.agent.base_tagging.p_bool_expr_eq(p)

	bool_expr : ID EQ expr

	
volttron.platform.agent.base_tagging.p_bool_expr_ge(p)

	bool_expr : ID GE expr

	
volttron.platform.agent.base_tagging.p_bool_expr_gt(p)

	bool_expr : ID GT expr

	
volttron.platform.agent.base_tagging.p_bool_expr_id(p)

	bool_expr : ID

	
volttron.platform.agent.base_tagging.p_bool_expr_le(p)

	bool_expr : ID LE expr

	
volttron.platform.agent.base_tagging.p_bool_expr_like1(p)

	bool_expr : ID LIKE SQUOTE_STRING

	
volttron.platform.agent.base_tagging.p_bool_expr_like2(p)

	bool_expr : ID LIKE DQUOTE_STRING

	
volttron.platform.agent.base_tagging.p_bool_expr_lt(p)

	bool_expr : ID LT expr

	
volttron.platform.agent.base_tagging.p_bool_expr_neq(p)

	bool_expr : ID NEQ expr

	
volttron.platform.agent.base_tagging.p_bool_expr_not(p)

	bool_expr : NOT bool_expr

	
volttron.platform.agent.base_tagging.p_bool_expr_or(p)

	bool_expr : bool_expr OR bool_expr

	
volttron.platform.agent.base_tagging.p_bool_expr_paren(p)

	bool_expr : LPAREN bool_expr RPAREN %prec PAREN

	
volttron.platform.agent.base_tagging.p_clause(p)

	clause : bool_expr

	
volttron.platform.agent.base_tagging.p_clause_error(p)

	clause : error

	
volttron.platform.agent.base_tagging.p_error(p)

	

	
volttron.platform.agent.base_tagging.p_expr_div(p)

	expr : expr DIVIDE expr

	
volttron.platform.agent.base_tagging.p_expr_double_quote_string(p)

	expr : DQUOTE_STRING

	
volttron.platform.agent.base_tagging.p_expr_fp(p)

	expr : FPOINT

	
volttron.platform.agent.base_tagging.p_expr_minus(p)

	expr : expr MINUS expr

	
volttron.platform.agent.base_tagging.p_expr_mod(p)

	expr : expr MOD expr

	
volttron.platform.agent.base_tagging.p_expr_number(p)

	expr : NUMBER

	
volttron.platform.agent.base_tagging.p_expr_paren(p)

	expr : LPAREN expr RPAREN %prec PAREN

	
volttron.platform.agent.base_tagging.p_expr_plus(p)

	expr : expr PLUS expr

	
volttron.platform.agent.base_tagging.p_expr_single_quote_string(p)

	expr : SQUOTE_STRING

	
volttron.platform.agent.base_tagging.p_expr_times(p)

	expr : expr TIMES expr

	
volttron.platform.agent.base_tagging.p_expr_uminus(p)

	expr : MINUS expr %prec UMINUS

	
volttron.platform.agent.base_tagging.parse_query(query, tags, refs)

	

	
volttron.platform.agent.base_tagging.pretty_print(tup)

	

	
volttron.platform.agent.base_tagging.t_DQUOTE_STRING(t)

	“([^\n]|(.))*?”

	
volttron.platform.agent.base_tagging.t_FPOINT(t)

	[-+]?d+(.(d+)?([eE][-+]?d+)?|[eE][-+]?d+)

	
volttron.platform.agent.base_tagging.t_ID(t)

	[a-zA-Z_][a-zA-Z_0-9]*.*[a-zA-Z_][a-zA-Z_0-9]*

	
volttron.platform.agent.base_tagging.t_NUMBER(t)

	(-)?d+

	
volttron.platform.agent.base_tagging.t_SQUOTE_STRING(t)

	‘([^\n]|(.))*?’

	
volttron.platform.agent.base_tagging.t_error(t)

	

	
volttron.platform.agent.base_tagging.t_newline(t)

	n+

volttron.platform.agent.base_weather module

volttron.platform.agent.cron module

volttron.platform.agent.driven module

VOLTTRON platform™ abstract agent for to drive VOLTTRON Nation apps.

	
class volttron.platform.agent.driven.AbstractDrivenAgent(out=None, **kwargs)

	Bases: object [https://docs.python.org/2.7/library/functions.html#object]

	
classmethod output_format(input_object)

	The output object takes the resulting input object as a argument
so that it may give correct topics to it’s outputs if needed.

	output schema description

	{TableName1: {name1:OutputDescriptor1, name2:OutputDescriptor2,…},….}

	eg: {‘OAT’: {‘Timestamp’:OutputDescriptor(‘timestamp’, ‘foo/bar/timestamp’),’OAT’:OutputDescriptor(‘OutdoorAirTemperature’, ‘foo/bar/oat’)},

	‘Sensor’: {‘SomeValue’:OutputDescriptor(‘integer’, ‘some_output/value’),
‘SomeOtherValue’:OutputDescriptor(‘boolean’, ‘some_output/value),
‘SomeString’:OutputDescriptor(‘string’, ‘some_output/string)}}

Should always call the parent class output_format and update the dictionary returned from
the parent.

result = super().output_format(input_object)
my_output = {…}
result.update(my_output)
return result

	
run(time, inputs)

	Do work for each batch of timestamped inputs
time- current time
inputs - dict of point name -> value

Must return a results object.

	
shutdown()

	Override this to add shutdown routines.

	
class volttron.platform.agent.driven.ConversionMapper(**kwargs)

	Bases: object [https://docs.python.org/2.7/library/functions.html#object]

	
process_row(row_dict)

	

	
setup_conversion_map(conversion_map_config, field_names)

	

	
class volttron.platform.agent.driven.Results(terminate=False)

	Bases: object [https://docs.python.org/2.7/library/functions.html#object]

	
command(point, value, device=None)

	

	
insert_table_row(table, row)

	

	
log(message, level=10)

	

	
terminate(terminate)

	

volttron.platform.agent.exit_codes module

volttron.platform.agent.green module

VOLTTRON platform™ greenlet coroutine helper classes/functions.

These utilities are meant to be used with the BaseAgent and greenlet to
provide synchronization between light threads (coroutines).

	
exception volttron.platform.agent.green.Timeout

	Bases: Exception

Raised in the greenlet when waiting on a channel times out.

	
class volttron.platform.agent.green.WaitQueue(create_timer)

	Bases: object [https://docs.python.org/2.7/library/functions.html#object]

A holder for tasklets waiting on asynchronous data.

	
kill_all()

	Kill all the tasks in the queue.

	
notify(data, n=1)

	Notify n waiting tasks of the arrival of data.

	
notify_all(data)

	Notify all waiting tasks of the arrival of data.

	
wait(timeout=None)

	Wait for data to become available and return it

If timeout is None, wait indefinitely. Otherwise, timeout if
the task hasn’t been notified within timeout seconds.

	
volttron.platform.agent.green.sleep(timeout, create_timer)

	Yield execution for timeout seconds.

volttron.platform.agent.known_identities module

volttron.platform.agent.matching module

VOLTTRON platform™ topic matching for agent callbacks.

Declaratively attach topic prefix and additional tests for topic
matching to agent methods allowing for automated callback registration
and topic subscription.

Example:

class MyAgent(BaseAgent):
 @match_regex('topic1/(sub|next|part)/title[1-9]')
 def on_subtopic(topic, headers, message, match):
 # This is only executed if topic matches regex
 ...

 @match_glob('root/sub/*/leaf')
 def on_leafnode(topic, headers, message, match):
 # This is only executed if topic matches glob
 ...

 @match_exact('building/xyz/unit/condenser')
 @match_start('campus/PNNL')
 @match_end('unit/blower')
 def on_multimatch(topic, headers, message, match):
 # Multiple matchers can be attached to a method
 ...

	
volttron.platform.agent.matching.iter_match_tests(obj)

	Iterate match tests attached to the methods of an object.

Each iterated item is the 3-tuple (prefix, method, test) where
prefix and test are the same as in match_test() and method is the
method to which the test was attached (and is the expected
callback).

	
volttron.platform.agent.matching.match_all(func)

	Wildcard matcher to register callback for every message.

	
volttron.platform.agent.matching.match_contains(substring, prefix='')

	Return a match decorator to match a component of a topic.

	
volttron.platform.agent.matching.match_end(suffix, prefix='')

	Return a match decorator to match the end of a topic.

	
volttron.platform.agent.matching.match_exact(topic)

	Return a match decorator to match a topic exactly.

	
volttron.platform.agent.matching.match_glob(pattern)

	Return a match decorator for the given glob pattern.

	
volttron.platform.agent.matching.match_headers(required_headers)

	Only call function if required headers match.

match_headers takes a single argument, required_headers, that is a
dictionary containing the required headers and values that must
match for the wrapped handler function to be called.

This decorator is not very useful on its own, because it doesn’t
trigger any subscriptions, but can be useful to filter out messages
that don’t contain the required headers and values.

	
volttron.platform.agent.matching.match_regex(pattern)

	Return a match decorator for the given regular expression.

	
volttron.platform.agent.matching.match_start(prefix)

	Return a match decorator to match the start of a topic.

	
volttron.platform.agent.matching.match_subtopic(prefix, subtopic, max_levels=None)

	Return a match decorator to match a subtopic.

	
volttron.platform.agent.matching.match_test(prefix, test=None)

	Decorate a callback method with subscription and test information.

Returns a decorator to attach (prefix, test) 2-tuples to methods
which can be inspected to automatically subscribe to a topic prefix
and provide a test for triggering a call back to the method.

prefix must match the start of a desired topic and test is either
None or a function of the form test(topic, matched) where topic is
the full topic to test against and matched should be the same as
prefix. The test function must return a value that evaluates to
True if the topic is a match or a value that evaluates to False
otherwise. The test function is only called if
topic.startswith(prefix) is True. If test is None, it is the same
as if test = lambda topic, matched: True.

	
volttron.platform.agent.matching.test_contains(substring)

	Return a test function to match a topic containing substring.

	
volttron.platform.agent.matching.test_end(suffix)

	Return a test function to match the end of a topic.

	
volttron.platform.agent.matching.test_exact(topic, matched)

	Test if topic and match are exactly equal.

	
volttron.platform.agent.matching.test_glob(pattern)

	Return static prefix and regex test for glob pattern.

The pattern may include the following special wildcard patterns:

* Matches zero or more characters.
** Matches zero or more characters, including forward
 slashes (/).
? Matches any single character
[...] Matches any single characters between the brackets. A
 range of adjacent characters may be matched using a
 hyphen (-) between the start and end character. To
 include the hyphen as a search character, include it at
 the end of the pattern. The range may be negated by
 immediately following the opening [with a ^ or !.

	
volttron.platform.agent.matching.test_regex(pattern)

	Return the static prefix and a regex test function for pattern.

	
volttron.platform.agent.matching.test_subtopic(subtopic, max_levels=None)

	Return a test function to match a topic component after the prefix.

volttron.platform.agent.math_utils module

Dumping ground for VOLTTRON platform™ agent math helper functions.

Not meant to replace numpy in all cases. A basic set common math
routines to remove the need for numpy in simple cases.

This module should NEVER import numpy as that would defeat the
purpose.

	
volttron.platform.agent.math_utils.mean(data)

	Return the sample arithmetic mean of data.

	
volttron.platform.agent.math_utils.pstdev(data)

	Calculates the population standard deviation.

	
volttron.platform.agent.math_utils.stdev(data)

	Calculates the sample standard deviation.

volttron.platform.agent.multithreading module

VOLTTRON platform™ multi-threaded agent helper classes/functions.

These utilities are meant to be used with the BaseAgent and threading to
provide synchronization between threads and the main agent loop.

	
exception volttron.platform.agent.multithreading.Timeout

	Bases: Exception

Raised in the thread when waiting on a queue times out.

	
class volttron.platform.agent.multithreading.WaitQueue(lock=None)

	Bases: object [https://docs.python.org/2.7/library/functions.html#object]

A holder for threads waiting on asynchronous data.

	
notify(data, n=1)

	Notify n waiting threads of the arrival of data.

	
notify_all(data)

	Notify all waiting threads of the arrival of data.

	
wait(timeout=None)

	Wait for data to become available and return it

If timeout is None, wait indefinitely. Otherwise, timeout if
the thread hasn’t been notified within timeout seconds.

volttron.platform.agent.sched module

VOLTTRON platform™ agent event scheduling classes.

	
class volttron.platform.agent.sched.Event(function, args=None, kwargs=None)

	Bases: object [https://docs.python.org/2.7/library/functions.html#object]

Base class for schedulable objects.

	
args

	

	
cancel()

	Mark the timer as canceled to avoid a callback.

	
canceled

	

	
finished

	

	
function

	

	
kwargs

	

	
class volttron.platform.agent.sched.EventWithTime(function, args=None, kwargs=None)

	Bases: volttron.platform.agent.sched.Event

Event that passes deadline to event handler.

	
class volttron.platform.agent.sched.Queue

	Bases: object [https://docs.python.org/2.7/library/functions.html#object]

	
delay(time)

	

	
execute(time)

	

	
schedule(time, event)

	

	
class volttron.platform.agent.sched.RecurringEvent(period, function, args=None, kwargs=None)

	Bases: volttron.platform.agent.sched.Event

	
period

	

volttron.platform.agent.utils module

VOLTTRON platform™ agent helper classes/functions.

	
volttron.platform.agent.utils.load_config(config_path)

	Load a JSON-encoded configuration file.

	
volttron.platform.agent.utils.run_agent(cls, subscribe_address=None, publish_address=None, config_path=None, **kwargs)

	Instantiate an agent and run it in the current thread.

Attempts to get keyword parameters from the environment if they
are not set.

	
volttron.platform.agent.utils.start_agent_thread(cls, **kwargs)

	Instantiate an agent class and run it in a new daemon thread.

Returns the thread object.

	
volttron.platform.agent.utils.is_valid_identity(identity_to_check)

	Checks the passed identity to see if it contains invalid characters

A None value for identity_to_check will return False

@:param: string: The vip_identity to check for validity
@:return: boolean: True if values are in the set of valid characters.

	
volttron.platform.agent.utils.load_platform_config(vhome=None)

	Loads the platform config file if the path exists.

	
volttron.platform.agent.utils.get_messagebus()

	Get type of message bus - zeromq or rabbbitmq.

	
volttron.platform.agent.utils.get_fq_identity(identity, platform_instance_name=None)

	Return the fully qualified identity for the passed core identity.

Fully qualified identities are instance_name.identity

	Parameters

	
	identity –

	platform_instance_name – str The name of the platform.

	Returns

	

	
volttron.platform.agent.utils.execute_command(cmds, env=None, cwd=None, logger=None, err_prefix=None) → str

	Executes a command as a subprocess

If the return code of the call is 0 then return stdout otherwise
raise a RuntimeError. If logger is specified then write the exception
to the logger otherwise this call will remain silent.

:param cmds:list of commands to pass to subprocess.run
:param env: environment to run the command with
:param cwd: working directory for the command
:param logger: a logger to use if errors occure
:param err_prefix: an error prefix to allow better tracing through the error message
:return: stdout string if successful

	Raises

	RuntimeError – if the return code is not 0 from suprocess.run

	
volttron.platform.agent.utils.get_aware_utc_now()

	Create a timezone aware UTC datetime object from the system time.

	Returns

	an aware UTC datetime object

	Return type

	datetime

	
volttron.platform.agent.utils.is_secure_mode()

	Get type of message bus - zeromq or rabbbitmq.

volttron.platform.agent.web module

volttron.platform.dbutils package

Submodules

volttron.platform.dbutils.basedb module

	
exception volttron.platform.dbutils.basedb.ConnectionError

	Bases: Exception

Custom class for connection errors

	
class volttron.platform.dbutils.basedb.DbDriver(dbapimodule, **kwargs)

	Bases: object [https://docs.python.org/2.7/library/functions.html#object]

Parent class used by sqlhistorian.historian.SQLHistorian to
do the database operations. This class is inherited by
- volttron.platform.dbutils.mysqlfuncts.MySqlFuncts
- volttron.platform.dbutils.sqlitefuncts.SqlLiteFuncts

	
bulk_insert()

	Function to meet bulk insert requirements. This function can be overridden by historian drivers to yield the
required method for data insertion during bulk inserts in the respective historians. In this generic case it
will yield the single insert method
:yields: insert method

	
close()

	Close connection to database
:return:

	
collect_aggregate(topic_ids, agg_type, start=None, end=None)

	Collect the aggregate data by querying the historian’s data store
:param topic_ids: list of topic ids for which aggregation should be performed.
:param agg_type: type of aggregation
:param start: start time for query (inclusive)
:param end: end time for query (exclusive)
:return: a tuple of (aggregated value, count of records over which this aggregation was computed)

	
commit()

	Commit a transaction

	Returns

	True if successful, False otherwise

	
create_aggregate_store(agg_type, period)

	Create the data structure (table or collection) that is going to store the aggregate data for the give
aggregation type and aggregation time period. Table name should be constructed as <agg_type>_<period>
:param agg_type: The type of aggregation. (avg, sum etc.)
:param period: The time period of aggregation
:return: True if successful, False otherwise

	
cursor()

	

	
execute_many(stmt, args, commit=False)

	Execute a sql statement with multiple args
:param stmt: the statement to execute
:param args: optional arguments
:param commit: True if transaction should be committed. Defaults to False
:return: count of the number of affected rows

	
execute_stmt(stmt, args=None, commit=False)

	Execute a sql statement
:param stmt: the statement to execute
:param args: optional arguments
:param commit: True if transaction should be committed. Defaults to False
:return: count of the number of affected rows

	
get_agg_topic_map()

	Get a map of aggregate_topics to aggregate_topic_id
:return: dict of format
{(agg_topic_name, agg_type, agg_time_period):agg_topic_id}

	
get_agg_topics()

	Get the list of aggregate topics available
:return: list of tuples containing

(agg_topic_name, agg_type, agg_time_period, configured topics/topic name pattern)

	
get_aggregation_list()

	Return list of aggregation supported by the specific data store
:return: list of aggregations

	
get_topic_map()

	Returns details of topics in database
:return: two dictionaries.
- First one maps topic_name.lower() to topic id and
- Second one maps topic_name.lower() to topic name

	
insert_agg_meta(topic_id, metadata)

	Inserts metadata for aggregate topic
:param topic_id: aggregate topic id for which metadata is inserted
:param metadata: metadata
:return: True if execution completes. Raises exception if connection to database fails

	
insert_agg_topic(topic, agg_type, agg_time_period)

	Insert a new aggregate topic
:param topic: topic name to insert
:param agg_type: type of aggregation
:param agg_time_period: time period of aggregation
:return: id of the topic inserted if insert was successful. Raises exception if unable to connect to database

	
insert_agg_topic_stmt()

	
	Returns

	query string to insert an aggregate topic into database

	
insert_aggregate(agg_topic_id, agg_type, period, ts, data, topic_ids)

	Insert aggregate data collected for a specific time period into
database. Data is inserted into <agg_type>_<period> table
:param agg_topic_id: topic id
:param agg_type: type of aggregation
:param period: time period of aggregation
:param ts: end time of aggregation period (not inclusive)
:param data: computed aggregate
:param topic_ids: topic ids or topic ids for which aggregate was computed
:return: True if execution was successful, raises exception in case of connection failures

	
insert_aggregate_stmt(table_name)

	The sql statement to insert collected aggregate for a given time period into database
:param table_name: name of the table into which the aggregate data needs to be inserted
:return: sql insert/replace statement to insert aggregate data for a specific time slice
:rtype: str

	
insert_data(ts, topic_id, data)

	Inserts data for topic
:param ts: timestamp
:param topic_id: topic id for which data is inserted
:param data: data value
:return: True if execution completes. raises Exception if unable to connect to database

	
insert_data_query()

	
	Returns

	query string to insert data into database

	
insert_meta(topic_id, metadata)

	Inserts metadata for topic
:param topic_id: topic id for which metadata is inserted
:param metadata: metadata
:return: True if execution completes. Raises exception if unable to connect to database

	
insert_meta_query()

	
	Returns

	query string to insert metadata for a topic into database

	
insert_topic(topic)

	Insert a new topic
:param topic: topic to insert
:return: id of the topic inserted if insert was successful. Raises exception if unable to connect to database

	
insert_topic_query()

	
	Returns

	query string to insert a topic into database

	
manage_db_size(history_limit_timestamp, storage_limit_gb)

	Optional function to manage database size.
:param history_limit_timestamp: remove all data older than this timestamp
:param storage_limit_gb: remove oldest data until database is smaller than this value.

	
query(topic_ids, id_name_map, start=None, end=None, agg_type=None, agg_period=None, skip=0, count=None, order='FIRST_TO_LAST')

	Queries the raw historian data or aggregate data and returns the results of the query
:param topic_ids: list of topic ids to query for.
:param id_name_map: dictionary that maps topic id to topic name
:param start: Start of query timestamp as a datetime.
:param end: End of query timestamp as a datetime.
:param agg_type: If this is a query for aggregate data, the type of aggregation (for example, sum, avg)
:param agg_period: If this is a query for aggregate data, the time period of aggregation
:param skip: Skip this number of results.
:param count: Limit results to this value. When the query is for multiple topics, count applies to individual
topics. For example, a query on 2 topics with count=5 will return 5 records for each topic
:param order: How to order the results, either “FIRST_TO_LAST” or “LAST_TO_FIRST”
:type start: datetime
:type end: datetime
:type skip: int
:type count: int
:type order: str
:return: result of the query in the format:
.. code-block:: python

{
topic_name:[(timestamp1, value1),

(timestamp2:,value2),
…],

	topic_name:[(timestamp1, value1),

	(timestamp2:,value2),
…],

…}

	
query_topics_by_pattern(topic_pattern)

	Return a map of {topic_name.lower():topic_id} that matches the given pattern
:param topic_pattern: pattern to match against topic_name
:return:

	
read_tablenames_from_db(meta_table_name)

	Reads names of the tables used by this historian to store data,
topics, metadata, aggregate topics and aggregate metadata
:param meta_table_name: The volttron metadata table in which table definitions are stored
:return: table names
.. code-block:: python

	{

	‘data_table’: name of table that store data,
‘topics_table’:name of table that store list of topics,
‘meta_table’:name of table that store metadata,
‘agg_topics_table’:name of table that stores aggregate topics,
‘agg_meta_table’:name of table that store aggregate metadata
}

	
replace_agg_meta_stmt()

	
	Returns

	query string to insert metadata for an aggregate topic into

database

	
rollback()

	Rollback a transaction
:return: True if successful, False otherwise

	
select(query, args=None, fetch_all=True)

	Execute a select statement
:param query: select statement
:param args: arguments for the where clause
:param fetch_all: Set to True if function should return retrieve all
the records from cursors and return it. Set to False to return cursor.
:return: resultant rows if fetch_all is True else returns the cursor
It is up to calling method to close the cursor

	
setup_historian_tables()

	Create historian tables if necessary

	
update_agg_topic(agg_id, agg_topic_name)

	Update a aggregate topic name
:param agg_id: topic id for which update is done
:param agg_topic_name: new aggregate topic name
:return: True if execution is complete. Raises exception if unable to
connect to database

	
update_agg_topic_stmt()

	
	Returns

	query string to update an aggregate topic in database

	
update_topic(topic, topic_id)

	Update a topic name
:param topic: new topic name
:param topic_id: topic id for which update is done
:return: True if execution is complete. Raises exception if unable to connect to database

	
update_topic_query()

	
	Returns

	query string to update a topic in database

	
volttron.platform.dbutils.basedb.closing(obj)

	

volttron.platform.dbutils.crateutils module

	
volttron.platform.dbutils.crateutils.create_schema(connection, schema='historian', table_names={}, num_replicas='0-1', num_shards=6, use_v2=True)

	

	
volttron.platform.dbutils.crateutils.drop_schema(connection, truncate_tables, schema=None, truncate=True)

	

	
volttron.platform.dbutils.crateutils.insert_data_query(schema, table_name)

	

	
volttron.platform.dbutils.crateutils.insert_topic_query(schema, table_name)

	

	
volttron.platform.dbutils.crateutils.select_all_topics_query(schema, table_name)

	

	
volttron.platform.dbutils.crateutils.select_topics_metadata_query(schema, table_name)

	

	
volttron.platform.dbutils.crateutils.update_topic_query(schema, table_name)

	

volttron.platform.dbutils.influxdbutils module

volttron.platform.dbutils.mongoutils module

	
volttron.platform.dbutils.mongoutils.get_agg_topic_map(client, agg_topics_collection)

	

	
volttron.platform.dbutils.mongoutils.get_agg_topics(client, agg_topics_collection, agg_meta_collection)

	

	
volttron.platform.dbutils.mongoutils.get_mongo_client(connection_params, **kwargs)

	

	
volttron.platform.dbutils.mongoutils.get_tagging_queries_from_ast(tup, tag_refs, sub_queries)

	

	
volttron.platform.dbutils.mongoutils.get_topic_map(client, topics_collection)

	

volttron.platform.dbutils.mysqlfuncts module

	
class volttron.platform.dbutils.mysqlfuncts.MySqlFuncts(connect_params, table_names)

	Bases: volttron.platform.dbutils.basedb.DbDriver

	
collect_aggregate(topic_ids, agg_type, start=None, end=None)

	Collect the aggregate data by querying the historian’s data store
:param topic_ids: list of topic ids for which aggregation should be performed.
:param agg_type: type of aggregation
:param start: start time for query (inclusive)
:param end: end time for query (exclusive)
:return: a tuple of (aggregated value, count of records over which this aggregation was computed)

	
create_aggregate_store(agg_type, agg_time_period)

	Create the data structure (table or collection) that is going to store the aggregate data for the give
aggregation type and aggregation time period. Table name should be constructed as <agg_type>_<period>
:param agg_type: The type of aggregation. (avg, sum etc.)
:param period: The time period of aggregation
:return: True if successful, False otherwise

	
get_agg_topic_map()

	Get a map of aggregate_topics to aggregate_topic_id
:return: dict of format
{(agg_topic_name, agg_type, agg_time_period):agg_topic_id}

	
get_agg_topics()

	Get the list of aggregate topics available
:return: list of tuples containing

(agg_topic_name, agg_type, agg_time_period, configured topics/topic name pattern)

	
get_aggregation_list()

	Return list of aggregation supported by the specific data store
:return: list of aggregations

	
get_topic_map()

	Returns details of topics in database
:return: two dictionaries.
- First one maps topic_name.lower() to topic id and
- Second one maps topic_name.lower() to topic name

	
init_microsecond_support()

	

	
insert_agg_topic_stmt()

	
	Returns

	query string to insert an aggregate topic into database

	
insert_aggregate_stmt(table_name)

	The sql statement to insert collected aggregate for a given time period into database
:param table_name: name of the table into which the aggregate data needs to be inserted
:return: sql insert/replace statement to insert aggregate data for a specific time slice
:rtype: str

	
insert_data_query()

	
	Returns

	query string to insert data into database

	
insert_meta_query()

	
	Returns

	query string to insert metadata for a topic into database

	
insert_topic_query()

	
	Returns

	query string to insert a topic into database

	
query(topic_ids, id_name_map, start=None, end=None, skip=0, agg_type=None, agg_period=None, count=None, order='FIRST_TO_LAST')

	Queries the raw historian data or aggregate data and returns the results of the query
:param topic_ids: list of topic ids to query for.
:param id_name_map: dictionary that maps topic id to topic name
:param start: Start of query timestamp as a datetime.
:param end: End of query timestamp as a datetime.
:param agg_type: If this is a query for aggregate data, the type of aggregation (for example, sum, avg)
:param agg_period: If this is a query for aggregate data, the time period of aggregation
:param skip: Skip this number of results.
:param count: Limit results to this value. When the query is for multiple topics, count applies to individual
topics. For example, a query on 2 topics with count=5 will return 5 records for each topic
:param order: How to order the results, either “FIRST_TO_LAST” or “LAST_TO_FIRST”
:type start: datetime
:type end: datetime
:type skip: int
:type count: int
:type order: str
:return: result of the query in the format:
.. code-block:: python

{
topic_name:[(timestamp1, value1),

(timestamp2:,value2),
…],

	topic_name:[(timestamp1, value1),

	(timestamp2:,value2),
…],

…}

	
query_topics_by_pattern(topic_pattern)

	Return a map of {topic_name.lower():topic_id} that matches the given pattern
:param topic_pattern: pattern to match against topic_name
:return:

	
record_table_definitions(tables_def, meta_table_name)

	

	
replace_agg_meta_stmt()

	
	Returns

	query string to insert metadata for an aggregate topic into

database

	
setup_aggregate_historian_tables(meta_table_name)

	

	
setup_historian_tables()

	Create historian tables if necessary

	
update_agg_topic_stmt()

	
	Returns

	query string to update an aggregate topic in database

	
update_topic_query()

	
	Returns

	query string to update a topic in database

volttron.platform.dbutils.postgresqlfuncts module

volttron.platform.dbutils.redshiftfuncts module

volttron.platform.dbutils.sqlitefuncts module

	
class volttron.platform.dbutils.sqlitefuncts.SqlLiteFuncts(connect_params, table_names)

	Bases: volttron.platform.dbutils.basedb.DbDriver

Implementation of SQLite3 database operation for
sqlhistorian.historian.SQLHistorian and
sqlaggregator.aggregator.SQLAggregateHistorian
For method details please refer to base class
volttron.platform.dbutils.basedb.DbDriver

	
collect_aggregate(topic_ids, agg_type, start=None, end=None)

	This function should return the results of a aggregation query
@param topic_ids: list of single topics
@param agg_type: type of aggregation
@param start: start time
@param end: end time
@return: aggregate value, count of number of records over which
aggregation was computed

	
create_aggregate_store(agg_type, period)

	Create the data structure (table or collection) that is going to store the aggregate data for the give
aggregation type and aggregation time period. Table name should be constructed as <agg_type>_<period>
:param agg_type: The type of aggregation. (avg, sum etc.)
:param period: The time period of aggregation
:return: True if successful, False otherwise

	
get_agg_topic_map()

	Get a map of aggregate_topics to aggregate_topic_id
:return: dict of format
{(agg_topic_name, agg_type, agg_time_period):agg_topic_id}

	
get_agg_topics()

	Get the list of aggregate topics available
:return: list of tuples containing

(agg_topic_name, agg_type, agg_time_period, configured topics/topic name pattern)

	
get_aggregation_list()

	Return list of aggregation supported by the specific data store
:return: list of aggregations

	
static get_tagging_query_from_ast(topic_tags_table, tup, tag_refs)

	Get a query condition syntax tree and generate sqlite query to query
topic names by tags. It calls the get_compound_query to parse the
abstract syntax tree tuples and then fixes the precedence

Example:
User input query string :

campus.geoPostalCode=”20500” and equip and boiler and “equip_tag 7” > 4

Example output sqlite query

	SELECT topic_prefix from test_topic_tags WHERE tag=”campusRef”

	
	and value IN(

	SELECT topic_prefix from test_topic_tags WHERE tag=”campus” and
value=1
INTERSECT
SELECT topic_prefix from test_topic_tags WHERE tag=”geoPostalCode”
and value=”20500”

)

INTERSECT
SELECT topic_prefix from test_tags WHERE tag=”equip” and value=1
INTERSECT
SELECT topic_prefix from test_tags WHERE tag=”boiler” and value=1
INTERSECT
SELECT topic_prefix from test_tags WHERE tag = “equip_tag 7” and
value > 4

	Parameters

	
	topic_tags_table – table to query

	tup – parsed query string (abstract syntax tree)

	tag_refs – dictionary of ref tags and its parent tag

	Returns

	sqlite query

:rtype str

	
get_topic_map()

	Returns details of topics in database
:return: two dictionaries.
- First one maps topic_name.lower() to topic id and
- Second one maps topic_name.lower() to topic name

	
insert_agg_topic_stmt()

	
	Returns

	query string to insert an aggregate topic into database

	
insert_aggregate_stmt(table_name)

	The sql statement to insert collected aggregate for a given time period into database
:param table_name: name of the table into which the aggregate data needs to be inserted
:return: sql insert/replace statement to insert aggregate data for a specific time slice
:rtype: str

	
insert_data_query()

	
	Returns

	query string to insert data into database

	
insert_meta_query()

	
	Returns

	query string to insert metadata for a topic into database

	
insert_topic_query()

	
	Returns

	query string to insert a topic into database

	
manage_db_size(history_limit_timestamp, storage_limit_gb)

	Manage database size.
:param history_limit_timestamp: remove all data older than this timestamp
:param storage_limit_gb: remove oldest data until database is smaller than this value.

	
query(topic_ids, id_name_map, start=None, end=None, agg_type=None, agg_period=None, skip=0, count=None, order='FIRST_TO_LAST')

	This function should return the results of a query in the form:

{"values": [(timestamp1, value1), (timestamp2, value2), ...],
 "metadata": {"key1": value1, "key2": value2, ...}}

metadata is not required (The caller will normalize this to {} for you)
@param topic_ids: topic_ids to query data for
@param id_name_map: dictionary containing topic_id:topic_name
@param start:
@param end:
@param agg_type:
@param agg_period:
@param skip:
@param count:
@param order:

	
query_topics_by_pattern(topic_pattern)

	Return a map of {topic_name.lower():topic_id} that matches the given pattern
:param topic_pattern: pattern to match against topic_name
:return:

	
record_table_definitions(table_defs, meta_table_name)

	

	
regex_select(query, args, fetch_all=True, cache_size=None)

	

	
static regexp(expr, item)

	

	
replace_agg_meta_stmt()

	
	Returns

	query string to insert metadata for an aggregate topic into

database

	
set_cache(cache_size)

	

	
setup_aggregate_historian_tables(meta_table_name)

	

	
setup_historian_tables()

	Create historian tables if necessary

	
update_agg_topic_stmt()

	
	Returns

	query string to update an aggregate topic in database

	
update_topic_query()

	
	Returns

	query string to update a topic in database

volttron.platform.dbutils.sqlutils module

	
volttron.platform.dbutils.sqlutils.get_dbfuncts_class(database_type)

	

volttron.platform.lib.inotify package

Interface to Linux inotify system calls.

	
class volttron.platform.lib.inotify.inotify(flags=0)

	Bases: volttron.platform.lib.inotify._inotify

Submodules

volttron.platform.lib.inotify.green module

gevent-safe interface to Linux inotify system calls.

	
class volttron.platform.lib.inotify.green.inotify(flags=0)

	Bases: volttron.platform.lib.inotify._inotify

	
read()

	

volttron.platform.lib package

Subpackages

	volttron.platform.lib.inotify package
	Submodules

	volttron.platform.lib.inotify.green module

Submodules

volttron.platform.lib.kwonlyargs module

Support functions for implementing keyword-only arguments.

This module is designed to make it easy to support keyword-only
arguments in Python 2.7 while providing the same kind of exceptions one
would see with Python 3.x.

Basic usage:

def foo(arg1, *args, **kwargs):
 # Use required context manager to convert KeyError exceptions
 # to TypeError with an appropriate message.
 with required:
 arg2 = kwargs.pop('arg2')
 arg3 = kwargs.pop('arg3')
 # Provide a default to pop for optional arguments
 arg4 = kwargs.pop('arg4', 'default value')
 # Include the next line to disallow additional keyword args
 assertempty(kwargs)

	
volttron.platform.lib.kwonlyargs.assertempty(kwargs)

	Raise TypeError if kwargs is not empty.

volttron.platform.lib.prctl module

Python interface to Linux process control mechanism.

Exports prctl system call.

See also prctl(2).

	
volttron.platform.lib.prctl.prctl(option, *args)

	Perform control operations on a process using prctl(2).

Perform control operations on a process by passing in one of the
PR_GET_* or PR_SET_* options and any additional arguments as
specified by the prctl documentation. The result varies based on
the option. An OSError exception is raised on error.

See also prctl(2).

volttron.platform.messaging package

Submodules

volttron.platform.messaging.headers module

VOLTTRON platform™ messaging header name constants.

	
class volttron.platform.messaging.headers.Headers(*args, **kwargs)

	Bases: dict

Case-insensitive dictionary for HTTP-like headers.

	
class Key

	Bases: str [https://docs.python.org/2.7/library/functions.html#str]

	
copy() → a shallow copy of D

	

	
dict

	Return a dictionary with originally-cased keys.

	
get(k[, d]) → D[k] if k in D, else d. d defaults to None.

	

	
setdefault(k[, d]) → D.get(k,d), also set D[k]=d if k not in D

	

	
update([E,]**F) → None. Update D from dict/iterable E and F.

	If E is present and has a .keys() method, then does: for k in E: D[k] = E[k]
If E is present and lacks a .keys() method, then does: for k, v in E: D[k] = v
In either case, this is followed by: for k in F: D[k] = F[k]

volttron.platform.messaging.health module

	
class volttron.platform.messaging.health.Status

	Bases: object [https://docs.python.org/2.7/library/functions.html#object]

The Status objects wraps the context status and last reported into a
small object that can be serialized and sent across the zmq message bus.

	There are two static methods for constructing Status objects:

	
	from_json() Expects a json string as input.

	build() Expects at least a status in the ACCEPTABLE_STATUS tuple.

The build() method also takes a context and a callback function that will
be called when the status changes.

	
as_dict()

	Returns a copy of the status object properties as a dictionary.

@return:

	
as_json()

	Serializes the object to a json string.

	Note:

	Does not serialize the change callback function.

	Returns

	

	
static build(status, context=None, status_changed_callback=None)

	Constructs a Status object and initializes its state using the
passed parameters.

	Parameters

	
	status –

	context –

	status_changed_callback –

	Returns

	

	
context

	

	
static from_json(data, status_changed_callback=None)

	Deserializes a Status object and returns it to the caller.

	Parameters

	
	data –

	status_changed_callback –

	Returns

	

	
last_updated

	

	
status

	

	
update_status(status, context=None)

	Updates the internal state of the Status object.

This method will throw errors if the context is not serializable or
if the status parameter is not within the ACCEPTABLE_STATUS tuple.

	Parameters

	
	status –

	context –

	Returns

	

volttron.platform.messaging.socket module

VOLTTRON platform™ messaging classes.

	
class volttron.platform.messaging.socket.Headers(*args, **kwargs)

	Bases: dict

Case-insensitive dictionary for HTTP-like headers.

	
class Key

	Bases: str [https://docs.python.org/2.7/library/functions.html#str]

	
copy() → a shallow copy of D

	

	
dict

	Return a dictionary with originally-cased keys.

	
get(k[, d]) → D[k] if k in D, else d. d defaults to None.

	

	
setdefault(k[, d]) → D.get(k,d), also set D[k]=d if k not in D

	

	
update([E,]**F) → None. Update D from dict/iterable E and F.

	If E is present and has a .keys() method, then does: for k in E: D[k] = E[k]
If E is present and lacks a .keys() method, then does: for k, v in E: D[k] = v
In either case, this is followed by: for k in F: D[k] = F[k]

	
class volttron.platform.messaging.socket.Socket(socket_type, context=None)

	Bases: zmq.sugar.socket.Socket

ØMQ socket with additional agent messaging methods.

	
recv_message(flags=0)

	Recieve a message as (topic, headers, message) tuple.

	
recv_message_ex(flags=0)

	Receive a message as (content type, message) tuples.

Like recv_message(), returns a three tuple. However, the final
message component contains a list of 2-tuples instead of a list
of messages. These 2-tuples contain the content- type and the
data.

	
send_message(topic, headers, *msg_parts, **kwargs)

	Send a multipart message with topic and headers.

Send a multipart message on the socket with topic being a UTF-8
string, headers can be a dictionary or a Headers object, and
msg_parts is the optional parts of the message. The media or
content type of each message component should be included in the
‘Content-Type’ header which should be a list of MIME types or a
string if there is only one message part.

	
send_message_ex(topic, headers, *msg_tuples, **kwargs)

	Send messages given as (content-type, message) tuples.

Similar to the send_message method except that messages are given as
2-tuples with the MIME type as the first element and the message
data as the second element.

	
send_string(u, flags=0, copy=True, encoding='utf-8')

	Send a Python unicode string as a message with an encoding.

0MQ communicates with raw bytes, so you must encode/decode
text (unicode on py2, str on py3) around 0MQ.

	uPython unicode string (unicode on py2, str on py3)

	The unicode string to send.

	flagsint, optional

	Any valid flags for Socket.send().

	encodingstr [default: ‘utf-8’]

	The encoding to be used

volttron.platform.messaging.topics module

VOLTTRON platform™ topic templates.

Templates of standard topics. Fields in the templates are replaced by
calling the template with the field value included in the keyword
arguments. Fields are replaced from left to right as long as a
replacement can be made. Once a field is reached which cannot be
replaced, everything in the replaced portion up to the last double slash
is returned. Fields cannot be skipped, but may be included
unsubstituted by using None for the field value. Below are some
examples to demonstrate.

>>> T = _('root/{top}//{middle}//{bottom}')
>>> T()
Topic(u'root')
>>> T(top='first')
Topic(u'root/first')
>>> T(top='first', middle='second')
Topic(u'root/first/second')
>>> T(top='first', middle='second', bottom='third')
Topic(u'root/first/second/third')
>>> unicode(T(top='first', middle='second', bottom='third'))
u'root/first/second/third'
>>> T(top='first', bottom='third')
ValueError: unused keyword argument: bottom
>>> T(top='first', middle=None, bottom='third')
Topic(u'root/first/{middle}/third')
>>> T(top='first', middle=None, bottom='third')(middle='.')
Topic(u'root/first/third')
>>> T(top='first', middle=None, bottom='third')(middle='..')
Topic(u'root/third')
>>> T._(top='first', middle=None, bottom='third')
Topic(u'root/first//{middle}//third')

volttron.platform.messaging.utils module

VOLTTRON platform™ messaging utilities.

	
volttron.platform.messaging.utils.normtopic(topic)

	Normalize topic, removing extra slashes and dots.

	
class volttron.platform.messaging.utils.Topic(format_string)

	Bases: str [https://docs.python.org/2.7/library/functions.html#str]

	
format(*args, **kwargs) → str

	Return a formatted version of S, using substitutions from args and kwargs.
The substitutions are identified by braces (‘{‘ and ‘}’).

	
vformat(kwargs)

	

volttron.platform.vip.agent.subsystems package

	
class volttron.platform.vip.agent.subsystems.PeerList(core)

	Bases: volttron.platform.vip.agent.subsystems.base.SubsystemBase

	
add_peer(peer, message_bus=None)

	

	
drop_peer(peer, message_bus=None)

	

	
list()

	

	
list_with_messagebus()

	

	
class volttron.platform.vip.agent.subsystems.Ping(core)

	Bases: volttron.platform.vip.agent.subsystems.base.SubsystemBase

	
ping(peer, *args)

	

	
class volttron.platform.vip.agent.subsystems.RPC(core, owner, peerlist_subsys)

	Bases: volttron.platform.vip.agent.subsystems.base.SubsystemBase

	
allow(capabilities)

	Decorator specifies required agent capabilities to call a method.

This is designed to be used with the export decorator:

@RPC.export
@RPC.allow('can_read_status')
def get_status():
 ...

Multiple capabilities can be provided in a list:
.. code-block:: python

@RPC.allow([‘can_read_status’, ‘can_call_my_methods’])

	
batch(peer, requests)

	

	
call(peer, method, *args, **kwargs)

	

	
export(name=None)

	

	
notify(peer, method, *args, **kwargs)

	

	
class volttron.platform.vip.agent.subsystems.Hello(core)

	Bases: volttron.platform.vip.agent.subsystems.base.SubsystemBase

The hello subsystem allows an agent to determine its identity.

The identity is possibly a dynamically generated uuid from which the
executing agent does not know. This subsystem allows the agent to be
able to determine it’s identity from a peer. By default that peer is
the connected router, however this could be another agent.

	
hello(peer='')

	Receives a welcome message from the peer (default to ‘’ router)

The welcome message will respond with a 3 element list:

	The vip version (default 1.0)

	The peer who responded (should be the same as peer argument
to this function.

	The id of the requester (i.e. this object). This will be the
identity when the agent connects to the router or the specified
identity when the Agent is constructed.

	Parameters

	peer – The peer to receive the response from.

	Returns

	[version, peer, identity]

	
class volttron.platform.vip.agent.subsystems.PubSub(core, rpc_subsys, peerlist_subsys, owner)

	Bases: volttron.platform.vip.agent.subsystems.base.SubsystemBase

Pubsub subsystem concrete class implementation for ZMQ message bus.

	
list(peer, prefix='', bus='', subscribed=True, reverse=False, all_platforms=False)

	Gets list of subscriptions matching the prefix and bus for the specified peer.
param peer: peer
type peer: str
param prefix: prefix of a topic
type prefix: str
param bus: bus
type bus: bus
param subscribed: subscribed or not
type subscribed: boolean
param reverse: reverse
type reverse:
:returns: List of subscriptions, i.e, list of tuples of bus, topic and
flag to indicate if peer is a subscriber or not
:rtype: list of tuples

	Return Values

	

List of tuples [(topic, bus, flag to indicate if peer is a subscriber or not)]

	
publish(peer: str, topic: str, headers=None, message=None, bus='')

	Publish a message to a given topic via a peer.

Publish headers and message to all subscribers of topic on bus.
If peer is None, use self. Adds volttron platform version
compatibility information to header as variables
min_compatible_version and max_compatible version
param peer: peer
type peer: str
param topic: topic for the publish message
type topic: str
param headers: header info for the message
type headers: None or dict
param message: actual message
type message: None or any
param bus: bus
type bus: str
return: Number of subscribers the message was sent to.
:rtype: int

	Return Values

	

Number of subscribers

	
subscribe(peer, prefix, bus='', all_platforms=False, persistent_queue=None)

	

	
synchronize()

	Synchronize local subscriptions with the PubSubService.

	
unsubscribe(peer, prefix, callback, bus='', all_platforms=False)

	Unsubscribe and remove callback(s).

Remove all handlers matching the given info - peer, callback and bus, which was used earlier to subscribe as
well. If all handlers for a topic prefix are removed, the topic is also unsubscribed.
param peer: peer
type peer: str
param prefix: prefix that needs to be unsubscribed
type prefix: str
param callback: callback method
type callback: method
param bus: bus
type bus: bus
return: success or not
:rtype: boolean

	Return Values

	

success or not

	
class volttron.platform.vip.agent.subsystems.RMQPubSub(core, rpc_subsys, peerlist_subsys, owner)

	Bases: volttron.platform.vip.agent.subsystems.base.SubsystemBase

Pubsub subsystem concrete class implementation for RabbitMQ message bus.

	
list(peer, prefix='', bus='', subscribed=True, reverse=False, all_platforms=False)

	Gets list of subscriptions matching the prefix
param peer: peer
type peer: str
param prefix: prefix of a topic
type prefix: str
param bus: bus
type bus: bus
param subscribed: subscribed or not
type subscribed: boolean
param reverse: reverse
type reverse:
:returns: List of subscriptions, i.e, list of tuples of bus, topic and flag to indicate if peer is a
subscriber or not
:rtype: list of tuples

	Return Values

	

List of tuples [(bus, topic, flag to indicate if peer is a subscriber or not)]

	
on_delivery_confirmation(method_frame)

	Invoked by pika when RabbitMQ responds to a Basic.Publish RPC
command, passing in either a Basic.Ack or Basic.Nack frame with
the delivery tag of the message that was published. The delivery tag
is an integer counter indicating the message number that was sent
on the channel via Basic.Publish. Here we’re just doing house keeping
to keep track of stats and remove message numbers that we expect
a delivery confirmation of from the list used to keep track of messages
that are pending confirmation.

	Parameters

	method_frame (pika.frame.Method) – Basic.Ack or Basic.Nack frame

	
publish(peer, topic, headers=None, message=None, bus='')

	Publish a message to a given topic via a peer.

Publish headers and message to all subscribers of topic on bus.
If peer is None, use self. Adds volttron platform version
compatibility information to header as variables
min_compatible_version and max_compatible version
param peer: peer
type peer: str
param topic: topic for the publish message
type topic: str
param headers: header info for the message
type headers: None or dict
param message: actual message
type message: None or any
param bus: bus
type bus: str
return: Number of subscribers the message was sent to.
:rtype: int

	Return Values

	

Number of subscribers

	
set_result(ident, value=None)

	

	
subscribe(peer, prefix, bus='', all_platforms=False, persistent_queue=None)

	Class method for subscribe
:param peer: “pubsub” string
:param prefix: prefix of the topic
:param bus: bus
:param all_platforms: Flag indicating if type is ‘local’ or ‘all’
:param persistent_queue: Name of the queue for persistent behavior
:return:

	
synchronize()

	Synchronize local subscriptions with RMQ broker.
:return:

	
unsubscribe(peer, prefix, callback, bus='', all_platforms=False)

	Unsubscribe and remove callback(s).

Remove all handlers matching the given info - peer, callback and bus,
which was used earlier to subscribe as well. If all handlers for a
topic prefix are removed, the topic is also unsubscribed.
param peer: peer
type peer: str
param prefix: prefix that needs to be unsubscribed
type prefix: str
param callback: callback method
type callback: method
param bus: bus
type bus: bus
return: success or not
:rtype: boolean

	Return Values

	

success or not

	
class volttron.platform.vip.agent.subsystems.Channel(core)

	Bases: volttron.platform.vip.agent.subsystems.base.SubsystemBase

	
ADDRESS = 'inproc://subsystem/channel'

	

	
create(peer, name=None)

	

	
class volttron.platform.vip.agent.subsystems.Heartbeat(owner, core, rpc, pubsub, heartbeat_autostart, heartbeat_period)

	Bases: volttron.platform.vip.agent.subsystems.base.SubsystemBase

	
publish()

	

	
reconnect(sender, **kwargs)

	

	
restart()

	RPC method

Restart the heartbeat with the current period. The heartbeat will
be immediately sending the heartbeat to the message bus.

	
set_period(period)

	RPC method

Set heartbeat period.

	Parameters

	period – Time in seconds between publishes.

	
start()

	RPC method

Starts an agent’s heartbeat.

	
start_with_period(period)

	RPC method

Set period and start heartbeat.

	Parameters

	period – Time in seconds between publishes.

	
stop()

	RPC method

Stop an agent’s heartbeat.

	
class volttron.platform.vip.agent.subsystems.Health(owner, core, rpc)

	Bases: volttron.platform.vip.agent.subsystems.base.SubsystemBase

	
add_status_callback(fn)

	Add callbacks to the passed function. The function must have the
following interface

	Parameters

	
	fn – The method to be executed when status is changed.

	fn – callable

	
get_status()

	“RPC method

Returns the last updated status from the object with the context.

The minimum output from the status would be:

	{

	“status”: “GOOD”,
“context”: None,
“utc_last_update”: “2016-03-31T15:40:32.685138+0000”

}

	
get_status_json()

	“RPC method

Returns the last updated status from the object with the context.

The minimum output from the status would be:

	{

	“status”: “GOOD”,
“context”: None,
“utc_last_update”: “2016-03-31T15:40:32.685138+0000”

}

	
get_status_value()

	

	
publish()

	

	
send_alert(alert_key, statusobj)

	An alert_key is a quasi-unique key. A listener to the alert can
determine whether to pass the alert on to a higher level based upon
the frequency of this alert.

	Parameters

	
	alert_key –

	context –

	Returns

	

	
set_status(status, context=None)

	RPC method

Updates the agents status to the new value with the specified context.

	Param

	status: str: GODD, BAD

	Param

	context: str: A serializable that denotes the context of

status.

	
class volttron.platform.vip.agent.subsystems.ConfigStore(owner, core, rpc)

	Bases: volttron.platform.vip.agent.subsystems.base.SubsystemBase

	
delete(config_name, trigger_callback=False, send_update=True)

	
	Delete a configuration by name. May not be called from a callback as this will cause

	deadlock with the platform. Will produce a runtime error if done so.

	Parameters

	
	config_name (str [https://docs.python.org/2.7/library/functions.html#str]) – Configuration to remove from store.

	trigger_callback (bool [https://docs.python.org/2.7/library/functions.html#bool]) – Tell the platform to trigger callbacks on the agent for this change.

	
delete_default(config_name)

	Called to delete the contents of a default configuration file.

May not be called after the onsetup phase of an agents lifetime. Will produce a runtime error if done so.

	Parameters

	config_name (str [https://docs.python.org/2.7/library/functions.html#str]) – Configuration to remove from store.

	
get(config_name='config')

	Returns the contents of a configuration.

	Parameters

	config_name (str [https://docs.python.org/2.7/library/functions.html#str]) – Name of configuration to add to store.

	Returns

	Configuration contents

	Return type

	dict [https://docs.python.org/2.7/library/stdtypes.html#dict], list, or string

	Return Values

	

The contents of the configuration specified.

	
list()

	Returns a list of configuration names for this agent.

	Returns

	Configuration names

	Return type

	list

	Return Values

	

A list of all the configuration names available for this agent.

	
set(config_name, contents, trigger_callback=False, send_update=True)

	Called to set the contents of a configuration.

May not be called before the onstart phase of an agents lifetime.

May not be called from a configuration callback. Will produce a runtime error if done so.

	Parameters

	
	config_name (str [https://docs.python.org/2.7/library/functions.html#str]) – Name of configuration to add to store.

	contents (str [https://docs.python.org/2.7/library/functions.html#str], dict [https://docs.python.org/2.7/library/stdtypes.html#dict], list) – Contents of the configuration. May be a string, dictionary, or list.

	trigger_callback (bool [https://docs.python.org/2.7/library/functions.html#bool]) – Tell the platform to trigger callbacks on the agent for this change.

	
set_default(config_name, contents)

	Called to set the contents of a default configuration file. Default configurations are used if the
configuration store does not contain a configuration with that name.

May not be called after the onsetup phase of an agents lifetime. Will produce a runtime error if done so.

	Parameters

	
	config_name (str [https://docs.python.org/2.7/library/functions.html#str]) – Name of configuration to add to store.

	contents (str [https://docs.python.org/2.7/library/functions.html#str], dict [https://docs.python.org/2.7/library/stdtypes.html#dict], list) – Contents of the configuration. May be a string, dictionary, or list.

	
subscribe(callback, actions={'DELETE', 'NEW', 'UPDATE'}, pattern='*')

	Subscribe to changes to a configuration.

	Parameters

	
	callback (str [https://docs.python.org/2.7/library/functions.html#str]) – Function to call in response to changes to a configuration.

	actions (str [https://docs.python.org/2.7/library/functions.html#str] or list) – Change actions to respond to. Valid values are “NEW”, “UPDATE”, and “DELETE”. May be a single action or a list of actions.

	pattern (str [https://docs.python.org/2.7/library/functions.html#str]) – Configuration name pattern to match to. Uses Unix style filename pattern matching.

	
unsubscribe_all()

	Remove all subscriptions.

	
class volttron.platform.vip.agent.subsystems.Auth(owner, core, rpc)

	Bases: volttron.platform.vip.agent.subsystems.base.SubsystemBase

	
connect_remote_platform(address, serverkey=None, agent_class=None)

	Agent atempts to connect to a remote platform to exchange data.

address must start with http, https, tcp, ampq, or ampqs or a ValueError will be
raised

If this function is successful it will return an instance of the agent_class
parameter if not then this function will return None.

If the address parameter begins with http or https
TODO: use the known host functionality here
the agent will attempt to use Discovery to find the values associated with it.

Discovery should return either an rmq-address or a vip-address or both. In
that situation the connection will be made using zmq. In the event that
fails then rmq will be tried. If both fail then None is returned from this
function.

	
get_capabilities(user_id)

	Gets capabilities for a given user.

	Parameters

	user_id (str [https://docs.python.org/2.7/library/functions.html#str]) – user id field from VOLTTRON Interconnect Protocol

	Returns

	list of capabilities

	Return type

	list

	
get_remote_certs_dir()

	

	
request_cert(csr_server, fully_qualified_local_identity, discovery_info)

	Get a signed csr from the csr_server endpoint

This method will create a csr request that is going to be sent to the
signing server.

	Parameters

	csr_server – the http(s) location of the server to connect to.

	Returns

	

	
class volttron.platform.vip.agent.subsystems.FNCS(owner, core, pubsub)

	Bases: volttron.platform.vip.agent.subsystems.base.SubsystemBase

The fncs subsystem allows an integration point between VOLTTRON and FNCS.

	
current_simulation_step

	returns the current fncs timestep.

	Returns

	

	
current_values

	

	
fncs_installed

	Allows caller to determine if the fncs module is available.

	
fncs_version

	

	
getvalues()

	

	
initialize(sim_start_time, sim_length, topic_mapping, work_callback, federate_name=None, broker_location='tcp://localhost:5570', time_delta='1s', stop_agent_when_sim_complete=False)

	Configure the agent to act as a federated connection to FNCS

	sim_start_time - Wall clock time for the simulation start time (This is not used at present time other

	than to be available)

sim_length - Time for the simulation to run. Should be formatted as <number><unit> i.e. 60s.

topic_mapping - Maps fncs topics onto volttron topics.

	federate_name - MUST be unique to the broker. If None, then will be the

	identity of the current agent process.

broker - tcp location of the fncs broker (defaults to tcp://localhost:5570)

time_delta - Minimum timestep supported for the federate.

stop_agent_when_sim_complete - Should we stop the agent when the simulation is completed.

	Parameters

	
	sim_start_time –

	sim_length –

	topic_mapping –

	work_callback –

	federate_name –

	broker_location –

	time_delta –

	poll_timeout –

	Returns

	

	
next_timestep()

	Advances the fncs timestep to the next time delta.

	Returns

	

	
parse_time(time_string)

	Parses a <number><unit> i.e. 60s to a fncs timestep number.

	Parameters

	time_string –

	Returns

	

	
publish(topic, message)

	publish a topic to the fncs bus.

The publish will only be sent if there is a federate subscribed to the topic that is being published.

	Parameters

	
	topic –

	message –

	Returns

	

	
publish_anon(topic, message)

	publish an anonymous topic to the fncs bus.

	Parameters

	
	topic –

	message –

	Returns

	

	
reset()

	

	
simulation_complete

	

	
simulation_running

	

	
simulation_started

	

	
start_simulation()

	Begin the main fncs loop

	Returns

	

Submodules

volttron.platform.vip.agent.subsystems.auth module

	
class volttron.platform.vip.agent.subsystems.auth.Auth(owner, core, rpc)

	Bases: volttron.platform.vip.agent.subsystems.base.SubsystemBase

	
connect_remote_platform(address, serverkey=None, agent_class=None)

	Agent atempts to connect to a remote platform to exchange data.

address must start with http, https, tcp, ampq, or ampqs or a ValueError will be
raised

If this function is successful it will return an instance of the agent_class
parameter if not then this function will return None.

If the address parameter begins with http or https
TODO: use the known host functionality here
the agent will attempt to use Discovery to find the values associated with it.

Discovery should return either an rmq-address or a vip-address or both. In
that situation the connection will be made using zmq. In the event that
fails then rmq will be tried. If both fail then None is returned from this
function.

	
get_capabilities(user_id)

	Gets capabilities for a given user.

	Parameters

	user_id (str [https://docs.python.org/2.7/library/functions.html#str]) – user id field from VOLTTRON Interconnect Protocol

	Returns

	list of capabilities

	Return type

	list

	
get_remote_certs_dir()

	

	
request_cert(csr_server, fully_qualified_local_identity, discovery_info)

	Get a signed csr from the csr_server endpoint

This method will create a csr request that is going to be sent to the
signing server.

	Parameters

	csr_server – the http(s) location of the server to connect to.

	Returns

	

volttron.platform.vip.agent.subsystems.base module

	
class volttron.platform.vip.agent.subsystems.base.SubsystemBase

	Bases: object [https://docs.python.org/2.7/library/functions.html#object]

volttron.platform.vip.agent.subsystems.channel module

	
class volttron.platform.vip.agent.subsystems.channel.Channel(core)

	Bases: volttron.platform.vip.agent.subsystems.base.SubsystemBase

	
ADDRESS = 'inproc://subsystem/channel'

	

	
create(peer, name=None)

	

volttron.platform.vip.agent.subsystems.configstore module

	
class volttron.platform.vip.agent.subsystems.configstore.ConfigStore(owner, core, rpc)

	Bases: volttron.platform.vip.agent.subsystems.base.SubsystemBase

	
delete(config_name, trigger_callback=False, send_update=True)

	
	Delete a configuration by name. May not be called from a callback as this will cause

	deadlock with the platform. Will produce a runtime error if done so.

	Parameters

	
	config_name (str [https://docs.python.org/2.7/library/functions.html#str]) – Configuration to remove from store.

	trigger_callback (bool [https://docs.python.org/2.7/library/functions.html#bool]) – Tell the platform to trigger callbacks on the agent for this change.

	
delete_default(config_name)

	Called to delete the contents of a default configuration file.

May not be called after the onsetup phase of an agents lifetime. Will produce a runtime error if done so.

	Parameters

	config_name (str [https://docs.python.org/2.7/library/functions.html#str]) – Configuration to remove from store.

	
get(config_name='config')

	Returns the contents of a configuration.

	Parameters

	config_name (str [https://docs.python.org/2.7/library/functions.html#str]) – Name of configuration to add to store.

	Returns

	Configuration contents

	Return type

	dict [https://docs.python.org/2.7/library/stdtypes.html#dict], list, or string

	Return Values

	

The contents of the configuration specified.

	
list()

	Returns a list of configuration names for this agent.

	Returns

	Configuration names

	Return type

	list

	Return Values

	

A list of all the configuration names available for this agent.

	
set(config_name, contents, trigger_callback=False, send_update=True)

	Called to set the contents of a configuration.

May not be called before the onstart phase of an agents lifetime.

May not be called from a configuration callback. Will produce a runtime error if done so.

	Parameters

	
	config_name (str [https://docs.python.org/2.7/library/functions.html#str]) – Name of configuration to add to store.

	contents (str [https://docs.python.org/2.7/library/functions.html#str], dict [https://docs.python.org/2.7/library/stdtypes.html#dict], list) – Contents of the configuration. May be a string, dictionary, or list.

	trigger_callback (bool [https://docs.python.org/2.7/library/functions.html#bool]) – Tell the platform to trigger callbacks on the agent for this change.

	
set_default(config_name, contents)

	Called to set the contents of a default configuration file. Default configurations are used if the
configuration store does not contain a configuration with that name.

May not be called after the onsetup phase of an agents lifetime. Will produce a runtime error if done so.

	Parameters

	
	config_name (str [https://docs.python.org/2.7/library/functions.html#str]) – Name of configuration to add to store.

	contents (str [https://docs.python.org/2.7/library/functions.html#str], dict [https://docs.python.org/2.7/library/stdtypes.html#dict], list) – Contents of the configuration. May be a string, dictionary, or list.

	
subscribe(callback, actions={'DELETE', 'NEW', 'UPDATE'}, pattern='*')

	Subscribe to changes to a configuration.

	Parameters

	
	callback (str [https://docs.python.org/2.7/library/functions.html#str]) – Function to call in response to changes to a configuration.

	actions (str [https://docs.python.org/2.7/library/functions.html#str] or list) – Change actions to respond to. Valid values are “NEW”, “UPDATE”, and “DELETE”. May be a single action or a list of actions.

	pattern (str [https://docs.python.org/2.7/library/functions.html#str]) – Configuration name pattern to match to. Uses Unix style filename pattern matching.

	
unsubscribe_all()

	Remove all subscriptions.

volttron.platform.vip.agent.subsystems.health module

	
class volttron.platform.vip.agent.subsystems.health.Health(owner, core, rpc)

	Bases: volttron.platform.vip.agent.subsystems.base.SubsystemBase

	
add_status_callback(fn)

	Add callbacks to the passed function. The function must have the
following interface

	Parameters

	
	fn – The method to be executed when status is changed.

	fn – callable

	
get_status()

	“RPC method

Returns the last updated status from the object with the context.

The minimum output from the status would be:

	{

	“status”: “GOOD”,
“context”: None,
“utc_last_update”: “2016-03-31T15:40:32.685138+0000”

}

	
get_status_json()

	“RPC method

Returns the last updated status from the object with the context.

The minimum output from the status would be:

	{

	“status”: “GOOD”,
“context”: None,
“utc_last_update”: “2016-03-31T15:40:32.685138+0000”

}

	
get_status_value()

	

	
publish()

	

	
send_alert(alert_key, statusobj)

	An alert_key is a quasi-unique key. A listener to the alert can
determine whether to pass the alert on to a higher level based upon
the frequency of this alert.

	Parameters

	
	alert_key –

	context –

	Returns

	

	
set_status(status, context=None)

	RPC method

Updates the agents status to the new value with the specified context.

	Param

	status: str: GODD, BAD

	Param

	context: str: A serializable that denotes the context of

status.

volttron.platform.vip.agent.subsystems.heartbeat module

	
class volttron.platform.vip.agent.subsystems.heartbeat.Heartbeat(owner, core, rpc, pubsub, heartbeat_autostart, heartbeat_period)

	Bases: volttron.platform.vip.agent.subsystems.base.SubsystemBase

	
publish()

	

	
reconnect(sender, **kwargs)

	

	
restart()

	RPC method

Restart the heartbeat with the current period. The heartbeat will
be immediately sending the heartbeat to the message bus.

	
set_period(period)

	RPC method

Set heartbeat period.

	Parameters

	period – Time in seconds between publishes.

	
start()

	RPC method

Starts an agent’s heartbeat.

	
start_with_period(period)

	RPC method

Set period and start heartbeat.

	Parameters

	period – Time in seconds between publishes.

	
stop()

	RPC method

Stop an agent’s heartbeat.

volttron.platform.vip.agent.subsystems.hello module

	
class volttron.platform.vip.agent.subsystems.hello.Hello(core)

	Bases: volttron.platform.vip.agent.subsystems.base.SubsystemBase

The hello subsystem allows an agent to determine its identity.

The identity is possibly a dynamically generated uuid from which the
executing agent does not know. This subsystem allows the agent to be
able to determine it’s identity from a peer. By default that peer is
the connected router, however this could be another agent.

	
hello(peer='')

	Receives a welcome message from the peer (default to ‘’ router)

The welcome message will respond with a 3 element list:

	The vip version (default 1.0)

	The peer who responded (should be the same as peer argument
to this function.

	The id of the requester (i.e. this object). This will be the
identity when the agent connects to the router or the specified
identity when the Agent is constructed.

	Parameters

	peer – The peer to receive the response from.

	Returns

	[version, peer, identity]

volttron.platform.vip.agent.subsystems.peerlist module

	
class volttron.platform.vip.agent.subsystems.peerlist.PeerList(core)

	Bases: volttron.platform.vip.agent.subsystems.base.SubsystemBase

	
add_peer(peer, message_bus=None)

	

	
drop_peer(peer, message_bus=None)

	

	
list()

	

	
list_with_messagebus()

	

volttron.platform.vip.agent.subsystems.ping module

	
class volttron.platform.vip.agent.subsystems.ping.Ping(core)

	Bases: volttron.platform.vip.agent.subsystems.base.SubsystemBase

	
ping(peer, *args)

	

volttron.platform.vip.agent.subsystems.pubsub module

	
class volttron.platform.vip.agent.subsystems.pubsub.PubSub(core, rpc_subsys, peerlist_subsys, owner)

	Bases: volttron.platform.vip.agent.subsystems.base.SubsystemBase

Pubsub subsystem concrete class implementation for ZMQ message bus.

	
list(peer, prefix='', bus='', subscribed=True, reverse=False, all_platforms=False)

	Gets list of subscriptions matching the prefix and bus for the specified peer.
param peer: peer
type peer: str
param prefix: prefix of a topic
type prefix: str
param bus: bus
type bus: bus
param subscribed: subscribed or not
type subscribed: boolean
param reverse: reverse
type reverse:
:returns: List of subscriptions, i.e, list of tuples of bus, topic and
flag to indicate if peer is a subscriber or not
:rtype: list of tuples

	Return Values

	

List of tuples [(topic, bus, flag to indicate if peer is a subscriber or not)]

	
publish(peer: str, topic: str, headers=None, message=None, bus='')

	Publish a message to a given topic via a peer.

Publish headers and message to all subscribers of topic on bus.
If peer is None, use self. Adds volttron platform version
compatibility information to header as variables
min_compatible_version and max_compatible version
param peer: peer
type peer: str
param topic: topic for the publish message
type topic: str
param headers: header info for the message
type headers: None or dict
param message: actual message
type message: None or any
param bus: bus
type bus: str
return: Number of subscribers the message was sent to.
:rtype: int

	Return Values

	

Number of subscribers

	
subscribe(peer, prefix, bus='', all_platforms=False, persistent_queue=None)

	

	
synchronize()

	Synchronize local subscriptions with the PubSubService.

	
unsubscribe(peer, prefix, callback, bus='', all_platforms=False)

	Unsubscribe and remove callback(s).

Remove all handlers matching the given info - peer, callback and bus, which was used earlier to subscribe as
well. If all handlers for a topic prefix are removed, the topic is also unsubscribed.
param peer: peer
type peer: str
param prefix: prefix that needs to be unsubscribed
type prefix: str
param callback: callback method
type callback: method
param bus: bus
type bus: bus
return: success or not
:rtype: boolean

	Return Values

	

success or not

volttron.platform.vip.agent.subsystems.query module

	
class volttron.platform.vip.agent.subsystems.query.Query(core)

	Bases: volttron.platform.vip.agent.subsystems.base.SubsystemBase

	
query(prop: str, peer: str = '')

	query a specific peer for a property value

This method is very useful for retrieving configuration data from the core platform. When
peer is not specified it is defaulted to the router.

	Parameters

	
	prop – The property to query for.

	peer – The query to query upon

	Returns

	

volttron.platform.vip.agent.subsystems.rmq_pubsub module

	
class volttron.platform.vip.agent.subsystems.rmq_pubsub.RMQPubSub(core, rpc_subsys, peerlist_subsys, owner)

	Bases: volttron.platform.vip.agent.subsystems.base.SubsystemBase

Pubsub subsystem concrete class implementation for RabbitMQ message bus.

	
list(peer, prefix='', bus='', subscribed=True, reverse=False, all_platforms=False)

	Gets list of subscriptions matching the prefix
param peer: peer
type peer: str
param prefix: prefix of a topic
type prefix: str
param bus: bus
type bus: bus
param subscribed: subscribed or not
type subscribed: boolean
param reverse: reverse
type reverse:
:returns: List of subscriptions, i.e, list of tuples of bus, topic and flag to indicate if peer is a
subscriber or not
:rtype: list of tuples

	Return Values

	

List of tuples [(bus, topic, flag to indicate if peer is a subscriber or not)]

	
on_delivery_confirmation(method_frame)

	Invoked by pika when RabbitMQ responds to a Basic.Publish RPC
command, passing in either a Basic.Ack or Basic.Nack frame with
the delivery tag of the message that was published. The delivery tag
is an integer counter indicating the message number that was sent
on the channel via Basic.Publish. Here we’re just doing house keeping
to keep track of stats and remove message numbers that we expect
a delivery confirmation of from the list used to keep track of messages
that are pending confirmation.

	Parameters

	method_frame (pika.frame.Method) – Basic.Ack or Basic.Nack frame

	
publish(peer, topic, headers=None, message=None, bus='')

	Publish a message to a given topic via a peer.

Publish headers and message to all subscribers of topic on bus.
If peer is None, use self. Adds volttron platform version
compatibility information to header as variables
min_compatible_version and max_compatible version
param peer: peer
type peer: str
param topic: topic for the publish message
type topic: str
param headers: header info for the message
type headers: None or dict
param message: actual message
type message: None or any
param bus: bus
type bus: str
return: Number of subscribers the message was sent to.
:rtype: int

	Return Values

	

Number of subscribers

	
set_result(ident, value=None)

	

	
subscribe(peer, prefix, bus='', all_platforms=False, persistent_queue=None)

	Class method for subscribe
:param peer: “pubsub” string
:param prefix: prefix of the topic
:param bus: bus
:param all_platforms: Flag indicating if type is ‘local’ or ‘all’
:param persistent_queue: Name of the queue for persistent behavior
:return:

	
synchronize()

	Synchronize local subscriptions with RMQ broker.
:return:

	
unsubscribe(peer, prefix, callback, bus='', all_platforms=False)

	Unsubscribe and remove callback(s).

Remove all handlers matching the given info - peer, callback and bus,
which was used earlier to subscribe as well. If all handlers for a
topic prefix are removed, the topic is also unsubscribed.
param peer: peer
type peer: str
param prefix: prefix that needs to be unsubscribed
type prefix: str
param callback: callback method
type callback: method
param bus: bus
type bus: bus
return: success or not
:rtype: boolean

	Return Values

	

success or not

volttron.platform.vip.agent.subsystems.rpc module

	
class volttron.platform.vip.agent.subsystems.rpc.RPC(core, owner, peerlist_subsys)

	Bases: volttron.platform.vip.agent.subsystems.base.SubsystemBase

	
allow(capabilities)

	Decorator specifies required agent capabilities to call a method.

This is designed to be used with the export decorator:

@RPC.export
@RPC.allow('can_read_status')
def get_status():
 ...

Multiple capabilities can be provided in a list:
.. code-block:: python

@RPC.allow([‘can_read_status’, ‘can_call_my_methods’])

	
batch(peer, requests)

	

	
call(peer, method, *args, **kwargs)

	

	
export(name=None)

	

	
notify(peer, method, *args, **kwargs)

	

volttron.platform.vip.agent.subsystems.volttronfncs module

	
class volttron.platform.vip.agent.subsystems.volttronfncs.FNCS(owner, core, pubsub)

	Bases: volttron.platform.vip.agent.subsystems.base.SubsystemBase

The fncs subsystem allows an integration point between VOLTTRON and FNCS.

	
current_simulation_step

	returns the current fncs timestep.

	Returns

	

	
current_values

	

	
fncs_installed

	Allows caller to determine if the fncs module is available.

	
fncs_version

	

	
getvalues()

	

	
initialize(sim_start_time, sim_length, topic_mapping, work_callback, federate_name=None, broker_location='tcp://localhost:5570', time_delta='1s', stop_agent_when_sim_complete=False)

	Configure the agent to act as a federated connection to FNCS

	sim_start_time - Wall clock time for the simulation start time (This is not used at present time other

	than to be available)

sim_length - Time for the simulation to run. Should be formatted as <number><unit> i.e. 60s.

topic_mapping - Maps fncs topics onto volttron topics.

	federate_name - MUST be unique to the broker. If None, then will be the

	identity of the current agent process.

broker - tcp location of the fncs broker (defaults to tcp://localhost:5570)

time_delta - Minimum timestep supported for the federate.

stop_agent_when_sim_complete - Should we stop the agent when the simulation is completed.

	Parameters

	
	sim_start_time –

	sim_length –

	topic_mapping –

	work_callback –

	federate_name –

	broker_location –

	time_delta –

	poll_timeout –

	Returns

	

	
next_timestep()

	Advances the fncs timestep to the next time delta.

	Returns

	

	
parse_time(time_string)

	Parses a <number><unit> i.e. 60s to a fncs timestep number.

	Parameters

	time_string –

	Returns

	

	
publish(topic, message)

	publish a topic to the fncs bus.

The publish will only be sent if there is a federate subscribed to the topic that is being published.

	Parameters

	
	topic –

	message –

	Returns

	

	
publish_anon(topic, message)

	publish an anonymous topic to the fncs bus.

	Parameters

	
	topic –

	message –

	Returns

	

	
reset()

	

	
simulation_complete

	

	
simulation_running

	

	
simulation_started

	

	
start_simulation()

	Begin the main fncs loop

	Returns

	

volttron.platform.vip.agent.subsystems.web module

	
class volttron.platform.vip.agent.subsystems.web.ResourceType

	Bases: enum.Enum

An enumeration.

	
ENDPOINT = 'endpoint'

	

	
JSONRPC = 'jsonrpc'

	

	
RAW = 'raw'

	

	
UNKNOWN = 99

	

	
class volttron.platform.vip.agent.subsystems.web.WebSubSystem(owner, core, rpc)

	Bases: volttron.platform.vip.agent.subsystems.base.SubsystemBase

The web subsystem handles the agent side of routing web data from the
volttron.platform.web.MasterWebService.

	
get_user_claims(bearer)

	

	
register_endpoint(endpoint, callback, res_type: volttron.platform.vip.agent.subsystems.web.ResourceType = <ResourceType.JSONRPC: 'jsonrpc'>)

	The register_endpoint() method registers an endpoint with the
:param res_type:
volttron.platform.web.MasterWebService on the VOLTTRON
instance.

Each endpoint can map to at most one callback function. The callback
function must support the following interface

def callback(self, env, data):
 print('The environmental variables {}'.format(env))
 print('The data sent {}'.format(data))

New in version VOLTTRON: 4.0.1

	Parameters

	
	endpoint (str [https://docs.python.org/2.7/library/functions.html#str]) – Http endpoint matching the PATH_INFO environmental variable

	callback (function) – Agent method to be called with the env and data.

	
register_path(prefix, static_path)

	The register_path() method registers a prefix that can be used
for routing static files.

New in version VOLTTRON: 4.0.1

	Parameters

	
	prefix (str [https://docs.python.org/2.7/library/functions.html#str]) –

	static_path (str [https://docs.python.org/2.7/library/functions.html#str]) – An existing path available to the
volttron.platform.web.MasterWebService

	
register_websocket(endpoint, opened=None, closed=None, received=None)

	The register_websocket() method registers a websocket endpoint
that can be connected to through the
volttron.platform.web.MasterWebService.

The parameters opened and closed can be specified as callback events
with the following signature:

def ws_opened(self, endpoint):
 print('ws_opened endpoint {}'.format(endpoint))

def ws_closed(self, endpoint):
 print('ws_closed endpoint {}'.format(endpoint))

The received event is triggered when the websocket is writtent to fro
the client. The received event must have a signature such as the
following interface:

def ws_received(self, endpoint, message):
 print('ws_received endpoint {} message: {}'.format(endpoint,
 message))

New in version VOLTTRON: 4.0.1

	Parameters

	
	endpoint (str [https://docs.python.org/2.7/library/functions.html#str]) – The endpoint of the websocket event occurred on.

	opened (function) – An event triggered when a client is connected to the endpoint.

	closed (function) – An event triggered when a client is closed or disconnected from
the endpoint.

	received (function) – An event triggered when data comes in on the endpoint’s websocket.

	
send(endpoint, message='')

	The send() method publishes data to the registered websocket
clients that are subscribed to the passed endpoint.

New in version VOLTTRON: 4.0.1

	Parameters

	
	endpoint (str [https://docs.python.org/2.7/library/functions.html#str]) – The endpoint to be used to send the message.

	message (str [https://docs.python.org/2.7/library/functions.html#str]) – The message to be sent through to the client. This parameter must
be serializable.

	
unregister_all_routes()

	

	
unregister_websocket(endpoint)

	

volttron.platform.vip.agent package

	
class volttron.platform.vip.agent.Agent(identity=None, address=None, context=None, publickey=None, secretkey=None, serverkey=None, heartbeat_autostart=False, heartbeat_period=60, volttron_home='/home/docs/.volttron', agent_uuid=None, enable_store=True, enable_web=False, enable_channel=False, reconnect_interval=None, version='0.1', enable_fncs=False, instance_name=None, message_bus=None, volttron_central_address=None, volttron_central_instance_name=None)

	Bases: object [https://docs.python.org/2.7/library/functions.html#object]

	
class Subsystems(owner, core, heartbeat_autostart, heartbeat_period, enable_store, enable_web, enable_channel, enable_fncs, message_bus)

	Bases: object [https://docs.python.org/2.7/library/functions.html#object]

	
class volttron.platform.vip.agent.BasicAgent(**kwargs)

	Bases: object [https://docs.python.org/2.7/library/functions.html#object]

Subpackages

	volttron.platform.vip.agent.subsystems package
	Submodules

	volttron.platform.vip.agent.subsystems.auth module

	volttron.platform.vip.agent.subsystems.base module

	volttron.platform.vip.agent.subsystems.channel module

	volttron.platform.vip.agent.subsystems.configstore module

	volttron.platform.vip.agent.subsystems.health module

	volttron.platform.vip.agent.subsystems.heartbeat module

	volttron.platform.vip.agent.subsystems.hello module

	volttron.platform.vip.agent.subsystems.peerlist module

	volttron.platform.vip.agent.subsystems.ping module

	volttron.platform.vip.agent.subsystems.pubsub module

	volttron.platform.vip.agent.subsystems.query module

	volttron.platform.vip.agent.subsystems.rmq_pubsub module

	volttron.platform.vip.agent.subsystems.rpc module

	volttron.platform.vip.agent.subsystems.volttronfncs module

	volttron.platform.vip.agent.subsystems.web module

Submodules

volttron.platform.vip.agent.compat module

	
class volttron.platform.vip.agent.compat.CompatPubSub(identity=None, address=None, context=None, peer=b'pubsub', publish_address='inproc://vip/compat/agent/publish', subscribe_address='inproc://vip/compat/agent/subscribe', message_bus='zmq')

	Bases: object [https://docs.python.org/2.7/library/functions.html#object]

VOLTTRON 2.x compatible agent pub/sub message exchange bus.

Accept multi-part messages from sockets connected to in_addr, which
is a PULL socket, and forward them to sockets connected to out_addr,
which is a XPUB socket. When subscriptions are added or removed, a
message of the form ‘subscriptions/<OP>/<TOPIC>’ is broadcast to the
PUB socket where <OP> is either ‘add’ or ‘remove’ and <TOPIC> is the
topic being subscribed or unsubscribed. When a message is received
of the form ‘subscriptions/list/<PREFIX>’, a multipart message will
be broadcast with the first two received frames (topic and headers)
sent unchanged and with the remainder of the message containing
currently subscribed topics which start with <PREFIX>, each frame
containing exactly one topic.

	
PEER = b'pubsub'

	

	
PUBLISH_ADDRESS = 'inproc://vip/compat/agent/publish'

	

	
SUBSCRIBE_ADDRESS = 'inproc://vip/compat/agent/subscribe'

	

	
forward(peer, sender, bus, topic, headers, message)

	

	
in_loop(sender, **kwargs)

	

	
out_loop(sender, **kwargs)

	

	
setup(sender, **kwargs)

	

	
volttron.platform.vip.agent.compat.unpack_legacy_message(headers, message)

	Unpack legacy pubsub messages for VIP agents.

Loads JSON-formatted message parts and removes single-frame messages
from their containing list. Does not alter headers.

volttron.platform.vip.agent.connection module

	
class volttron.platform.vip.agent.connection.Connection(address, peer=None, publickey=None, secretkey=None, serverkey=None, volttron_home=None, instance_name=None, message_bus=None, **kwargs)

	Bases: object [https://docs.python.org/2.7/library/functions.html#object]

A class that manages a connection to a peer and/or server.

	
address

	

	
call(method, *args, **kwargs)

	

	
connected_since

	

	
is_connected(timeout=30)

	

	
is_peer_connected(timeout=30)

	

	
kill(*args, **kwargs)

	

	
last_publish

	

	
last_publish_failed

	

	
last_rpc_call

	

	
notify(method, *args, **kwargs)

	

	
peer

	

	
peers(timeout=30)

	

	
publish(topic, headers=None, message=None, timeout=30)

	

	
server

	

	
serverkey

	

	
subscribe(prefix, callback)

	

volttron.platform.vip.agent.core module

	
class volttron.platform.vip.agent.core.BasicCore(owner)

	Bases: object [https://docs.python.org/2.7/library/functions.html#object]

	
delay_onstart_signal = False

	

	
delay_running_event_set = False

	

	
get_tie_breaker()

	

	
link_receiver(receiver, sender, **kwargs)

	

	
loop(running_event)

	

	
periodic(period, args=None, kwargs=None, wait=0)

	

	
classmethod receiver(signal)

	

	
run(running_event=None)

	Entry point for running agent.

	
schedule(deadline, *args, **kwargs)

	

	
send(func, *args, **kwargs)

	

	
send_async(func, *args, **kwargs)

	

	
setup()

	

	
spawn(func, *args, **kwargs)

	

	
spawn_in_thread(func, *args, **kwargs)

	

	
spawn_later(seconds, func, *args, **kwargs)

	

	
stop(timeout=None)

	

	
class volttron.platform.vip.agent.core.Core(owner, address=None, identity=None, context=None, publickey=None, secretkey=None, serverkey=None, volttron_home='/home/docs/.volttron', agent_uuid=None, reconnect_interval=None, version='0.1', instance_name=None, messagebus=None)

	Bases: volttron.platform.vip.agent.core.BasicCore

	
connected

	

	
create_event_handlers(state, hello_response_event, running_event)

	

	
delay_onstart_signal = True

	

	
delay_running_event_set = True

	

	
get_connected()

	

	
handle_error(message)

	

	
register(name, handler, error_handler=None)

	

	
set_connected(value)

	

	
stop(timeout=None, platform_shutdown=False)

	

	
version()

	

	
class volttron.platform.vip.agent.core.RMQCore(owner, address=None, identity=None, context=None, publickey=None, secretkey=None, serverkey=None, volttron_home='/home/docs/.volttron', agent_uuid=None, reconnect_interval=None, version='0.1', instance_name=None, messagebus='rmq', volttron_central_address=None, volttron_central_instance_name=None)

	Bases: volttron.platform.vip.agent.core.Core

Concrete Core class for RabbitMQ message bus

	
connected

	

	
get_connected()

	

	
loop(running_event)

	

	
set_connected(value)

	

	
vip_message_handler(message)

	

	
class volttron.platform.vip.agent.core.ZMQCore(owner, address=None, identity=None, context=None, publickey=None, secretkey=None, serverkey=None, volttron_home='/home/docs/.volttron', agent_uuid=None, reconnect_interval=None, version='0.1', enable_fncs=False, instance_name=None, messagebus='zmq')

	Bases: volttron.platform.vip.agent.core.Core

Concrete Core class for ZeroMQ message bus

	
connected

	

	
get_connected()

	

	
loop(running_event)

	

	
set_connected(value)

	

	
volttron.platform.vip.agent.core.killing(greenlet, *args, **kwargs)

	Context manager to automatically kill spawned greenlets.

Allows one to kill greenlets that would continue after a timeout:

	with killing(agent.vip.pubsub.subscribe(

	
‘peer’, ‘topic’, callback)) as subscribe:

subscribe.get(timeout=10)

volttron.platform.vip.agent.decorators module

	
volttron.platform.vip.agent.decorators.annotate(obj, kind, name, value)

	

	
volttron.platform.vip.agent.decorators.annotations(obj, kind, name)

	

	
class volttron.platform.vip.agent.decorators.dualmethod(finstance=None, fclass=None, doc=None)

	Bases: object [https://docs.python.org/2.7/library/functions.html#object]

Descriptor to allow class and instance methods of the same name.

This class implements a descriptor that works similar to the
classmethod() built-ins and can be used as a decorator, like the
property() built-in. Instead of a method being only a class or
instance method, two methods can share the same name and be accessed
as an instance method or a class method based on the context.

Example:

>>> class Foo(object):
... @dualmethod
... def bar(self):
... print('instance method for', self)
... @bar.classmethod
... def bar(cls):
... print('class method for', cls)
...
>>> Foo.bar()
class method for <class '__main__.Foo'>
>>> Foo().bar()
instance method for <__main__.Foo object at 0x7fcd744f6610>
>>>

	
classmethod(fclass)

	Descriptor to set the class method.

	
instancemethod(finstance)

	Descriptor to set the instance method.

	
volttron.platform.vip.agent.decorators.spawn(method)

	Run a decorated method in its own greenlet, which is returned.

volttron.platform.vip.agent.dispatch module

	
class volttron.platform.vip.agent.dispatch.Signal

	Bases: object [https://docs.python.org/2.7/library/functions.html#object]

	
connect(receiver, owner=None)

	

	
disconnect(receiver)

	

	
receiver(func)

	

	
send(sender, **kwargs)

	

	
sendby(executor, sender, **kwargs)

	

volttron.platform.vip.agent.errors module

	
exception volttron.platform.vip.agent.errors.VIPError(errnum, msg, peer, subsystem, *args)

	Bases: Exception

	
classmethod from_errno(errnum, msg, *args)

	

	
exception volttron.platform.vip.agent.errors.Unreachable(errnum, msg, peer, subsystem, *args)

	Bases: volttron.platform.vip.agent.errors.VIPError

	
exception volttron.platform.vip.agent.errors.Again(errnum, msg, peer, subsystem, *args)

	Bases: volttron.platform.vip.agent.errors.VIPError

	
exception volttron.platform.vip.agent.errors.UnknownSubsystem(errnum, msg, peer, subsystem, *args)

	Bases: volttron.platform.vip.agent.errors.VIPError

volttron.platform.vip.agent.example module

	
class volttron.platform.vip.agent.example.ExampleAgent(identity=None, address=None, context=None, publickey=None, secretkey=None, serverkey=None, heartbeat_autostart=False, heartbeat_period=60, volttron_home='/home/docs/.volttron', agent_uuid=None, enable_store=True, enable_web=False, enable_channel=False, reconnect_interval=None, version='0.1', enable_fncs=False, instance_name=None, message_bus=None, volttron_central_address=None, volttron_central_instance_name=None)

	Bases: volttron.platform.vip.agent.Agent

	
baz()

	

	
finish(sender, **kwargs)

	

	
foo()

	

	
goodbye(name)

	

	
hello(name)

	

	
onmessage(peer, sender, bus, topic, headers, message)

	

	
saybye()

	

	
sayhi()

	

	
setup(sender, **kwargs)

	

	
starting(sender, **kwargs)

	

	
stopping(sender, **kwargs)

	

	
volttron.platform.vip.agent.example.meh()

	

volttron.platform.vip.agent.results module

	
volttron.platform.vip.agent.results.counter(start=None, minimum=0, maximum=9223372036854775806)

	

	
class volttron.platform.vip.agent.results.ResultsDictionary

	Bases: weakref.WeakValueDictionary [https://docs.python.org/2.7/library/weakref.html#weakref.WeakValueDictionary]

	
get(k[, d]) → D[k] if k in D, else d. d defaults to None.

	

	
pop(k[, d]) → v, remove specified key and return the corresponding value.

	If key is not found, d is returned if given, otherwise KeyError is raised.

volttron.platform.vip.agent.utils module

	
volttron.platform.vip.agent.utils.build_agent(address='ipc://@/home/docs/.volttron/run/vip.socket', identity=None, publickey=None, secretkey=None, timeout=10, serverkey=None, agent_class=<class 'volttron.platform.vip.agent.Agent'>, volttron_central_address=None, volttron_central_instance_name=None, **kwargs) → volttron.platform.vip.agent.Agent

	Builds a dynamic agent connected to the specifiedd address.

All key parameters should have been encoded with
volttron.platform.vip.socket.encode_key()

	Parameters

	
	address (str [https://docs.python.org/2.7/library/functions.html#str]) – VIP address to connect to

	identity (str [https://docs.python.org/2.7/library/functions.html#str]) – Agent’s identity

	publickey (str [https://docs.python.org/2.7/library/functions.html#str]) – Agent’s Base64-encoded CURVE public key

	secretkey (str [https://docs.python.org/2.7/library/functions.html#str]) – Agent’s Base64-encoded CURVE secret key

	serverkey (str [https://docs.python.org/2.7/library/functions.html#str]) – Server’s Base64-encoded CURVE public key

	agent_class (class) – Class to use for creating the instance

	timeout (int [https://docs.python.org/2.7/library/functions.html#int]) – Seconds to wait for agent to start

	kwargs – Any Agent specific parameters

	Returns

	an agent based upon agent_class that has been started

	Return type

	agent_class

	
volttron.platform.vip.agent.utils.build_connection(identity, peer='', address='ipc://@/home/docs/.volttron/run/vip.socket', publickey=None, secretkey=None, message_bus=None, **kwargs)

	

	
volttron.platform.vip.agent.utils.get_known_host_serverkey(vip_address)

	

	
volttron.platform.vip.agent.utils.get_server_keys()

	

volttron.platform.vip package

VIP - VOLTTRON™ Interconnect Protocol implementation

See https://volttron.readthedocs.io/en/develop/core_services/messagebus/VIP/VIP-Overview.html
for protocol specification.

This module is useful for using VIP outside of gevent. Please understand
that ZeroMQ sockets are not thread-safe and care must be used when using
across threads (or avoided all together). There is no locking around the
state as there is with the gevent version in the green sub-module.

	
class volttron.platform.vip.BaseConnection(url, identity, instance_name)

	Bases: object [https://docs.python.org/2.7/library/functions.html#object]

Base connection class for message bus connection.

	
class volttron.platform.vip.Socket(context=None, socket_type=5, shadow=None)

	Bases: volttron.platform.vip.socket._Socket, zmq.sugar.socket.Socket

Subpackages

	volttron.platform.vip.agent package
	Subpackages
	volttron.platform.vip.agent.subsystems package
	Submodules

	volttron.platform.vip.agent.subsystems.auth module

	volttron.platform.vip.agent.subsystems.base module

	volttron.platform.vip.agent.subsystems.channel module

	volttron.platform.vip.agent.subsystems.configstore module

	volttron.platform.vip.agent.subsystems.health module

	volttron.platform.vip.agent.subsystems.heartbeat module

	volttron.platform.vip.agent.subsystems.hello module

	volttron.platform.vip.agent.subsystems.peerlist module

	volttron.platform.vip.agent.subsystems.ping module

	volttron.platform.vip.agent.subsystems.pubsub module

	volttron.platform.vip.agent.subsystems.query module

	volttron.platform.vip.agent.subsystems.rmq_pubsub module

	volttron.platform.vip.agent.subsystems.rpc module

	volttron.platform.vip.agent.subsystems.volttronfncs module

	volttron.platform.vip.agent.subsystems.web module

	Submodules

	volttron.platform.vip.agent.compat module

	volttron.platform.vip.agent.connection module

	volttron.platform.vip.agent.core module

	volttron.platform.vip.agent.decorators module

	volttron.platform.vip.agent.dispatch module

	volttron.platform.vip.agent.errors module

	volttron.platform.vip.agent.example module

	volttron.platform.vip.agent.results module

	volttron.platform.vip.agent.utils module

Submodules

volttron.platform.vip.externalrpcservice module

	
class volttron.platform.vip.externalrpcservice.ExternalRPCService(socket, routing_service, *args, **kwargs)

	Bases: object [https://docs.python.org/2.7/library/functions.html#object]

Class to manage routing of RPC calls between external platforms and internal agents(peers).

	
handle_subsystem(frames)

	
EXT_RPC subsystem handler on the server end.

:frames list of frames
:type frames list

volttron.platform.vip.green module

VIP - VOLTTRON™ Interconnect Protocol implementation

See https://volttron.readthedocs.io/en/develop/core_services/messagebus/VIP/VIP-Overview.html
for protocol specification.

This module is for use within gevent. It provides some locking around
send operations to protect the VIP state. It should be safe to use a
single socket in multiple greenlets without any kind of locking.

	
class volttron.platform.vip.green.BaseRouter(context=None, default_user_id=None)

	Bases: volttron.platform.vip.router.BaseRouter

	
class volttron.platform.vip.green.Socket(*args, **kwargs)

	Bases: volttron.platform.vip.socket._Socket, zmq.green.core._Socket

volttron.platform.vip.keydiscovery module

	
exception volttron.platform.vip.keydiscovery.DiscoveryError

	Bases: Exception

Raised when a different volttron central tries to register.

	
class volttron.platform.vip.keydiscovery.KeyDiscoveryAgent(address, serverkey, identity, external_address_config, setup_mode, bind_web_address, *args, **kwargs)

	Bases: volttron.platform.vip.agent.Agent

Class to get server key, instance name and vip address of external/remote platforms

	
startup(sender, **kwargs)

	Try to get platform discovery info of all the remote platforms. If unsuccessful, setup events to try again later
:param sender: caller
:param kwargs: optional arguments
:return:

volttron.platform.vip.proxy_zmq_router module

	
class volttron.platform.vip.proxy_zmq_router.ZMQProxyRouter(address, identity, zmq_router, *args, **kwargs)

	Bases: volttron.platform.vip.agent.Agent

Proxy ZMQ based router agent is implemented for backward compatibility with ZeroMQ based message bus. In a single
instance setup, either ZeroMQ or RabbitMQ based message bus will be running and all the agents will be using
the same message bus. But in multi-platform setup, some instances maybe running with RabbitMQ message bus and
others with ZeroMQ message bus. The Proxy router agent is implemented to manage the routing between local and
external instances in such cases.

Please note, if all instances in multi-platform setup are RabbitMQ based, then RabbitMQ federation/shovel need to
be used.

	
on_stop(sender, **kwargs)

	Stop the ZMQ router
:param sender:
:param kwargs:
:return:

	
outbound_request_handler(ch, method, props, body)

	Handler for receiving external platform PubSub/RPC requests from internal agents.
It then calls external PubSub/RPC router handler to forward the request to external platform.
:param ch: channel
:param method: contains the routing key
:param props: message properties
:param body: message body
:return:

	
outbound_response_handler(ch, method, props, body)

	Message received from internal agent to send to remote agent in ZMQ VIP message format.
:param ch: channel
:param method: contains routing key
:param props: message properties like VIP header information
:param body: message
:return:

	
publish_callback(peer, sender, bus, topic, headers, message)

	Callback method registered with local message bus to receive PubSub messages
subscribed by external platform agents. PubSub component of router will route the message to
appropriate external platform subscribers.
:return:

	
rpc_message_handler(ch, method, props, body)

	
	Parameters

	
	ch –

	method –

	props –

	body –

	Returns

	

	
startup(sender, **kwargs)

	
	On startup, it does the following:

	
	Start ZMQ Router loop.

	Establish RMQ queue bindings to handle routing of messages

between internal and external agents.

	Parameters

	
	sender –

	kwargs –

	Returns

	

	
vip_loop()

	Infinite VIP loop to receive and send messages over ZMQ message bus.
:return:

volttron.platform.vip.pubsubservice module

	
class volttron.platform.vip.pubsubservice.ProtectedPubSubTopics

	Bases: object [https://docs.python.org/2.7/library/functions.html#object]

Simple class to contain protected pubsub topics

	
add(topic, capabilities)

	

	
get(topic)

	

	
get_topic_caps()

	

	
class volttron.platform.vip.pubsubservice.PubSubService(socket, protected_topics, routing_service, *args, **kwargs)

	Bases: object [https://docs.python.org/2.7/library/functions.html#object]

	
add_rabbitmq_agent(agent)

	

	
external_platform_add(instance_name)

	

	
external_platform_drop(instance_name)

	

	
handle_subsystem(frames, user_id='')

	
Handler for incoming pubsub frames. It checks operation frame and directs it for appropriate action handler.

:param frames list of frames
:type frames list
:param user_id user id of the publishing agent. This is required for protected topics check.
:type user_id UTF-8 encoded User-Id property
:returns: response frame to be sent back to the sender
:rtype: list

	Return Values

	

response frame to be sent back to the sender

	
peer_add(peer)

	

	
peer_drop(peer, **kwargs)

	Drop/Remove subscriptions related to the peer as it is no longer reachable/available.
:param peer agent to be dropped
:type peer str
:param **kwargs optional arguments
:type pointer to arguments

	
publish_callback(peer, sender, bus, topic, headers, message)

	Callback method to receive PubSub messages from internal RabbitMQ message bus and send it
to external platform subscribers over ZMQ message bus.
:param peer: pubsub
:param sender: publisher
:param bus: bus
:param topic: publisher topic
:param headers: message header
:param message: message body
:return:

volttron.platform.vip.pubsubwrapper module

	
class volttron.platform.vip.pubsubwrapper.PubSubWrapper(identity, **kwargs)

	Bases: volttron.platform.vip.agent.Agent

PubSubWrapper Agent acts as a wrapper agent for PubSub subsystem when connected to remote platform that which is using
old pubsub (RPC based implementation).
When it receives PubSub requests from remote platform,
- calls the appropriate method of new platform.
- returns the result back

	
add_bus(name)

	

	
onsetup(sender, **kwargs)

	

	
volttron.platform.vip.pubsubwrapper.decode_peer(peer)

	

	
volttron.platform.vip.pubsubwrapper.encode_peer(peer)

	

volttron.platform.vip.rmq_connection module

	
class volttron.platform.vip.rmq_connection.RMQConnection(url, identity, instance_name, reconnect_delay=30, vc_url=None)

	Bases: volttron.platform.vip.BaseConnection

Connection class for RabbitMQ message bus.
1. It maintains connection with RabbitMQ broker using Pika library APIs
2. Translates from VIP message format to RabbitMQ message format and visa-versa
3. Sends and receives messages using Pika library APIs

	
add_on_channel_close_callback()

	This method tells pika to call the on_channel_closed method if
RabbitMQ unexpectedly closes the channel.

	
close_connection(linger=None)

	This method closes the connection to RabbitMQ.
:return:

	
connect(connection_callback=None, connection_error_callback=None)

	Connect to RabbitMQ broker. Save the callback method to be invoked
after connection steps are completed.
:param connection_callback:
:param connection_error_callback:
:return:

	
disconnect()

	Disconnect from channel i.e, stop consuming from the channel
:return:

	
on_bind_ok(unused_frame)

	Callback method invoked by Pika when VIP queue bind has completed. At this point
we will start consuming messages by calling start_consuming.
:param unused_frame: The Queue.BindOk response frame
:return:

	
on_cancel_ok()

	Callback method invoked by Pika when RabbitMQ acknowledges the cancellation of a consumer.
Next step is to close the channel.
:return:

	
on_channel_closed(channel, reply_code, reply_text)

	Invoked by pika when RabbitMQ unexpectedly closes the channel.
Channels are usually closed if you attempt to do something that
violates the protocol, such as re-declare an exchange or queue with
different parameters. In this case, we’ll close the connection
to shutdown the object.

	Parameters

	
	pika.channel.Channel – The closed channel

	reply_code (int [https://docs.python.org/2.7/library/functions.html#int]) – The numeric reason the channel was closed

	reply_text (str [https://docs.python.org/2.7/library/functions.html#str]) – The text reason the channel was closed

	
on_channel_open(channel)

	This method is invoked by pika when channel has been opened. Declare VIP queue to
handle messages
:param new_channel: new channel object
:return:

	
on_connection_closed(connection, reply_code, reply_text)

	Try to reconnect to the broker after few seconds
:param connection: connection object
:param reply_code: Connection Code
:param reply_text: Connection reply message
:return:

	
on_connection_open(unused_connection)

	This method is invoked by pika when connection has been opened.
:param unused_connection: new connection object
:return:

	
on_open_error(_connection_unused, error_message=None)

	Call the registered error handler
:param _connection_unused:
:param error_message: connection error message
:return:

	
on_queue_declare_ok(method_frame)

	Callback method invoked after VIP queue has been declared. Next, we bind the
queue to the exchange with VIP routing key.
:param method_frame: The Queue.DeclareOk frame
:return:

	
open_connection()

	Open a gevent adapter connection.
:return:

	
register(vip_handler, error_handler=None)

	Register VIP handler to be invoked to handle incoming messages
:param handler: VIP handler callback method
:return:

	
rmq_message_handler(channel, method, props, body)

	Message handler for incoming messages. Reformats the incoming messages to VIP message
object and hands it over to VIP message handler.
:param channel: channel object
:param method: method frame - contains routing key
:param props: message properties containing VIP details such as

[SENDER, RECIPIENT, PROTO, USER_ID, MSG_ID, SUBSYS,]

	Parameters

	body – message body

	Returns

	

	
send_via_proxy(peer, subsystem, args=None, msg_id='', user='', via=None, flags=0, copy=False, track=False)

	

	
send_vip(peer, subsystem, args=None, msg_id='', user='', via=None, flags=0, copy=True, track=False, platform=None)

	Send VIP message over RabbitMQ message bus.
:param peer: peer
:param subsystem: subsytem type
:param args: actual message
:param msg_id: message id
:param user: user
:param via:
:param flags: unused
:param copy: unused
:param track: unused
:param platform: instance name
:return:

	
send_vip_object(message, flags=0, copy=True, track=False)

	Send the VIP message over RabbitMQ message bus.

	Parameters

	message – VIP message object

	Returns

	

	
send_vip_object_via_proxy(vip_object)

	Send the VIP object to proxy router agent
:param vip_object: VIP message
:return:

	
set_properties(flags)

	Set queue properties
:param flags:
:return:

	
class volttron.platform.vip.rmq_connection.RMQRouterConnection(url, identity, instance_name, reconnect_delay=30, vc_url=None)

	Bases: volttron.platform.vip.rmq_connection.RMQConnection

RabbitMQ message bus connection class for Router module

	
loop()

	Connect to RabbiMQ broker and run infinite loop to listen to incoming messages
:return:

	
on_alternate_queue_bind_ok(unused_frame)

	Callback method invoked by Pika when alternate queue bind has completed. At this point
we will start consuming messages by calling start_consuming.
:param unused_frame: The Queue.BindOk response frame
:return:

	
on_alternate_queue_declare_ok(method_frame)

	Callback method invoked after alternate queue has been declared. Next, we bind the
queue to the alternate exchange to receive unroutable messages.
:param method_frame: The Queue.DeclareOk frame
:return:

	
on_channel_open(channel)

	This method is invoked by pika when channel has been opened.
Declare VIP queue to handle messages
:param new_channel: new channel object
:return:

	
on_open_error(_connection_unused, error_message=None)

	Stop the infinite loop and call the registered error handler
:param _connection_unused:
:param error_message: connection error message
:return:

	
open_connection()

	Open asynchronous connection for router/platform
:return:

volttron.platform.vip.rmq_router module

volttron.platform.vip.router module

	
class volttron.platform.vip.router.BaseRouter(context=None, default_user_id=None)

	Bases: object [https://docs.python.org/2.7/library/functions.html#object]

Abstract base class of VIP router implementation.

Router implementers should inherit this class and implement the
setup() method to bind to appropriate addresses, set identities,
setup authentication, etc, etc. The socket will be created by the
start() method, which will then call the setup() method. Once
started, the socket may be polled for incoming messages and those
messages are handled/routed by calling the route() method. During
routing, the issue() method, which may be implemented, will be
called to allow for debugging and logging. Custom subsystems may be
implemented in the handle_subsystem() method. The socket will be
closed when the stop() method is called.

	
handle_subsystem(frames, user_id)

	Handle additional subsystems and provide a response.

This method does nothing by default and may be implemented by
subclasses to provide additional subsystems.

frames is a list of zmq.Frame objects with the following
elements:

[SENDER, RECIPIENT, PROTOCOL, USER_ID, MSG_ID, SUBSYSTEM, …]

The return value should be None, if the subsystem is unknown, an
empty list or False (or other False value) if the message was
handled but does not require/generate a response, or a list of
containing the following elements:

[RECIPIENT, SENDER, PROTOCOL, USER_ID, MSG_ID, SUBSYSTEM, …]

	
issue(topic, frames, extra=None)

	

	
lookup_user_id(sender, recipient, auth_token)

	Find and return a user identifier.

Returns the UTF-8 encoded User-Id property from the sender
frame or None if the authenticator did not set the User-Id
metadata. May be extended to perform additional lookups.

	
poll

	Returns the underlying socket’s poll method.

	
poll_sockets()

	Called inside run method

Implement this method to poll for sockets for incoming messages.

	
route(frames)

	Route one message and return.

One message is read from the socket and processed. If the
recipient is the router (empty recipient), the standard hello
and ping subsystems are handled. Other subsystems are sent to
handle_subsystem() for processing. Messages destined for other
entities are routed appropriately.

	
run()

	Main router loop.

	
setup()

	Called from start() method to setup the socket.

Implement this method to bind the socket, set identities and
options, etc.

	
start()

	Create the socket and call setup().

The socket is save in the socket attribute. The setup() method
is called at the end of the method to perform additional setup.

	
stop(linger=1)

	Close the socket.

volttron.platform.vip.routingservice module

	
class volttron.platform.vip.routingservice.RoutingService(socket, context, socket_class, poller, my_addr, instance_name, *args, **kwargs)

	Bases: object [https://docs.python.org/2.7/library/functions.html#object]

This class maintains connection with external platforms.

	
close_external_connections()

	Close external platform socket connections
:return:

	
disconnect_external_instances(instance_name)

	Close socket connections to remote platform
:param instance_name:
:return:

	
get_connected_platforms()

	Get list of connected instances
:return:

	
get_name_for_identity(identity)

	Get instance name
:param identity: platform identity
:return:

	
handle_monitor_event(monitor_sock)

	Monitor external platform socket connections
:param monitor_sock: socket to monitor
:return:

	
handle_subsystem(frames)

	
Handler for incoming routing table frames. It calls appropriate action handler based on operation request.

:param frames list of frames
:type frames list
:returns: response frame to be sent back to the sender
:rtype: list

	Return Values

	

response frame to be sent back to the sender

	
my_instance_name()

	Name of my instance/platform.
:return:

	
register(type, handler)

	Used by PubSubService to register for onconnect and ondisconnect handlers.
:param type: on_connect/on_disconnect
:param handler: handler function
:return:

	
send_external(instance_name, frames)

	Send frames to external instance
:param instance_name: name of remote instance
:param frames: frames to send
:return:

volttron.platform.vip.socket module

VIP - VOLTTRON™ Interconnect Protocol implementation

See https://volttron.readthedocs.io/en/develop/core_services/messagebus/VIP/VIP-Overview.html
for protocol specification.

This file contains an abstract _Socket class which should be extended to
provide missing features for different threading models. The standard
Socket class is defined in __init__.py. A gevent-friendly version is
defined in green.py.

	
class volttron.platform.vip.socket.Address(address, **defaults)

	Bases: object [https://docs.python.org/2.7/library/functions.html#object]

Parse and hold a URL-style address.

The URL given by address may contain optional query string
parameters and a URL fragment which, if given, will be interpreted
as the socket identity for the given address.

	Valid parameters:

	
	server: Server authentication method; must be one of NULL,

	PLAIN, or CURVE.

domain: ZAP domain for server authentication.
serverkey: Encoded CURVE server public key.
secretkey: Encoded CURVE secret key.
publickey: Encoded CURVE public key.
ipv6: Boolean value indicating use of IPv6.
username: Username to use with PLAIN authentication.
password: Password to use with PLAIN authentication.

	
bind(sock, bind_fn=None)

	Extended zmq.Socket.bind() to include options in the address.

	
connect(sock, connect_fn=None)

	Extended zmq.Socket.connect() to include options in the address.

	
qs

	

	
reset(sock)

	

	
exception volttron.platform.vip.socket.ProtocolError

	Bases: Exception

Error raised for invalid use of Socket object.

	
class volttron.platform.vip.socket.Message(**kwargs)

	Bases: object [https://docs.python.org/2.7/library/functions.html#object]

Message object returned form Socket.recv_vip_object().

	
volttron.platform.vip.socket.nonblocking(sock)

	

volttron.platform.vip.tracking module

Utilities for tracking VIP message statistics at the router.

	
class volttron.platform.vip.tracking.Tracker

	Bases: object [https://docs.python.org/2.7/library/functions.html#object]

Object for sharing data between the router and control objects.

	
disable()

	Disable tracking.

	
enable()

	Enable tracking.

	
hit(topic, frames, extra)

	Increment counters for given topic and frames.

	
reset()

	Reset all counters to default values and set start time.

volttron.platform.vip.zmq_connection module

	
class volttron.platform.vip.zmq_connection.ZMQConnection(url, identity, instance_name, context)

	Bases: volttron.platform.vip.BaseConnection

Maintains ZMQ socket connection

	
bind()

	

	
close_connection(linger=5)

	This method closes ZeroMQ socket

	
connect(callback=None)

	

	
disconnect()

	

	
open_connection(type)

	

	
recv_vip_object(flags=0, copy=True, track=False)

	

	
register(handler)

	

	
send_vip(peer, subsystem, args=None, msg_id: bytes = b'', user=b'', via=None, flags=0, copy=True, track=False)

	

	
send_vip_object(message, flags=0, copy=True, track=False)

	

	
set_properties(flags)

	

volttron.platform.web package

Submodules

volttron.platform.web.admin_endpoints module

volttron.platform.web.authenticate_endpoint module

volttron.platform.web.csr_endpoints module

volttron.platform.web.discovery module

	
exception volttron.platform.web.discovery.DiscoveryError

	Bases: Exception

Raised when a different volttron central tries to register.

	
class volttron.platform.web.discovery.DiscoveryInfo(**kwargs)

	Bases: object [https://docs.python.org/2.7/library/functions.html#object]

A DiscoveryInfo class.

The DiscoveryInfo class provides a wrapper around the return values from
a call to the /discovery/ endpoint of the `volttron.platform.web.

	
static request_discovery_info(web_address)

	Construct a DiscoveryInfo object.

Requests a response from discovery_address and constructs a
DiscoveryInfo object with the returned json.

	Parameters

	web_address – An http(s) address with volttron running.

	Returns

	

volttron.platform.web.master_web_service module

volttron.platform.web.webapp module

volttron.platform.web.websocket module

volttron.platform package

Core package.

	
volttron.platform.build_vip_address_string(vip_root, serverkey, publickey, secretkey)

	Build a full vip address string based upon the passed arguments

All arguments are required to be non-None in order for the string to be
created successfully.

:raises ValueError if one of the parameters is None.

	
volttron.platform.get_address()

	Return the VIP address of the platform
If the VOLTTRON_VIP_ADDR environment variable is set, it used.
Otherwise, it is derived from get_home().

	
volttron.platform.get_config_path() → str

	Returns the platforms main configuration file.

	Returns

	

	
volttron.platform.get_examples(agent_dir)

	

	
volttron.platform.get_home()

	Return the home directory with user and variables expanded.

If the VOLTTRON_HOME environment variable is set, it used.
Otherwise, the default value of ‘~/.volttron’ is used.

	
volttron.platform.get_ops(agent_dir=None)

	

	
volttron.platform.get_platform_config()

	

	
volttron.platform.get_services_core(agent_dir=None)

	

	
volttron.platform.get_volttron_data()

	

	
volttron.platform.get_volttron_root()

	Returns the root folder where the volttron code base resideds on disk.

	Returns

	absolute path to root folder

	
volttron.platform.is_instance_running(volttron_home=None)

	

	
volttron.platform.is_rabbitmq_available()

	

	
volttron.platform.set_home(home=None)

	Set the home directory with user and variables expanded.

If the home is sent in, it used.
Otherwise, the default value of ‘~/.volttron’ is used.

	
volttron.platform.update_platform_config(values: dict) → None

	

Subpackages

	volttron.platform.agent package
	Subpackages
	volttron.platform.agent.base_market_agent package
	Submodules

	volttron.platform.agent.base_market_agent.buy_sell module

	volttron.platform.agent.base_market_agent.error_codes module

	volttron.platform.agent.base_market_agent.market_registration module

	volttron.platform.agent.base_market_agent.offer module

	volttron.platform.agent.base_market_agent.point module

	volttron.platform.agent.base_market_agent.poly_line module

	volttron.platform.agent.base_market_agent.poly_line_factory module

	volttron.platform.agent.base_market_agent.registration_manager module

	volttron.platform.agent.base_market_agent.rpc_proxy module

	volttron.platform.agent.base_simulation_integration package
	Submodules

	volttron.platform.agent.base_simulation_integration.base_sim_integration module

	Submodules

	volttron.platform.agent.bacnet_proxy_reader module

	volttron.platform.agent.base module

	volttron.platform.agent.base_aggregate_historian module

	volttron.platform.agent.base_historian module
	Historian Development
	Creating a New Historian

	Historian Execution Flow

	Storing Data

	Querying Data

	Other Notes

	volttron.platform.agent.base_tagging module
	Querying for topics based on tags

	volttron.platform.agent.base_weather module

	volttron.platform.agent.cron module

	volttron.platform.agent.driven module

	volttron.platform.agent.exit_codes module

	volttron.platform.agent.green module

	volttron.platform.agent.known_identities module

	volttron.platform.agent.matching module

	volttron.platform.agent.math_utils module

	volttron.platform.agent.multithreading module

	volttron.platform.agent.sched module

	volttron.platform.agent.utils module

	volttron.platform.agent.web module

	volttron.platform.dbutils package
	Submodules

	volttron.platform.dbutils.basedb module

	volttron.platform.dbutils.crateutils module

	volttron.platform.dbutils.influxdbutils module

	volttron.platform.dbutils.mongoutils module

	volttron.platform.dbutils.mysqlfuncts module

	volttron.platform.dbutils.postgresqlfuncts module

	volttron.platform.dbutils.redshiftfuncts module

	volttron.platform.dbutils.sqlitefuncts module

	volttron.platform.dbutils.sqlutils module

	volttron.platform.lib package
	Subpackages
	volttron.platform.lib.inotify package
	Submodules

	volttron.platform.lib.inotify.green module

	Submodules

	volttron.platform.lib.kwonlyargs module

	volttron.platform.lib.prctl module

	volttron.platform.messaging package
	Submodules

	volttron.platform.messaging.headers module

	volttron.platform.messaging.health module

	volttron.platform.messaging.socket module

	volttron.platform.messaging.topics module

	volttron.platform.messaging.utils module

	volttron.platform.vip package
	Subpackages
	volttron.platform.vip.agent package
	Subpackages
	volttron.platform.vip.agent.subsystems package
	Submodules

	volttron.platform.vip.agent.subsystems.auth module

	volttron.platform.vip.agent.subsystems.base module

	volttron.platform.vip.agent.subsystems.channel module

	volttron.platform.vip.agent.subsystems.configstore module

	volttron.platform.vip.agent.subsystems.health module

	volttron.platform.vip.agent.subsystems.heartbeat module

	volttron.platform.vip.agent.subsystems.hello module

	volttron.platform.vip.agent.subsystems.peerlist module

	volttron.platform.vip.agent.subsystems.ping module

	volttron.platform.vip.agent.subsystems.pubsub module

	volttron.platform.vip.agent.subsystems.query module

	volttron.platform.vip.agent.subsystems.rmq_pubsub module

	volttron.platform.vip.agent.subsystems.rpc module

	volttron.platform.vip.agent.subsystems.volttronfncs module

	volttron.platform.vip.agent.subsystems.web module

	Submodules

	volttron.platform.vip.agent.compat module

	volttron.platform.vip.agent.connection module

	volttron.platform.vip.agent.core module

	volttron.platform.vip.agent.decorators module

	volttron.platform.vip.agent.dispatch module

	volttron.platform.vip.agent.errors module

	volttron.platform.vip.agent.example module

	volttron.platform.vip.agent.results module

	volttron.platform.vip.agent.utils module

	Submodules

	volttron.platform.vip.externalrpcservice module

	volttron.platform.vip.green module

	volttron.platform.vip.keydiscovery module

	volttron.platform.vip.proxy_zmq_router module

	volttron.platform.vip.pubsubservice module

	volttron.platform.vip.pubsubwrapper module

	volttron.platform.vip.rmq_connection module

	volttron.platform.vip.rmq_router module

	volttron.platform.vip.router module

	volttron.platform.vip.routingservice module

	volttron.platform.vip.socket module

	volttron.platform.vip.tracking module

	volttron.platform.vip.zmq_connection module

	volttron.platform.web package
	Submodules

	volttron.platform.web.admin_endpoints module

	volttron.platform.web.authenticate_endpoint module

	volttron.platform.web.csr_endpoints module

	volttron.platform.web.discovery module

	volttron.platform.web.master_web_service module

	volttron.platform.web.webapp module

	volttron.platform.web.websocket module

Submodules

volttron.platform.aip module

volttron.platform.async_ module

Run gevent Greenlets in their own threads.

Supports killing threads and executing callbacks from other threads.

	
class volttron.platform.async_.AsyncCall(hub=None)

	Bases: object [https://docs.python.org/2.7/library/functions.html#object]

Send functions to another thread’s gevent hub for execution.

	
send(receiver, func, *args, **kwargs)

	Send a function to the hub to be called there.

All the arguments to this method are placed in a queue and the
hub is signaled that a function is ready. When the hub switches
to this handler, the functions are iterated over, each being
called with its results sent to the receiver.

func is called with args and kwargs in the thread of the
associated hub. If receiver is None, results are ignored and
errors are printed when exceptions occur. Otherwise, receiver is
called with the 2-tuple (exc_info, result). If an unhandled
exception occurred, exc_info is the 3-tuple returned by
sys.exc_info() and result is None. Otherwise exc_info is None
and the result is func’s return value.

Note that receiver is called from the hub’s thread and may
need to be injected into the thread of the receiver.

	
exception volttron.platform.async_.GreenletExit

	Bases: BaseException

volttron.platform.auth module

	
class volttron.platform.auth.AuthEntry(domain=None, address=None, mechanism='CURVE', credentials=None, user_id=None, groups=None, roles=None, capabilities=None, comments=None, enabled=True, **kwargs)

	Bases: object [https://docs.python.org/2.7/library/functions.html#object]

An authentication entry contains fields for authenticating and
granting permissions to an agent that connects to the platform.

	Parameters

	
	domain (str [https://docs.python.org/2.7/library/functions.html#str]) – Name assigned to locally bound address

	address (str [https://docs.python.org/2.7/library/functions.html#str]) – Remote address of the agent

	mechanism (str [https://docs.python.org/2.7/library/functions.html#str]) – Authentication mechanism, valid options are
‘NULL’ (no authentication), ‘PLAIN’ (username/password),
‘CURVE’ (CurveMQ public/private keys)

	credentials (str [https://docs.python.org/2.7/library/functions.html#str]) – Value depends on mechanism parameter:
None if mechanism is ‘NULL’; password if mechanism is
‘PLAIN’; encoded public key if mechanism is ‘CURVE’ (see
volttron.platform.vip.socket.encode_key() for method
to encode public key)

	user_id (str [https://docs.python.org/2.7/library/functions.html#str]) – Name to associate with agent (Note: this does
not have to match the agent’s VIP identity)

	capabilities (list) – Authorized capabilities for this agent

	roles (list) – Authorized roles for this agent. (Role names map
to a set of capabilities)

	groups (list) – Authorized groups for this agent. (Group names
map to a set of roles)

	comments (str [https://docs.python.org/2.7/library/functions.html#str]) – Comments to associate with entry

	enabled (bool [https://docs.python.org/2.7/library/functions.html#bool]) – Entry will only be used if this value is True

	kwargs – These extra arguments will be ignored

	
add_capabilities(capabilities)

	

	
static build_capabilities_field(value)

	

	
match(domain, address, mechanism, credentials)

	

	
static valid_credentials(cred, mechanism='CURVE')

	Raises AuthEntryInvalid if credentials are invalid

	
static valid_mechanism(mechanism)

	Raises AuthEntryInvalid if mechanism is invalid

	
exception volttron.platform.auth.AuthEntryInvalid

	Bases: volttron.platform.auth.AuthException

Exception for invalid AuthEntry objects

	
exception volttron.platform.auth.AuthException

	Bases: Exception

General exception for any auth error

	
class volttron.platform.auth.AuthFile(auth_file=None)

	Bases: object [https://docs.python.org/2.7/library/functions.html#object]

	
add(auth_entry, overwrite=False)

	Adds an AuthEntry to the auth file

	Parameters

	
	auth_entry (AuthEntry) – authentication entry

	overwrite (bool [https://docs.python.org/2.7/library/functions.html#bool]) – set to true to overwrite matching entries

Warning

If overwrite is set to False and if auth_entry matches an
existing entry then this method will raise
AuthFileEntryAlreadyExists

	
find_by_credentials(credentials)

	Find all entries that have the given credentials

	Parameters

	credentials (str [https://docs.python.org/2.7/library/functions.html#str]) – The credentials to search for

	Returns

	list of entries

	Return type

	list

	
read()

	Gets the allowed entries, groups, and roles from the auth
file.

	Returns

	tuple of allow-entries-list, groups-dict, roles-dict

	Return type

	tuple

	
read_allow_entries()

	Gets the allowed entries from the auth file.

	Returns

	list of allow-entries

	Return type

	list

	
remove_by_credentials(credentials)

	Removes entry from auth file by credential

	Para credential

	entries will this credential will be
removed

	
remove_by_index(index)

	Removes entry from auth file by index

	Parameters

	index (int [https://docs.python.org/2.7/library/functions.html#int]) – index of entry to remove

Warning

Calling with out-of-range index will raise
AuthFileIndexError

	
remove_by_indices(indices)

	Removes entry from auth file by indices

	Parameters

	indices (list) – list of indicies of entries to remove

Warning

Calling with out-of-range index will raise
AuthFileIndexError

	
set_groups(groups)

	Define the mapping of group names to role lists

	Parameters

	groups (dict [https://docs.python.org/2.7/library/stdtypes.html#dict]) – dict where the keys are group names and the
values are lists of capability names

Warning

Calling with invalid groups will raise ValueError

	
set_roles(roles)

	Define the mapping of role names to capability lists

	Parameters

	roles – dict where the keys are role names and the
values are lists of group names

Warning

Calling with invalid roles will raise ValueError

	
update_by_index(auth_entry, index)

	Updates entry will given auth entry at given index

	Parameters

	
	auth_entry (AuthEntry) – new authorization entry

	index (int [https://docs.python.org/2.7/library/functions.html#int]) – index of entry to update

Warning

Calling with out-of-range index will raise
AuthFileIndexError

	
version

	

	
exception volttron.platform.auth.AuthFileEntryAlreadyExists(indicies, message=None)

	Bases: volttron.platform.auth.AuthFileIndexError

Exception if adding an entry that already exists

	
exception volttron.platform.auth.AuthFileIndexError(indices, message=None)

	Bases: volttron.platform.auth.AuthException, IndexError

Exception for invalid indices provided to AuthFile

	
exception volttron.platform.auth.AuthFileUserIdAlreadyExists(user_id, indicies, message=None)

	Bases: volttron.platform.auth.AuthFileEntryAlreadyExists

Exception if adding an entry that has a taken user_id

	
class volttron.platform.auth.AuthService(auth_file, protected_topics_file, setup_mode, aip, *args, **kwargs)

	Bases: volttron.platform.vip.agent.Agent

	
approve_authorization_failure(user_id)

	RPC method

Approves a previously failed authorization

	Parameters

	user_id (str [https://docs.python.org/2.7/library/functions.html#str]) – user id field from VOLTTRON Interconnect Protocol

	
authenticate(domain, address, mechanism, credentials)

	

	
delete_authorization_failure(user_id)

	RPC method

Denies a previously failed authorization

	Parameters

	user_id (str [https://docs.python.org/2.7/library/functions.html#str]) – user id field from VOLTTRON Interconnect Protocol

	
deny_authorization_failure(user_id)

	RPC method

Denies a previously failed authorization

	Parameters

	user_id (str [https://docs.python.org/2.7/library/functions.html#str]) – user id field from VOLTTRON Interconnect Protocol

	
get_authorization_approved()

	

	
get_authorization_denied()

	

	
get_authorization_failures()

	

	
get_authorizations(user_id)

	RPC method

Gets capabilities, groups, and roles for a given user.

	Parameters

	user_id (str [https://docs.python.org/2.7/library/functions.html#str]) – user id field from VOLTTRON Interconnect Protocol

	Returns

	tuple of capabiliy-list, group-list, role-list

	Return type

	tuple

	
get_capabilities(user_id)

	RPC method

Gets capabilities for a given user.

	Parameters

	user_id (str [https://docs.python.org/2.7/library/functions.html#str]) – user id field from VOLTTRON Interconnect Protocol

	Returns

	list of capabilities

	Return type

	list

	
get_groups(user_id)

	RPC method

Gets groups for a given user.

	Parameters

	user_id (str [https://docs.python.org/2.7/library/functions.html#str]) – user id field from VOLTTRON Interconnect Protocol

	Returns

	list of groups

	Return type

	list

	
get_protected_topics()

	

	
get_roles(user_id)

	RPC method

Gets roles for a given user.

	Parameters

	user_id (str [https://docs.python.org/2.7/library/functions.html#str]) – user id field from VOLTTRON Interconnect Protocol

	Returns

	list of roles

	Return type

	list

	
get_user_to_capabilities()

	RPC method

Gets a mapping of all users to their capabiliites.

	Returns

	mapping of users to capabilities

	Return type

	dict [https://docs.python.org/2.7/library/stdtypes.html#dict]

	
read_auth_file()

	

	
setup_zap(sender, **kwargs)

	

	
stop_zap(sender, **kwargs)

	

	
unbind_zap(sender, **kwargs)

	

	
zap_loop(sender, **kwargs)

	The zap loop is the starting of the authentication process for
the VOLTTRON zmq message bus. It talks directly with the low
level socket so all responses must be byte like objects, in
this case we are going to send zmq frames across the wire.

	Parameters

	
	sender –

	kwargs –

	Returns

	

	
class volttron.platform.auth.List

	Bases: list

	
match(value)

	

	
class volttron.platform.auth.String

	Bases: str [https://docs.python.org/2.7/library/functions.html#str]

	
match(value)

	

	
volttron.platform.auth.dump_user(*args)

	

	
volttron.platform.auth.isregex(obj)

	

	
volttron.platform.auth.load_user(string)

	

volttron.platform.certs module

	
exception volttron.platform.certs.CertError

	Bases: Exception

	
class volttron.platform.certs.CertWrapper

	Bases: object [https://docs.python.org/2.7/library/functions.html#object]

This class is a wrapper around the building of certificates.

	
static get_cert_public_key(certfile)

	

	
static get_private_key(keyfile)

	

	
static load_cert(certfile)

	

	
static load_key(keyfile)

	

	
static make_self_signed_ca(ca_name, **kwargs)

	Creates a self signed certificate.

	Parameters

	
	ca_name –

	kwargs –

	Returns

	

	
static make_signed_cert(ca_cert, ca_key, common_name, **kwargs)

	

	
class volttron.platform.certs.Certs(certificate_dir=None)

	Bases: object [https://docs.python.org/2.7/library/functions.html#object]

A wrapper class around certificate creation, retrieval and verification.

	
append_external_certificate(certificate_str)

	

	
approve_csr(common_name)

	

	
ca_cert(public_bytes: bool = False)

	Get the X509 CA certificate.
:return: the CA certificate of current volttron instance

	
ca_db_file(name)

	return path to the ca db file of the passed name. Name passed should
not contain any file extension
:param name: name of the file
:return: Full path the <name>_cadb.json file
:rtype: str

	
ca_exists()

	Returns true if the ca cert has been created already
:return: True if CA cert exists, False otherwise

	
ca_serial_file(name)

	return the file in which ca stores the next serial number to use
:param name: name of the ca
:return: Full path the <name>-serial file
:rtype: str

	
cert(name, remote=False, public_bytes: bool = False)

	Get the X509 certificate based upon the name
:param public_bytes:
:param name: name of the certificate to be loaded
:param remote: determines correct path to search for the cert.
:return: The certificate object by the given name
:rtype: :class: x509._Certificate or byte PEM encoding

	
cert_exists(cert_name, remote=False)

	Verifies that the cert exists by filename.
:param cert_name: name of the cert to look up
:return: True if cert exists, False otherwise

	
cert_file(name, remote=False)

	Returns path to the certificate with passed name. .crt extension is
added to the passed name be
:param name: Name of the certificate file
:param remote: Toggle between local and remote cert connections.
:return: Full path the <name>.crt file
:rtype: str

	
create_csr(fully_qualified_identity, remote_instance_name)

	Create a csr with name as the common name.

The key that is used to sign the csr is <instance_name>.name.

	Parameters

	
	fully_qualified_identity –

	target_volttron –

	Returns

	

	
create_requests_ca_bundle(agent_remote_cert_dir)

	

	
create_root_ca(overwrite=True, valid_days=365, **kwargs)

	Create a CA certificate with the given args and save it with the given
name
:param overwrite: boolan to indicate if we should overwrite

any existing CA

	Parameters

	
	valid_days – Number of days for which the certificate should be
valid. Defaults to 365 days

	kwargs – Details about the certificate.
Possible arguments:

C - Country
ST - State
L - Location
O - Organization
OU - Organizational Unit
CN - Common Name

	Returns

	

	
create_signed_cert_files(name, cert_type='client', ca_name=None, overwrite=True, valid_days=365, **kwargs)

	Create a new certificate and sign it with the volttron instance’s
CA certificate. Save the created certificate and the private key of
the certificate with the given name
:param valid_days: number of days for which cert should be valid
:param ca_name: name of the ca to sign this cert
:param cert_type: client or server
:param overwrite: boolean to denote if existing cert should be

overwritten

	Parameters

	
	name – name used to save the newly created certificate and
private key. Files are saved as <name>.crt and <name>.pem

	kwargs – dictionary object containing various details about who we
are.
Possible arguments:

C - Country
ST - State
L - Location
O - Organization
OU - Organizational Unit
CN - Common Name

	Returns

	True if certificate creation was successful

	
csr_pending_file(name, target=None)

	

	
delete_csr(common_name)

	

	
delete_remote_cert(name)

	

	
deny_csr(common_name)

	

	
export_pkcs12(name, outfile)

	

	
static get_admin_cert_names(instance_name)

	Returns the name of the instance ca certificate(root ca), instance
server certificate and instance client (admin user) certificate
:param instance_name: name of the volttron instance
:return: names of volttron instance certs

	
get_all_cert_subjects()

	

	
get_cert_from_csr(common_name)

	

	
get_cert_public_key(name, remote=False)

	Retrieves a publickey from the passed named certificate.

Traditional openssl format begins as follows

b’—–BEGIN PUBLIC KEY—–’

	Parameters

	
	name – full instance and identity of the key

	remote –

	Returns

	serialized public key

	
get_cert_subject(name)

	Retrieves the subject details of a certificate
:param name: name of the certificate
:return: dictionary object with the format
{

‘country’:value,
‘state’: value,
‘location’: value,
‘organization’: value,
‘organization-unit’: value,
‘common-name’:value

}

	
get_csr_common_name(data)

	

	
get_csr_status(common_name)

	

	
get_pending_certs()

	

	
get_pending_csr_requests()

	

	
get_pk_bytes(name)

	Serialize a private key in a traditional openssl manner to be able to
use it with JWT and other technologies.

Traditional openssl format begins as follows

b’—–BEGIN RSA PRIVATE KEY—–’

	Parameters

	name – full instance and identity of the key

	Returns

	serialized private key

	
get_rejected_certs()

	

	
load_csr(data)

	Loads a PEM X.509 CSR.

	
private_key_file(name)

	return path to the private key of the passed name. Name passed should
not contain any file extension as .pem is prefixed
:param name: name of the key file
:return: Full path the <name>.pem file
:rtype: str

	
remote_cert_bundle_file()

	

	
remote_certs_file(name)

	

	
save_agent_remote_info(directory, local_keyname, remote_cert_name, remote_cert, remote_ca_name, remote_ca_cert)

	Save the remote info file, remote certificates and remote ca to the proper place
in the remote_certificate directory.

	Parameters

	
	local_keyname – identity of the local agent connected to the local messagebux

	remote_cert_name – identity of the dynamic agent connected to the remote message bus

	remote_cert – certificate returned from the remote instance

	remote_ca_name – name of the remote ca

	remote_ca_cert – certificate of the remote ca certificate

	
save_cert(file_path)

	

	
save_key(file_path)

	

	
save_pending_csr_request(ip_addr, common_name, csr)

	

	
save_remote_cert(name, cert_string, remote_cert_dir=None)

	

	
sign_csr(csr_file)

	

	
update_ca_db(cert, ca_name, serial)

	Update the CA db with details of the file that the ca signed.
:param cert: cert that was signed by ca_name
:param ca_name: name of the ca that signed the cert

	
static validate_key_pair(public_key_file, private_key_file)

	Given a public private key pair, validate the pair.
:param public_key_file: path to public certificate file
:param private_key_file: path to private key file
:return True if the pair is valid, False otherwise

	
verify_cert(cert_name)

	Verify a the given cert is signed by the root ca.
:param cert_name: The name of the certificate to be verified against
the CA
:return:

	
class volttron.platform.certs.Subject

	Bases: volttron.platform.certs.SubjectObj

	
static create_from_x509_subject(subject)

	

	
volttron.platform.certs.get_passphrase(verify=True, prompt1='Enter passphrase:', prompt2='Verify passphrase:')

	Prompt passphrase from user and return it
:param verify: If user should be prompt twice for verification
:param prompt1: Prompt to be used for initial input
:param prompt2: Prompt to used for verification
:return: The passphrase entered by user
:type verify: bool
:type prompt1: str
:type prompt2: str

volttron.platform.config module

volttron.platform.control module

volttron.platform.deployment module

volttron.platform.instance_setup module

volttron.platform.jsonapi module

	
volttron.platform.jsonapi.dump(obj, fp, *, skipkeys=False, ensure_ascii=True, check_circular=True, allow_nan=True, cls=None, indent=None, separators=None, default=None, sort_keys=False, **kw)

	Serialize obj as a JSON formatted stream to fp (a
.write()-supporting file-like object).

If skipkeys is true then dict keys that are not basic types
(str, int, float, bool, None) will be skipped
instead of raising a TypeError.

If ensure_ascii is false, then the strings written to fp can
contain non-ASCII characters if they appear in strings contained in
obj. Otherwise, all such characters are escaped in JSON strings.

If check_circular is false, then the circular reference check
for container types will be skipped and a circular reference will
result in an OverflowError (or worse).

If allow_nan is false, then it will be a ValueError to
serialize out of range float values (nan, inf, -inf)
in strict compliance of the JSON specification, instead of using the
JavaScript equivalents (NaN, Infinity, -Infinity).

If indent is a non-negative integer, then JSON array elements and
object members will be pretty-printed with that indent level. An indent
level of 0 will only insert newlines. None is the most compact
representation.

If specified, separators should be an (item_separator, key_separator)
tuple. The default is (', ', ': ') if indent is None and
(',', ': ') otherwise. To get the most compact JSON representation,
you should specify (',', ':') to eliminate whitespace.

default(obj) is a function that should return a serializable version
of obj or raise TypeError. The default simply raises TypeError.

If sort_keys is true (default: False), then the output of
dictionaries will be sorted by key.

To use a custom JSONEncoder subclass (e.g. one that overrides the
.default() method to serialize additional types), specify it with
the cls kwarg; otherwise JSONEncoder is used.

	
volttron.platform.jsonapi.dumpb(data, **kwargs)

	

	
volttron.platform.jsonapi.dumps(obj, *, skipkeys=False, ensure_ascii=True, check_circular=True, allow_nan=True, cls=None, indent=None, separators=None, default=None, sort_keys=False, **kw)

	Serialize obj to a JSON formatted str.

If skipkeys is true then dict keys that are not basic types
(str, int, float, bool, None) will be skipped
instead of raising a TypeError.

If ensure_ascii is false, then the return value can contain non-ASCII
characters if they appear in strings contained in obj. Otherwise, all
such characters are escaped in JSON strings.

If check_circular is false, then the circular reference check
for container types will be skipped and a circular reference will
result in an OverflowError (or worse).

If allow_nan is false, then it will be a ValueError to
serialize out of range float values (nan, inf, -inf) in
strict compliance of the JSON specification, instead of using the
JavaScript equivalents (NaN, Infinity, -Infinity).

If indent is a non-negative integer, then JSON array elements and
object members will be pretty-printed with that indent level. An indent
level of 0 will only insert newlines. None is the most compact
representation.

If specified, separators should be an (item_separator, key_separator)
tuple. The default is (', ', ': ') if indent is None and
(',', ': ') otherwise. To get the most compact JSON representation,
you should specify (',', ':') to eliminate whitespace.

default(obj) is a function that should return a serializable version
of obj or raise TypeError. The default simply raises TypeError.

If sort_keys is true (default: False), then the output of
dictionaries will be sorted by key.

To use a custom JSONEncoder subclass (e.g. one that overrides the
.default() method to serialize additional types), specify it with
the cls kwarg; otherwise JSONEncoder is used.

	
volttron.platform.jsonapi.load(fp, *, cls=None, object_hook=None, parse_float=None, parse_int=None, parse_constant=None, object_pairs_hook=None, **kw)

	Deserialize fp (a .read()-supporting file-like object containing
a JSON document) to a Python object.

object_hook is an optional function that will be called with the
result of any object literal decode (a dict). The return value of
object_hook will be used instead of the dict. This feature
can be used to implement custom decoders (e.g. JSON-RPC class hinting).

object_pairs_hook is an optional function that will be called with the
result of any object literal decoded with an ordered list of pairs. The
return value of object_pairs_hook will be used instead of the dict.
This feature can be used to implement custom decoders that rely on the
order that the key and value pairs are decoded (for example,
collections.OrderedDict will remember the order of insertion). If
object_hook is also defined, the object_pairs_hook takes priority.

To use a custom JSONDecoder subclass, specify it with the cls
kwarg; otherwise JSONDecoder is used.

	
volttron.platform.jsonapi.loadb(s, **kwargs)

	

	
volttron.platform.jsonapi.loads(s, *, encoding=None, cls=None, object_hook=None, parse_float=None, parse_int=None, parse_constant=None, object_pairs_hook=None, **kw)

	Deserialize s (a str, bytes or bytearray instance
containing a JSON document) to a Python object.

object_hook is an optional function that will be called with the
result of any object literal decode (a dict). The return value of
object_hook will be used instead of the dict. This feature
can be used to implement custom decoders (e.g. JSON-RPC class hinting).

object_pairs_hook is an optional function that will be called with the
result of any object literal decoded with an ordered list of pairs. The
return value of object_pairs_hook will be used instead of the dict.
This feature can be used to implement custom decoders that rely on the
order that the key and value pairs are decoded (for example,
collections.OrderedDict will remember the order of insertion). If
object_hook is also defined, the object_pairs_hook takes priority.

parse_float, if specified, will be called with the string
of every JSON float to be decoded. By default this is equivalent to
float(num_str). This can be used to use another datatype or parser
for JSON floats (e.g. decimal.Decimal).

parse_int, if specified, will be called with the string
of every JSON int to be decoded. By default this is equivalent to
int(num_str). This can be used to use another datatype or parser
for JSON integers (e.g. float).

parse_constant, if specified, will be called with one of the
following strings: -Infinity, Infinity, NaN.
This can be used to raise an exception if invalid JSON numbers
are encountered.

To use a custom JSONDecoder subclass, specify it with the cls
kwarg; otherwise JSONDecoder is used.

The encoding argument is ignored and deprecated.

volttron.platform.jsonrpc module

Implementation of JSON-RPC 2.0 with support for bi-directional calls.

See http://www.jsonrpc.org/specification for the complete specification.

	
exception volttron.platform.jsonrpc.Error(code, message, data=None)

	Bases: Exception

Raised when a recoverable JSON-RPC protocol error occurs.

	
exception volttron.platform.jsonrpc.MethodNotFound(code, message, data=None)

	Bases: volttron.platform.jsonrpc.Error

Raised when remote method is not implemented.

	
exception volttron.platform.jsonrpc.RemoteError(message, **exc_info)

	Bases: Exception

Report the details of an error which occurred remotely.

Instances of this exception are usually created by
exception_from_json(), which uses the ‘detail’ element of the
JSON-RPC error for message, if it is set, otherwise the JSON-RPC
error message. The exc_info argument is set from the ‘exception.py’
element associated with an error code of -32000
(UNHANDLED_EXCEPTION). Typical keys in exc_info are exc_type,
exc_args, and exc_tb (if tracebacks are allowed) which are
stringified versions of the tuple returned from sys.exc_info().

	
print_tb(file=<_io.TextIOWrapper name='<stderr>' mode='w' encoding='UTF-8'>)

	Pretty print the traceback in the standard format.

	
class volttron.platform.jsonrpc.Dispatcher

	Bases: object [https://docs.python.org/2.7/library/functions.html#object]

Parses and directs JSON-RPC 2.0 requests/responses.

Parses a JSON-RPC message conatained in a dictionary (JavaScript
object) or a batch of messages (list of dictionaries) and dispatches
them appropriately.

Subclasses must implement the serialize and deserialize methods with
the JSON library of choice. The exception, result, error, method and
batch handling methods should also be implemented.

	
batch(request, context=None)

	Context manager for batch requests.

Entered before processing a batch request and exited afterward.

	
batch_call(requests)

	Create and return a request for a batch of method calls.

requests is an iterator of lists or tuples with 4 items each:
ident, method, args, kwargs. These are the same 4 arguments
required by the call() method. The first (ident) element may be
None to indicate a notification.

	
call(ident, method, args=None, kwargs=None)

	Create and return a request for a single method call.

	
deserialize(json_string)

	Unpack a JSON string and return Python object(s).

	
dispatch(message: (<class 'dict'>, <class 'list'>), context: str = None)

	Dispatch a JSON-RPC message and return a response or None.

	
error(response, ident, code, message, data=None, context=None)

	Called when an error resposne is received.

	
exception(response, ident, message, context=None)

	Called for response errors.

Typically called when a response, such as an error, does not
contain all the necessary members and sending an error to the
remote peer is not possible. Also called when serializing a
response fails.

	
method(request, ident, name, args, kwargs, batch=None, context=None)

	Called to get make method call and return results.

request is the original JSON request (as dict). name is the name
of the method requested. Only one of args or kwargs will contain
parameters. If method is being executed as part of a batch
request, batch will be the value returned from the batch()
context manager.

This method should raise NotImplementedError() if the method is
unimplemented. Otherwise, it should return the result of the
method call or raise an exception. If the raised exception has a
traceback attribute, which should be a string (if set), it will
be sent back in the returned error. An exc_info attribute may
also be set which must be a dictionary and will be used as the
basis for the exception.py member of the returned error.

	
notify(method, args=None, kwargs=None)

	Create and return a request for a single notification.

	
result(response, ident, result, context=None)

	Called when a result response is received.

	
serialize(json_obj)

	Pack compatible Python objects into and return JSON string.

	
volttron.platform.jsonrpc.json_result(ident, result)

	Builds a JSON-RPC response object (dictionary).

	
volttron.platform.jsonrpc.json_validate_request(jsonrequest)

	

	
volttron.platform.jsonrpc.json_validate_response(jsonresponse)

	

volttron.platform.keystore module

Module for storing local public and secret keys and remote public keys

	
class volttron.platform.keystore.BaseJSONStore(filename, permissions=384)

	Bases: object [https://docs.python.org/2.7/library/functions.html#object]

JSON-file-backed store for dictionaries

	
load()

	

	
remove(key)

	

	
store(data)

	

	
update(new_data)

	

	
class volttron.platform.keystore.KeyStore(filename=None, encoded_public=None, encoded_secret=None)

	Bases: volttron.platform.keystore.BaseJSONStore

Handle generation, storage, and retrival of CURVE key pairs

	
generate()

	Generate and store new key pair

	
static generate_keypair_dict()

	Generate and return new keypair as dictionary

	
static get_agent_keystore_path(identity=None)

	

	
static get_default_path()

	

	
isvalid()

	Check if key pair is valid

	
public

	Return encoded public key

	
secret

	Return encoded secret key

	
class volttron.platform.keystore.KnownHostsStore(filename=None)

	Bases: volttron.platform.keystore.BaseJSONStore

Handle storage and retrival of known hosts

	
add(addr, server_key)

	

	
serverkey(addr)

	

volttron.platform.main module

volttron.platform.packages module

volttron.platform.packaging module

volttron.platform.resmon module

volttron.platform.scheduling module

Schedule generators.

	
volttron.platform.scheduling.cron(cron_string, start=None, stop=None, second=0)

	Return a schedule generator from a cron-style string.

cron_string is a cron-style time expression consisting of five
whitespace-separated fields explained in further detail below.
start and stop are used to bound the schedule and can be None,
datetime.datetime or datetime.timedelta objects or numeric values,
such as is returned by time.time(). If start is None, the current
time is used. If it is a timedelta, it will be added to the current
time. If stop is None, cron will generate values infinitely. If it
is a timedelta, the end time is the start time plus stop. Each
iteration yields a datetime.datetime object. Since the smallest cron
unit is a minute, second may be passed in to offset the time within
the minute.

The following description of the cron fields is taken from the
crontab(5) man page (with slight modifications).

The time and date fields are:

field allowed values
—– ————–
minute 0-59
hour 0-23
day of month 1-31
month 1-12 (or names, see below)
day of week 0-7 (0 or 7 is Sunday, or use names)

A field may contain an asterisk (*), which always stands for
“first-last”.

Ranges of numbers are allowed. Ranges are two numbers separated
with a hyphen. The specified range is inclusive. For example, 8-11
for an ‘hours’ entry specifies execution at hours 8, 9, 10, and 11.
If the range start or end value is left off, the first or last value
will be used. For example, -8 for an ‘hours’ entry is equivalent to
0-8, 20- for a ‘days of month’ entry is equivalent to 20-31, and -
for a ‘months’ entry is equivalent to 1-12.

Lists are allowed. A list is a set of numbers (or ranges) separated
by commas. Examples: “1,2,5,9”, “0-4,8-12”.

Step values can be used in conjunction with ranges. Following a
range with “/<number>” specifies skips of the number’s value through
the range. For example, “0-23/2” can be used in the ‘hours’ field
to specify every other hour. Step values are also permitted after
an asterisk, “*/2” in the ‘hours’ field is equivalent to “0-23/2”.

Names can also be used for the ‘month’ and ‘day of week’ fields.
Use at least the first three letters of the particular day or month
(case does not matter).

Note: The day can be specified in the following two fields: ‘day of
month’, and ‘day of week’. If both fields are restricted (i.e., do
not contain the “*” character), then both are used to compute
date/time values. For example, “30 4 1,15 * 5” is interpreted as
“4:30 am on the 1st and 15th of each month, plus every Friday.”

	
volttron.platform.scheduling.periodic(period, start=None, stop=None)

	Generate periodic datetime objects.

Yields datetime objects increasing by the given period, which
can be of type int, long, float, or datetime.timedelta.
start and stop are used to bound the schedule and can be None,
datetime.datetime or datetime.timedelta objects or numeric values,
such as is returned by time.time(). If start is None, the current
time is used. If it is a timedelta, it will be added to the current
time. If stop is None, cron will generate values infinitely. If it
is a timedelta, the end time is the start time plus stop. Each
iteration yields a datetime.datetime object.

volttron.platform.store module

	
class volttron.platform.store.ConfigStoreService(*args, **kwargs)

	Bases: volttron.platform.vip.agent.Agent

	
delete(identity, config_name, trigger_callback=False, send_update=True)

	

	
delete_config(config_name, trigger_callback=False, send_update=True)

	Called by an Agent to delete a configuration.

	
get_configs()

	Called by an Agent at startup to trigger initial configuration state
push.

	
manage_delete_config(identity, config_name)

	

	
manage_delete_store(identity)

	

	
manage_get(identity, config_name, raw=True)

	

	
manage_get_metadata(identity, config_name)

	

	
manage_list_configs(identity)

	

	
manage_list_stores()

	

	
manage_store(identity, config_name, raw_contents, config_type='raw')

	

	
set_config(config_name, contents, trigger_callback=False, send_update=True)

	

	
store_config(identity, config_name, contents, trigger_callback=False, send_update=True)

	

	
volttron.platform.store.process_raw_config(config_string, config_type='raw')

	Parses raw config string into python objects

	
volttron.platform.store.process_store(identity, store)

	Parses raw store data and returns contents.
Called at startup to initialize the parsed version of the store.

volttron.platform.storeutils module

	
volttron.platform.storeutils.check_for_config_link(value)

	

	
volttron.platform.storeutils.check_for_recursion(new_config_name, new_config, existing_configs)

	

	
volttron.platform.storeutils.list_unique_links(config)

	Returns a set of config files referenced in this configuration

	
volttron.platform.storeutils.strip_config_name(config_name)

	

volttron.platform.vpm module

volttron.utils package

	
class volttron.utils.AbsolutePathFileReloader(filetowatch, callback)

	Bases: watchdog.events.PatternMatchingEventHandler

Extends PatternMatchingEvent handler to watch changes to a singlefile/file pattern within volttron home.
filetowatch should be path relative to volttron home.
For example filetowatch auth.json with watch file <volttron_home>/auth.json.
filetowatch *.json will watch all json files in <volttron_home>

	
on_any_event(event)

	Catch-all event handler.

	Parameters

	event (FileSystemEvent) – The event object representing the file system event.

	
watchfile

	

	
class volttron.utils.VolttronHomeFileReloader(filetowatch, callback)

	Bases: watchdog.events.PatternMatchingEventHandler

Extends PatternMatchingEvent handler to watch changes to a singlefile/file pattern within volttron home.
filetowatch should be path relative to volttron home.
For example filetowatch auth.json with watch file <volttron_home>/auth.json.
filetowatch *.json will watch all json files in <volttron_home>

	
on_any_event(event)

	Catch-all event handler.

	Parameters

	event (FileSystemEvent) – The event object representing the file system event.

	
volttron.utils.get_hostname()

	

	
volttron.utils.get_random_key(length: int = 65) → str

	Returns a hex random key of specified length. The length must be > 0 in order for
the key to be valid. Raises a ValueError if the length is invalid.

The default length is 65, which is 130 in length when hexlify is run.

	Parameters

	length –

	Returns

	

	
volttron.utils.is_ip_private(vip_address)

	Determines if the passed vip_address is a private ip address or not.

	Parameters

	vip_address – A valid ip address.

	Returns

	True if an internal ip address.

Submodules

volttron.utils.docs module

doc_inherit decorator

Usage:

	class Foo(object):

	
	def foo(self):

	“Frobber”
pass

	class Bar(Foo):

	@doc_inherit
def foo(self):

pass

Now, Bar.foo.__doc__ == Bar().foo.__doc__ == Foo.foo.__doc__ == “Frobber”

	
class volttron.utils.docs.DocInherit(mthd)

	Bases: object [https://docs.python.org/2.7/library/functions.html#object]

Docstring inheriting method descriptor

The class itself is also used as a decorator

	
get_no_inst(cls)

	

	
get_with_inst(obj, cls)

	

	
use_parent_doc(func, source)

	

	
volttron.utils.docs.doc_inherit

	alias of volttron.utils.docs.DocInherit

volttron.utils.frame_serialization module

	
volttron.utils.frame_serialization.deserialize_frames(frames: List[zmq.sugar.frame.Frame]) → List

	

	
volttron.utils.frame_serialization.serialize_frames(data: List[Any]) → List[zmq.sugar.frame.Frame]

	

volttron.utils.frozendict module

	
class volttron.utils.frozendict.FrozenDict(*args, **kwargs)

	Bases: dict [https://docs.python.org/2.7/library/stdtypes.html#dict]

A wrapper around a dictionary that allows us to “freeze” a dictionary so that
we can no longer set values on the object itself. This does that we can’t
change the value instance object if its mutable.

	
freeze()

	

volttron.utils.persistance module

	
class volttron.utils.persistance.PersistentDict(filename, flag='c', mode=None, format='pickle', *args, **kwds)

	Bases: dict [https://docs.python.org/2.7/library/stdtypes.html#dict]

Persistent dictionary with an API compatible with shelve and anydbm.

The dict is kept in memory, so the dictionary operations run as fast as
a regular dictionary.

Write to disk is delayed until close or sync (similar to gdbm’s fast mode).

Input file format is automatically discovered.
Output file format is selectable between pickle, json, and csv.
All three serialization formats are backed by fast C implementations.

	
async_sync()

	Write dict to disk via worker thread. Don’t mix with sync if it can be helped

	
close()

	

	
sync()

	Write dict to disk

	
volttron.utils.persistance.load_create_store(filename)

	

volttron.utils.prompt module

	
volttron.utils.prompt.prompt_response(prompt, valid_answers=None, default=None, echo=True, mandatory=False)

	

volttron.utils.rmq_config_params module

	
class volttron.utils.rmq_config_params.RMQConfig

	Bases: object [https://docs.python.org/2.7/library/functions.html#object]

Utility class to read/write RabbitMQ related configuration

	
admin_pwd

	

	
admin_user

	

	
amqp_port

	

	
amqp_port_ssl

	

	
certificate_data

	

	
hostname

	

	
is_ssl

	

	
load_rmq_config(volttron_home=None)

	Load RabbitMQ config from VOLTTRON_HOME
:param volttron_home: VOLTTRON_HOME path
:return:

	
local_password

	

	
local_user

	

	
mgmt_port

	

	
mgmt_port_ssl

	

	
node_name

	

	
reconnect_delay()

	

	
rmq_home

	

	
use_existing_certs

	

	
virtual_host

	

	
write_rmq_config(volttron_home=None)

	Write new config options into $VOLTTRON_HOME/rabbitmq_config.yml
:param volttron_home: VOLTTRON_HOME path
:return:

volttron.utils.rmq_mgmt module

	
class volttron.utils.rmq_mgmt.RabbitMQMgmt

	Bases: object [https://docs.python.org/2.7/library/functions.html#object]

	
build_agent_connection(identity, instance_name)

	Check if RabbitMQ user and certs exists for this agent, if not
create a new one. Add access control/permissions if necessary.
Return connection parameters.
:param identity: Identity of agent
:param instance_name: instance name of the platform
:param is_ssl: Flag to indicate if SSL connection or not
:return: Return connection parameters

	
build_connection_param(rmq_user, ssl_auth=None, retry_attempt=30, retry_delay=2)

	Build Pika Connection parameters
:param rmq_user: RabbitMQ user
:param ssl_auth: If SSL based connection or not
:return:

	
build_remote_connection_param(rmq_user, rmq_address, ssl_auth=None, cert_dir=None, retry_attempt=30, retry_delay=2)

	Build Pika Connection parameters
:param rmq_user: RabbitMQ user
:param ssl_auth: If SSL based connection or not
:return:

	
build_rmq_address(user=None, password=None, host=None, port=None, vhost=None, ssl_auth=None, ssl_params=None)

	Build RMQ address for federation or shovel connection
:param ssl_auth:
:param config:
:return:

	
build_router_connection(identity, instance_name)

	Check if RabbitMQ user and certs exists for the router, if not
create a new one. Add access control/permissions if necessary.
Return connection parameters.
:param identity: Identity of agent
:param permissions: Configure+Read+Write permissions
:param is_ssl: Flag to indicate if SSL connection or not
:return:

	
build_shovel_connection(identity, instance_name, host, port, vhost, is_ssl)

	Check if RabbitMQ user and certs exists for this agent, if not
create a new one. Add access control/permissions if necessary.
Return connection parameters.
:param identity: Identity of agent
:param instance_name: instance name of the platform
:param host: hostname
:param port: amqp/amqps port
:param vhost: virtual host
:param is_ssl: Flag to indicate if SSL connection or not
:return: Return connection uri

	
create_exchange(exchange, properties, vhost=None, ssl_auth=None)

	Create a new exchange
:param exchange: exchange name
:param properties: dict containing properties
:param vhost: virtual host
:param ssl_auth: Flag for SSL connection
:return:

	
create_queue(queue, properties, vhost=None, ssl_auth=None)

	Create a new queue
:param queue: queue
:param properties: dict containing properties
:param vhost: virtual host
:param ssl_auth: Flag for SSL connection
:return:

	
create_user(user, password=None, tags='administrator', ssl_auth=None)

	Create a new RabbitMQ user
:param user: Username
:param password: Password
:param tags: “adminstrator/management”
:param ssl_auth: Flag for SSL connection
:return:

	
create_user_with_permissions(user, permissions, ssl_auth=None)

	Create RabbitMQ user. Set permissions for it.
:param identity: Identity of agent
:param permissions: Configure+Read+Write permissions
:param is_ssl: Flag to indicate if SSL connection or not
:return:

	
create_vhost(vhost='volttron', ssl_auth=None)

	Create a new virtual host
:param vhost: virtual host
:param ssl_auth
:return:

	
delete_connection(name, ssl_auth=None)

	Delete open connection
:param name: connection name
:param ssl: Flag for SSL connection
:return:

	
delete_exchange(exchange, vhost=None, ssl_auth=None)

	Delete a exchange
:param exchange: exchange name
:param vhost: virtual host
:param ssl_auth: Flag for SSL connection
:return:

	
delete_multiplatform_parameter(component, parameter_name, vhost=None)

	Delete a component parameter
:param component: component name
:param parameter_name: parameter
:param vhost: virtual host
:return:

	
delete_parameter(component, parameter_name, vhost=None, ssl_auth=None)

	Delete a component parameter
:param component: component name
:param parameter_name: parameter
:param vhost: virtual host
:param ssl_auth: Flag for SSL connection
:return:

	
delete_policy(name, vhost=None, ssl_auth=None)

	Delete a policy
:param name: policy name
:param vhost: virtual host
:param ssl_auth: Flag for SSL connection
:return:

	
delete_queue(queue, user=None, password=None, vhost=None, ssl_auth=None)

	Delete a queue
:param queue: queue
:param vhost: virtual host
:return:

	
delete_user(user, ssl_auth=None)

	Delete specific user
:param user: user
:param ssl_auth: Flag for SSL connection
:return:

	
delete_users_in_bulk(users, ssl_auth=None)

	Delete a list of users at once
:param users:
:param ssl_auth:
:return:

	
delete_vhost(vhost, ssl_auth=None)

	Delete a virtual host
:param vhost: virtual host
:param user: username
:param password: password
:return:

	
get_bindings(exchange, ssl_auth=None)

	List all bindings in which a given exchange is the source
:param exchange: source exchange
:param ssl: Flag for SSL connection
:return: list of bindings

	
get_connection(name, ssl_auth=None)

	Get status of a connection
:param name: connection name
:param ssl: Flag for SSL connection
:return:

	
get_connections(vhost=None, ssl_auth=None)

	Get all connections
:param user: username
:param password: password
:param vhost: virtual host
:return:

	
get_default_permissions(fq_identity)

	

	
get_exchanges(vhost=None, ssl_auth=None)

	List all exchanges
:param vhost: virtual host
:param ssl_auth: Flag for SSL connection
:return:

	
get_exchanges_with_props(vhost=None, ssl_auth=None)

	List all exchanges with properties
:param vhost: virtual host
:param ssl_auth: Flag for SSL connection
:return:

	
get_parameter(component, vhost=None, ssl_auth=None)

	Get component parameters, namely federation-upstream
:param component: component name
:param vhost: virtual host
:param ssl_auth: Flag for SSL connection
:return:

	
get_policies(vhost=None, ssl_auth=None)

	Get all policies
:param vhost: virtual host
:param ssl_auth_auth: Flag for ssl_auth connection
:return:

	
get_policy(name, vhost=None, ssl_auth=None)

	Get a specific policy
:param name: policy name
:param vhost: virtual host
:param ssl_auth: Flag for SSL connection
:return:

	
get_queues(user=None, password=None, vhost=None, ssl_auth=None)

	Get list of queues
:param user: username
:param password: password
:param vhost: virtual host
:param ssl: Flag for SSL connection
:return:

	
get_queues_with_props(vhost=None, ssl_auth=None)

	Get properties of all queues
:param vhost: virtual host
:param ssl: Flag for SSL connection
:return:

	
get_ssl_url_params(user=None)

	Return SSL parameter string
:return:

	
get_topic_permissions_for_user(user, vhost=None, ssl_auth=None)

	Get permissions for all topics
:param user: user
:param vhost:
:param ssl_auth: Flag for SSL connection
:return:

	
get_user_permissions(user, vhost=None, ssl_auth=None)

	Get permissions (configure, read, write) for the user
:param user: user
:param password: password
:param vhost: virtual host
:param ssl_auth: Flag for SSL connection
:return:

	
get_user_props(user, ssl_auth=None)

	Get properties of the user
:param user: username
:param ssl_auth: Flag for SSL connection
:return:

	
get_users(ssl_auth=None)

	Get list of all users
:param ssl_auth: Flag for SSL connection
:return:

	
get_virtualhost(vhost, ssl_auth=None)

	Get properties for this virtual host
:param vhost:
:param ssl_auth: Flag indicating ssl based connection
:return:

	
get_virtualhosts(ssl_auth=None)

	
	Parameters

	ssl_auth –

	Returns

	

	
init_rabbitmq_setup()

	
	Create a RabbitMQ resources for VOLTTRON instance.

	
	Create a new virtual host: default is “volttron”

	Create a new topic exchange: “volttron”

	Create alternate exchange: “undeliverable” to capture unrouteable messages

	Returns

	

	
is_valid_amqp_port()

	

	
is_valid_mgmt_port()

	

	
list_channels_for_connection(connection, ssl_auth=None)

	List all open channels for a given channel
:param connection: connnection name
:param ssl: Flag for SSL connection
:return:

	
list_channels_for_vhost(vhost=None, ssl_auth=None)

	List all open channels for a given vhost
:param vhost: virtual host
:param ssl: Flag for SSL connection
:return:

	
set_parameter(component, parameter_name, parameter_properties, vhost=None, ssl_auth=None)

	Set parameter on a component
:param component: component name (for example, federation-upstream)
:param parameter_name: parameter name
:param parameter_properties: parameter properties
:param vhost: virtual host
:param ssl_auth: Flag for SSL connection
:return:

	
set_policy(name, value, vhost=None, ssl_auth=None)

	Set a policy. For example a federation policy
:param name: policy name
:param value: policy value
:param vhost: virtual host
:param ssl_auth: Flag for SSL connection
:return:

	
set_topic_permissions_for_user(permissions, user, vhost=None, ssl_auth=None)

	Set read, write permissions for a topic and user
:param permissions: dict containing exchange name and read/write permissions
{“exchange”:”volttron”, read: “.*”, write: “^__pubsub__”}
:param user: username
:param ssl_auth: Flag for SSL connection
:return:

	
set_user_permissions(permissions, user, vhost=None, ssl_auth=None)

	Set permissions for the user
:param permissions: dict containing configure, read and write settings
:param user: username
:param password: password
:param vhost: virtual host
:param ssl_auth: Flag for SSL connection
:return:

volttron.utils.rmq_setup module

RabbitMQ setup script to
1. setup single instance of RabbitMQ VOLTTRON
2. Federation
3. Shovel

	
exception volttron.utils.rmq_setup.RabbitMQSetupAlreadyError

	Bases: BaseException

	
exception volttron.utils.rmq_setup.RabbitMQStartError

	Bases: BaseException

	
volttron.utils.rmq_setup.check_rabbit_status(rmq_home=None, env=None)

	

	
volttron.utils.rmq_setup.is_file_readable(file_path)

	

	
volttron.utils.rmq_setup.prompt_port(default_port, prompt)

	

	
volttron.utils.rmq_setup.prompt_shovels(vhome)

	Prompt for shovel configuration and save in rabbitmq_shovel_config.yml
:return:

	
volttron.utils.rmq_setup.prompt_upstream_servers(vhome)

	Prompt for upstream server configurations and save in
rabbitmq_federation_config.yml
:return:

	
volttron.utils.rmq_setup.restart_ssl(rmq_home, env=None)

	Runs rabbitmqctl eval “ssl:stop(), ssl:start().” to make rmq reload ssl certificates. Client connection will get
dropped and client should reconnect.
:param rmq_home:
:param env: Environment to run the RabbitMQ command.
:return:

	
volttron.utils.rmq_setup.setup_rabbitmq_volttron(setup_type, verbose=False, prompt=False, instance_name=None, rmq_conf_file=None, env=None)

	Setup VOLTTRON instance to run with RabbitMQ message bus.
:param setup_type:

single - Setup to run as single instance
federation - Setup to connect multiple VOLTTRON instances as

a federation

shovel - Setup shovels to forward local messages to remote instances

:param verbose
:param prompt
:raises RabbitMQSetupAlreadyError

	
volttron.utils.rmq_setup.start_rabbit(rmq_home, env=None)

	Start RabbitMQ server.

The function assumes that rabbitmq.conf in rmq_home/etc/rabbitmq is setup before
this funciton is called.

If the function cannot detect that rabbit was started within roughly 60 seconds
then class:RabbitMQStartError will be raised.

	Parameters

	
	rmq_home – RabbitMQ installation path

	env – Environment to start RabbitMQ with.

	Raises

	RabbitMQStartError –

	
volttron.utils.rmq_setup.stop_rabbit(rmq_home, env=None, quite=False)

	Stop RabbitMQ Server
:param rmq_home: RabbitMQ installation path
:param env: Environment to run the RabbitMQ command.
:param quite:
:return:

	
volttron.utils.rmq_setup.write_env_file(rmq_config, conf_file, env=None)

	Write rabbitmq-env.conf file
:param conf_file:
:param env: Environment to get the RABBITMQ_CONF_ENV_FILE out of.
:param rmq_config:
:return:

volttron.utils.valid_uuid module

	
volttron.utils.valid_uuid.validate_uuid4(uuid_string)

	Validate that a UUID string is in
fact a valid uuid4.
Happily, the uuid module does the actual
checking for us.
It is vital that the ‘version’ kwarg be passed
to the UUID() call, otherwise any 32-character
hex string is considered valid.

volttron package

Subpackages

	volttron.platform package
	Subpackages
	volttron.platform.agent package
	Subpackages
	volttron.platform.agent.base_market_agent package
	Submodules

	volttron.platform.agent.base_market_agent.buy_sell module

	volttron.platform.agent.base_market_agent.error_codes module

	volttron.platform.agent.base_market_agent.market_registration module

	volttron.platform.agent.base_market_agent.offer module

	volttron.platform.agent.base_market_agent.point module

	volttron.platform.agent.base_market_agent.poly_line module

	volttron.platform.agent.base_market_agent.poly_line_factory module

	volttron.platform.agent.base_market_agent.registration_manager module

	volttron.platform.agent.base_market_agent.rpc_proxy module

	volttron.platform.agent.base_simulation_integration package
	Submodules

	volttron.platform.agent.base_simulation_integration.base_sim_integration module

	Submodules

	volttron.platform.agent.bacnet_proxy_reader module

	volttron.platform.agent.base module

	volttron.platform.agent.base_aggregate_historian module

	volttron.platform.agent.base_historian module
	Historian Development
	Creating a New Historian

	Historian Execution Flow

	Storing Data

	Querying Data

	Other Notes

	volttron.platform.agent.base_tagging module
	Querying for topics based on tags

	volttron.platform.agent.base_weather module

	volttron.platform.agent.cron module

	volttron.platform.agent.driven module

	volttron.platform.agent.exit_codes module

	volttron.platform.agent.green module

	volttron.platform.agent.known_identities module

	volttron.platform.agent.matching module

	volttron.platform.agent.math_utils module

	volttron.platform.agent.multithreading module

	volttron.platform.agent.sched module

	volttron.platform.agent.utils module

	volttron.platform.agent.web module

	volttron.platform.dbutils package
	Submodules

	volttron.platform.dbutils.basedb module

	volttron.platform.dbutils.crateutils module

	volttron.platform.dbutils.influxdbutils module

	volttron.platform.dbutils.mongoutils module

	volttron.platform.dbutils.mysqlfuncts module

	volttron.platform.dbutils.postgresqlfuncts module

	volttron.platform.dbutils.redshiftfuncts module

	volttron.platform.dbutils.sqlitefuncts module

	volttron.platform.dbutils.sqlutils module

	volttron.platform.lib package
	Subpackages
	volttron.platform.lib.inotify package
	Submodules

	volttron.platform.lib.inotify.green module

	Submodules

	volttron.platform.lib.kwonlyargs module

	volttron.platform.lib.prctl module

	volttron.platform.messaging package
	Submodules

	volttron.platform.messaging.headers module

	volttron.platform.messaging.health module

	volttron.platform.messaging.socket module

	volttron.platform.messaging.topics module

	volttron.platform.messaging.utils module

	volttron.platform.vip package
	Subpackages
	volttron.platform.vip.agent package
	Subpackages
	volttron.platform.vip.agent.subsystems package
	Submodules

	volttron.platform.vip.agent.subsystems.auth module

	volttron.platform.vip.agent.subsystems.base module

	volttron.platform.vip.agent.subsystems.channel module

	volttron.platform.vip.agent.subsystems.configstore module

	volttron.platform.vip.agent.subsystems.health module

	volttron.platform.vip.agent.subsystems.heartbeat module

	volttron.platform.vip.agent.subsystems.hello module

	volttron.platform.vip.agent.subsystems.peerlist module

	volttron.platform.vip.agent.subsystems.ping module

	volttron.platform.vip.agent.subsystems.pubsub module

	volttron.platform.vip.agent.subsystems.query module

	volttron.platform.vip.agent.subsystems.rmq_pubsub module

	volttron.platform.vip.agent.subsystems.rpc module

	volttron.platform.vip.agent.subsystems.volttronfncs module

	volttron.platform.vip.agent.subsystems.web module

	Submodules

	volttron.platform.vip.agent.compat module

	volttron.platform.vip.agent.connection module

	volttron.platform.vip.agent.core module

	volttron.platform.vip.agent.decorators module

	volttron.platform.vip.agent.dispatch module

	volttron.platform.vip.agent.errors module

	volttron.platform.vip.agent.example module

	volttron.platform.vip.agent.results module

	volttron.platform.vip.agent.utils module

	Submodules

	volttron.platform.vip.externalrpcservice module

	volttron.platform.vip.green module

	volttron.platform.vip.keydiscovery module

	volttron.platform.vip.proxy_zmq_router module

	volttron.platform.vip.pubsubservice module

	volttron.platform.vip.pubsubwrapper module

	volttron.platform.vip.rmq_connection module

	volttron.platform.vip.rmq_router module

	volttron.platform.vip.router module

	volttron.platform.vip.routingservice module

	volttron.platform.vip.socket module

	volttron.platform.vip.tracking module

	volttron.platform.vip.zmq_connection module

	volttron.platform.web package
	Submodules

	volttron.platform.web.admin_endpoints module

	volttron.platform.web.authenticate_endpoint module

	volttron.platform.web.csr_endpoints module

	volttron.platform.web.discovery module

	volttron.platform.web.master_web_service module

	volttron.platform.web.webapp module

	volttron.platform.web.websocket module

	Submodules

	volttron.platform.aip module

	volttron.platform.async_ module

	volttron.platform.auth module

	volttron.platform.certs module

	volttron.platform.config module

	volttron.platform.control module

	volttron.platform.deployment module

	volttron.platform.instance_setup module

	volttron.platform.jsonapi module

	volttron.platform.jsonrpc module

	volttron.platform.keystore module

	volttron.platform.main module

	volttron.platform.packages module

	volttron.platform.packaging module

	volttron.platform.resmon module

	volttron.platform.scheduling module

	volttron.platform.store module

	volttron.platform.storeutils module

	volttron.platform.vpm module

	volttron.utils package
	Submodules

	volttron.utils.docs module

	volttron.utils.frame_serialization module

	volttron.utils.frozendict module

	volttron.utils.persistance module

	volttron.utils.prompt module

	volttron.utils.rmq_config_params module

	volttron.utils.rmq_mgmt module

	volttron.utils.rmq_setup module

	volttron.utils.valid_uuid module

 _images/env-vars-image_1.png
Environment Variables

User variables for
Variable Value
OneDriveCommercial C\Users\ user \OneDrive - PNNL
OneDriveSync C\Users\ user \OneDrive - PNNL
Path C:\Users\ user \AppData\Local\Programs\Python\Python37-3215...
TEMP C:\Users\ user \AppData\Local\Temp
™ C:\Users\ user \AppData\Local\Temp

E = —

_images/env-vars-image_2.png
Edit User Variable

Variable name:

Variable value:

Browse Directory...

[PrivionpaTH]

[Gm, w5 Documenoraerein

Browse File...

_images/ecobee_pin.png
master driver.interfaces.ecobee WARNING: ***x*xkkkkkkkkkk kA kA kA kXXX XA XXX XXX XXX AR AR AR AR AKX
master_driver.interfaces.ecobee WARNING: Please authorize your Ecobee developer app with
., click My Apps, Add application, Enter Pin and click Authorize.

master driver.interfaces.ecobee WARNING: #* &kt &kk stk s stk s stk s sshstshhtshhtshathhathhathkhathhathne

_images/ecobee_verify_pin.png
ecobee Myiome

MY APPS

Planse anter authorization cod tha was pravided by the =pplicatian you insralled
[Te——

ConmrolsHouse

asiglastapi

I B vaiee

_images/extract-image_1.png
[ERd} Compressed FolderTools Downloads

Home share view baract
© 4 &> ThisPC > Downlosds

A O Name
ick access

Open

Openin newwindow
q Openith Code

7zip
CRCSHA >
Pinto Start

_images/vbox-credentials.png
Linux Mint 18.3 Sylvia

& Ve o o

Username: osboxes

Password: 0sboxes.org

VB Guest Additions & VMware Tools: Not Installed
lity: Version 10+

VMware Compatil

_images/extract-image_2.png
(1 Btract Compressed Bippec) Folders

Select a Destination and Extract Files.

Fies will be extracted to this folder:

[Chse wser \Documents

how extracted files when complete

_images/vbox-hard-disk-xfce.png
Hard disk

1 you wish you can add a virtual hard disk to the new machine. You can either
create a new hard disk ile or select one from the list or from another location

using the folder icon.

1 you need a more complex storage set-up you can skip this step and make the
changes to the machine settings once the machine is created.

The recommended size of the hard disk is 10.00
() Do not add a virtual hard disk

(©) Create a virtual hard disk now

(@ Use an existing virtual hard disk file

(B8 winux Mint 18.3 Xfce (64bit).vdi (Normal, 500.00 GB)

_images/vbox-download.png
About
Screenshots
Downloads
Documentation
End-user docs
Technical docs
Contribute

Community

search...
Login Preferences

Download VirtualBox

Here you will find links to VirtualBox binaries and its source code.

VirtualBox binaries

By downloading, you agree to the terms and conditions of the respective license.

If you're looking for the latest VirtualBox 5.1 packages, see VirtualBox 5.1 builds. Consider
upgrading.

VirtualBox 5.2.12 platform packages

e =>Windows hosts
e =20S X hosts

e Linux distributions
e =»Solaris hosts

_images/vbox-naming.png
() Create Vit Machine

Name and operating system

Please choose a desariptive name for the new virtual machine and select the
type of operating system you intend to nstal on t. The name you choose wil
be used throughout VirtualBox to densfy this machine.

Name: nux-mint

Types [

BI= sl

Version: (Ubuntu (644it)

=)

Eertitade

_images/vbox-memory-size.png
Memory size

‘Select the amount of memory (RAM) in megabytes to be allocated to the virtual
machine.

‘The recommended memory size is 2048 M.

J

_images/vc-agents.png
Platforms / volttronl (dm9sdHRyb24xLnBsYXRmb3JtLmFnZW50)

Agents

Name.
listeneragent-3.2

master_driveragent-3.2

sqlhistorianagent-3.7.0

veplatformagent-4.8

volttroncentralagent-5.0
Install agents

Browse... | No files selected.

Identity
listeneragent-3.2_1
platform. driver
platform. historian
platform.agent

volttron.central

uuip
ff8b93d0-b499-4d66-8304-94acofd5d9ba
30bf6384-3bde-4e28-8b17-6695448f7b7d
769d570d-69b5-4263-8d07-31416ccec5c8
f03b0ade-d161-4ddb-946b-30e120725584

63f67dd6-a272-4064-949F7C6649c43(73

Status
Running (PID 3842)
Running (PID 3847)
Running (PID 3845)
Running (PID 3844)

Running (PID 3846)

stop

stop

AR
H

stop

_images/vbox-proc-settings.png
General

System

P
-
>
4
=

Display
Storage
Audio
Network
Serial Ports
uss

Shared Folders

User Interface

1%

Enable PAE/NX

_images/vc-cert-warning-1.png
Warning: Potential Security Risk Ahead

Firefox detected a potential security threat and did not continue to volttron-pc . If you visit this
site, attackers could try to steal information like your passwords, emails, or credit card details.
What can you do about it?

The issue is most likely with the website, and there is nothing you can do to resolve it.

If you are on a corporate network or using anti-virus software, you can reach out to the support teams
for assistance. You can also notify the website’s administrator about the problem.

Learn more,

Go B:

(Recommen

[] Report errors like this to help Mozilla identify and block malicious sites

-

_images/vc-auth-failure.png
2019-86-13 11:37:52,023 () volttron.platform.auth INFO: authentication failure: domain='

vip', address
'172.20.214.69', mechanism='CURVE', credential:

*£5XjmsCN_n4MLVSuKpZmWn49Zz1eRYinGripgeYmQug']

_images/vbox-controller.png
General Storage

System Storage Devices
& controller: DE @
= """ L ® empy

i Storage || controller: SATA

Audio E Linux Mint 18.3 Xfce (64bi...

Display

Network

Serial Ports

usB

Shared Folders

BhYeRNYEEDEN

User Interface

_images/vbox-bidirectional.png
(2 VOLTTRON - Settings

Display

) storage

e it
oo

Co o))

_images/ecobee_create_app.png
ecobee | wrom:

DEVELOPER [¥] emhee Developer Documentation

PNNL_connccted_homes.

crsigtestapi

Name and Summary *

Plaase select zn suthorzation methad for your spphestion
Once craate, the suthoriation rsthed cannol be changud.

T

Application lcon.

Detailed Description

Goncel .

Users will e asked o authorize the application by entering 2
L ———

_images/ecobee_developer_menu.png
ecobee | myrome

My scobee QUICK CHANGES

£ : Home end hold |
[revrn |
o :)

O] 1 SETINGS

FAN SYSTEM
Cool

REMINDERS & HOME IQ
ALERTS

wl)

VACATION SCHEDULE
Lor's go away! un 25 - est_home

W ¢

Now 1130

WEATHER SENSORS

-~ -
ALEXA VOICE ABOUT

CONTROL My ecobee: =
Gk g (=

Hi Austin!

My Account
Add Thermostat

Donate Your Data

My Apps

Logout

Support

Contact Us

_images/ecobee_api_key.png
DEVELOPER [ecobee Developer Documentation

myApp

Name and Summary *

Authorization Method *
ecobee PIN

Application Icon

Detailed Description

Application name:
myApp

Application summary *
myApp

API key:
bibfbotAXTwKs7]BYSQIVEAVIrhJZeC

Installs: 0

_images/ecobee_console.png
ecobee myHome

My ecobee
B2

b 20% .

90"

86 and holding

FAN

QUICK CHANGES

[ememaron
[et

SETTINGS
SO
‘x@a]
SYSTEM
Cool

REMINDERS &
ALERTS 28

VACATION
Let's get away!

WEATHER
Kichland

om0 Sl

ALEXA VOICE
CONTROL »
G %1

HOME IQ

Ky

SCHEDULE
&

Now Titpm

Q\“
=D

SENSORS

ABOUT
My ecobee.

_images/rmq_server_ssl_certs.png
Presents agenti.r
andagentl.pem

Agent1
agenti.crt - publiccert signed
by RootCa
agenti.pem - private key.

RabbitMQ Server S certficates

Presents agent2.cr|
andagent2 pem

Presents agent3.cr|
andagent3.pem

Agent2
agent2.crt—signed by Root CA
agent2 pem - private key

Agent3
agent3.crt - signed by Root CA
agent3.pem - private key.

_images/rmq_remote_forwarder_pending.png
“)> C @ https://central:8443/admin/pending_auth_reqs.html neoegR =

\Y/vOoLTTRON

Devices Decisions

Certificate Requests

Status: PENDING

Common Name: central.collector2.forwarderagent-5.1_1
Remote IP: 192.168.56.103

Status: APPROVED

Approve Deny Delete

Deny Delete
Common Name: central.collector2.platform.agent
Remote IP: 192.168.56.103

Deny Delete Status: APPROVED

Common Name: central.central.platform.agent
Remote IP: 192.168.56.101

ZMQ Keys Pending Authorization

No ZMQ keys requiring authorization at this time.

Status: APPROVED

Deny Delete
Common Name: 68ef33c4-97bc-4e1b-b5f6-2a6049993065
Remote IP: 127.0.0.1

Deny Delete Status: APPROVED

Common Name: fb30249d-b267-4bdd-b29a-d9112e6a6082
Remote IP: 127.0.0.1

_images/run_configuration.png
+ - B, v Name: | pytest in /home/<user>/volttron/services/core/Darksky Allow parallel run
> @ Python
v @ Python tests Configuration Logs
@ pytestin /home/<user>Avoltiron/services/core:
@ pytestin MasterDriverAgent L8
>/ Templates Target: Module name (s) Seript path () Custom

Ihomej<user>volttron/services/core/Darksky
Keywords

Parameters

Additional Arguments: | -5 -m dev.

v Environment

Store as project file

Environment variables: | DEBUG_MODE=True|

Bython interpreter. @ Project Defautt (Python 36 (volttron))
Interpreter options
Working directory: Jhomej<user>volttron

V] Add content roots to PYTHONPATH

] Add source roots to PYTHONPATH

» Before launch: 1 task

cancel

Apply

_images/rpc.png
Message:
Destination Routing Key:
‘“volttronl.agent_b"”

Pika properties:
Type:"rpc”
“user_id”: “volttronl.agent_a”
Body: message arguments

Topic
Exchange

Alternate Router/Bad
Exchange Message
(Fan out) Handler

Message:
Destination Routing Key:
“volttronl.agent_a”
Pika properties:
Type:"rpc”
app_id: "volttronl.agent_b”
“user_id”:
“volttronl.agent_a”
Message_id: message id
Body: message return result

_images/side-panel-open.png
VOLTTRON" Central Funded by DOE EERE BTO

<

Dashboard
el
Platform 1
» performance
Agents
v Platform2
» performance
 Buildings
¥ BUILDINGS
 Devices
v Ac3
» Points,
» BUILDING4
v Agents
» forwarderagent3:5

» veplatformagent-3.5.1

_images/side-panel-closed.png
VOLTTRON" Central Funded by DOE EERE BTO

&
Dashboard

_images/terminator-setup.png
$ source env/bin/activate s source env/bin/activate s source env/bin/activate
(volttron)$ export VOLTTRON_HOME=~/.volttronl (volttron)$ export VOLTTRON_HOME=~/.volttronZ] (volttron)$ export VOLTTRON_HOME:

_images/ted-spyders.png
Settings Export Advanced Help

m LIVE DASHBOARD HISTORY GRAPHING SPYDER

Percentages are with respect to Total System Usage

Present Today

0.296 kW 0.4 kWH

Spyder 1 (MTU 1)

0.000 kW 0.0 kWH
0.000 kW 0.0 kWH
0.000 kW 0.0 kWH
0.133 kW 0.0 kWH
0.000 kW 0.0 kWH

_images/remote_rmq_pending.png
“)> C @ https://central:8443/admin/pending_auth_reqs.html neoegR =

\Y/vOoLTTRON

Devices Decisions

Certificate Requests

Status: PENDING

Common Name: central.collector2.platform.agent
Remote IP: 192.168.56.103

Status: APPROVED

Common Name: central.central.platform.agent
Remote IP: 192.168.56.101

ZMQ Keys Pending Authorization

No ZMQ keys requiring authorization at this time.

Approve Deny Delete

Deny Delete

Status: APPROVED

Deny Delete
Common Name: 68ef33c4-97bc-4e1b-b5f6-2a6049993065
Remote IP: 127.0.0.1

Deny Delete Status: APPROVED

Common Name: fb30249d-b267-4bdd-b29a-d9112e6a6082
Remote IP: 127.0.0.1

_images/rabbitmq_exchange.png
Binding key:“green”

Producer Exchange

Binding key:“red”
Routing Key: “green”

Binding key:“green”

o |— EREED

Binding key:“yellow”

_images/rmq_remote_forwarder_accepted.png
“)> C @ https://central:8443/admin/pending_auth_reqs.html neoegR =

\Y/vOoLTTRON

Devices Decisions

Certificate Requests

APPROVED for central.collector2.forwarderagent-5.1_1

Status: APPROVED

Deny Delete
Common Name: central.collector2.forwarderagent-5.1_1
Remote IP: 192.168.56.103
Status: APPROVED

Deny Delete
Common Name: central.collector2.platform.agent
Remote IP: 192.168.56.103

Deny Delete Status: APPROVED

Common Name: central.central.platform.agent
Remote IP: 192.168.56.101

ZMQ Keys Pending Authorization

No ZMQ keys requiring authorization at this time.

Status: APPROVED

Deny Delete
Common Name: 68ef33c4-97bc-4e1b-b5f6-2a6049993065
Remote IP: 127.0.0.1

Deny Delete Status: APPROVED

Common Name: fb30249d-b267-4bdd-b29a-d9112e6a6082
Remote IP: 127.0.0.1

_images/vtn_add_customer_screen.png
Overview Report

Add Customer

Utility OpenADR Application

Admin

Name
Utility ID
Contact Name

Phone Number

Welcome superuser ¥

_images/vtn_create_new_site.png
Utility OpenADR Application

Overview ‘ Report ‘ Admin Welcome superuser ¥

Customer: Globex Corp.

Name
No sites
Globex Corp.
Create New Site
Utility ID

UtilitylDO3

Contact Name

Stanley Martinez

Phone Number

3333333333

_images/vtn_create_event.png
Overview

Add DR Event

Report

Admin

Utility OpenADR Application

DR Program Notification
--------- s Date:
First pick a program, and the 'Sites' will auto-populate
Time:
Sites
(Acme Brands) Warehouse Start
(Best Electronics) Emeryville
(Globex Corp.) Headquarters Date:
Time:
End
Date:
Time:

T T

Today

Now @

Today

Now @

Today

Now @

Welcome superuser ~

_images/vtn_event_overview.png
Utility OpenADR Application

Overview ‘ Report ‘ Admin Welcome superuser ¥

Customers

Acme Brands UtilitylD02 Joan Graham 2222222222

Best Electronics UtilitylDO1 Carl Customer 555555555

Add Customer

DR Events

Dec. 5,2017,7 a.m. Dec. 6,2017,5 p.m. Dec. 6, 2017, 8 p.m. — Scheduled
Add DR Event

_images/vtn_create_program.png
Utility OpenADR Application

Overview ‘ Report ‘ Admin Welcome superuser ~
Add DR Program
Program Name: Peak Day Pricing
Filter

(Best Electronics) Emeryville

Choose all ©

Hold down "Control”, or "Command” on a Mac, to select more than one.

Save and add another Save and continue editing

_images/vtn_login_screen.png
Utility OpenADR Application

Please Enter Your Credentials

Username:

Password:

_images/vtn_export_report_data.png
Utility OpenADR Application

Overview ‘ Report ‘ Admin Welcome superuser ¥

Export Report Data

Date Range: DR Program All 5 m Clear Filter(s)

0l
Peak Day Pricing Dec. 5,2017, 7 a.m. Dec. 6, 2017, 5 p.m. Dec. 6, 2017, 8 p.m. n

_images/vtn_overview_screen.png
Overview ‘ Report ‘ Admin

Utility OpenADR Application

Customers

No customers

DR Events

No events

Add DR Event

Welcome superuser ¥

_images/vtn_offline_site.png
Utility OpenADR Application

Overview ‘ Report ‘ Admin Welcome superuser ¥

Customer: Globex Corp.

Name

Sites
Globex Corp. ‘ . o H

UtilitylD03 .
Create New Site

Contact Name

Stanley Martinez

Phone Number

3333333333

_images/vtn_overview_screen_with_customers.png
Utility OpenADR Application

Overview Report Admin Welcome superuser ¥
Customers
CUSTOMER UTILITY ID CONTACT NAME PHONE NUMBER SITES | ONLINE | OFFLINE

Acme Brands UtilityID02 Joan Graham 2222222222 0 0 0

Best Electronics ‘ UtilitylDO1 ‘ Carl Customer | 555555555 | 1 | 0 | 1

Globex Corp. UtilitylD0O3 Stanley Martinez 3333333333 0 0 0
DR Events

No events

Add DR Event

_images/vc-cert-warning-4.png
Someone could be trying to impersonate the site and you should not continue.
Websites prove their identity via certificates. Firefox does not trust volttron-pc :8443

because its certificate issuer is unknown, the certificate is self-signed, or the server is not
sending the correct intermediate certificates.

Error code: SEC ERROR_UNKNOWN_ISSUER

Go Bacl

(Recommen

_images/vc-cert-warning-3.png
General Details

Could not verify this certificate because the issuer is unknown.

Issued To

Common Name (CN) volttron-pe

Organization (0) PNNL

Organizational Unit

&) VOLTTRON

Serial Number 5D:15:01:7F

Issued By

Common Name (CN) volttron1-root-ca

Organization (0) PNNL

Organizational Unit

0 VOLTTRON

Period of Validity

Begins On June 27, 2019

Expires On June 26, 2020

Fingerprints

SHA-256 Fingerprint BF:A4:D7:41: :10:80:0A:C6:
59:D5:B9:BC 41:A8:78:27

SHA Fingerprint C4:DF :2A:DE

:DA:5B:46:6C:

72:B8:FE:66

Close

_images/vc-collector2-forwarder.png
2019-06-13 12:00:00,095 (listeneragent-3.2 10403) listener.agent INFO: Peer: pubsub, Sender: collector2.forwarderagent-5.1 1:, Bus: , Topic: devices/fake-campus/fake-building/fake-device/all, Headers: {'X-For
iarded’: True, 'SynchronizedTimeStamp': '2019-86-13T19:00:00.000009+00:00", 'TimeStamp': '2019-06-13T19:00:00.004159+00:007, 'X-Forwarded-From': 'collector2’, 'Date’: '2019-06-13T19:00:00.004159+00:00", 'min_
compatible version': '5.0', 'max_compatible version' }, Message

[{'Heartbeat': True, 'PowerState': 6, 'ValveState': 0, 'temperature': 50.0},
{'Heartbeat': {'type': 'integer’, 'tz': 'US/Pacific’, 'units': '0n/0ff'},
‘PowerState’: {'type': 'integer', 'tz': 'US/Pacific’, ‘units': '1/0'},
‘Valvestate': {'type': 'integer’, 'tz': 'US/Pacific’, ‘units': '1/0'},
“temperature’: {'type': 'integer’,

'tz': 'Us/Pacific’,
‘units': 'Fahrenheit'}}]

_images/vc-collector1-forwarder.png
2019-06-13 12:02:45,099 (listeneragent-3.2 10465) listener.agent INFO: Peer: pubsub, Sender: proxy_router:, Bus: , Topic: devices/fake-campus/fake-building/fake-device/
all, Headers: {'X-Forwarded': True, 'SynchronizedTimeStamp': '2019-86-13T19:02:45.000000+00:00', 'TimeStamp': '2019-06-13T19:62:45.001920+00:60', 'X-Forwarded-From': 'c
ollectorl’, 'Date’: '2019-06-13T19:02:45.001920+00:00', 'min_compatible version': '5.6", 'max_compatible version + Message:

[{'Heartbeat': True, 'PowerState': 0, 'ValveState': 0, 'temperature': 50.6},

{'Heartbeat': {'type': 'integer’, 'tz': 'US/Pacific’, 'units': '0n/0ff'},
‘PowerState’: {'type': 'integer', 'tz': 'US/Pacific’, ‘units': '1/0'},
‘Valvestate': {'type': 'integer’, 'tz': 'US/Pacific’, ‘units': '1/0'},
“temperature’: { 'ty integer’,

'tz': 'Us/Pacific’,

‘units': 'Fahrenheit'}}]
2019-06-13 12:02:45,097 (listeneragent-3.2 10403) listener.agent INFO: Peer: pubsub, Sender: proxy router:, Bus: , Topic: devices/fake-campus/fake-building/fake-device/
all, Headers: {'X-Forwarded': True, 'SynchronizedTimeStamp': '2019-86-13T19:02:45.000000+00:00', 'TimeStamp': '2019-06-13T19:62:45.001920+00:60', 'X-Forwarded-From': 'c
ollectorl’, 'Date’: '2019-06-13T19:02:45.001920+09:00", 'min compatible version': '5.0', ‘max_compatible version . Messag

[{'Heartbeat': True, 'PowerState': 0, 'ValveState': 0, 'temperature': 50.6},
{'Heartbeat': {'type': 'integer’, 'tz': 'US/Pacific’, 'units': '0n/0ff'},
‘PowerState’: {'type': 'integer', 'tz': 'US/Pacific’, ‘units': '1/0'},
‘Valvestate': {'type': 'integer’, 'tz': 'US/Pacific’, ‘units': '1/0'},

“temperature’: {'type': 'integer’,
"tz': 'US/Pacific’,

_images/vc-login.png
VOLTTRON"Central

Funded by DOE EERE BTO

Userame

Password

_images/vc-dashboard.png
Dashboard Charts Log out

_images/vc_platforms.png
VOLTTRON™ Central BETA - Mozilla Firefox

VOLTTRON™ Central BETA X

<« c @ https://central:8443/vc/index. html#/platforms?_k=roiacs neoegR =
VOLTTRON" Central Funded by DOE EERE BTO Dashboard Platforms Charts Log out
>
Platforms
central

Y2VudHIhbCSwbGFOZnOybSShZ2VudA== | Agents: O running, 4 stopped, 4 installed

collectorl
Y295bGVjdGOyMS5WbGFOZnybSShZ2VudA== | Agents: O running, 3 stopped, 3 installed

collector2
Y295bGVjdGyMiSwbGFOZnybSShZ2VudA== | Agents: O running, 3 stopped, 3 installed

_images/vc-platform.png
Platforms

nBSYXRTb3JtLNFAZWS0 | Agents: O running, 5 stopped, 5 installed

_images/volttron_ieee2030_5.jpg
MasterDriverAgent

(Other Agents)

RPC: get_point(),
get._points()

‘se_pint()

RPC: get_point(),
set_paint()

RPC: get_point(),
SEP2 get_points()
Driver set_pint()

SEP2Agent

hitp:/127.0.0.1:8080doapledevi0id, etc

End Device

Apache

|————— httpsu/ivoltron-endpointdcapledevioidi, eto. ———| o
erver

_images/volttron-admin-page.png
Master Password Cre

Master Password Cre

<« c @ https

jvolttron-pc:8443/admin/login.html

noen =

\Y/VOLTTRON

Devices | Data | Decisions

Master Administration Password

Username:|
Password:|
Re-Password:|

Set Master Password

_images/vc-cert-warning-2.png
Someone could be trying to impersonate the site and you should not continue.
Websites prove their identity via certificates. Firefox does not trust volttron-pc :8443

because its certificate issuer is unknown, the certificate is self-signed, or the server is not
sending the correct intermediate certificates.

Error code: SEC ERROR_UNKNOWN_ISSUER

Go Back (Recommen Accept the Risk and Continue

_images/33-configure-device-dialog.png
Device Configuration

Betelgeuse 110.0.2.4170

Campus
Building

Unit

Pain

Driver Type bacnet
Interval (seconds)

Timezone

Heartbeat Point

Minimum Prioriy 0
Maximum Objecis per Request

Maximum Objects per Read

Publish Breadth-First o

_images/34-save-device-config.png
e P

Campus.
Buiding
Uit
Pan
Diver Type
Interval (seconds)
Timezone
Heartbeat Point
Minimum Priory
Maximum Objects per Request
Maximum Objects per Read
Pubish Breadin-First

Publish Breadin-First All

Campus1

Buildingl.

Unit,

lbacnet

60

_images/31-name-registry-file.png
Save this registry configuration?

Betelgeuse /10.0.2.4/70
table /csv

CSV File Name: deviceL.csv cancel B

Index Reference Point Name,Volttron Point Name Unit Details BAChet Object Type,Notes Witable,Units, Property.
3000124 RetumAirHumidity,RetumAirHumidity,No imits. analoginput, FALSE,UNKNOWN UNITS presentValue

3000107 CoolingVaiveOutputCommand, CoolingValveOutputCommand,No limits. analoginput, FALSE UNKNOWN UNITS presentValue
‘3000116 MixedAirTemperature MixedWaterTemperature,Nofimits. analoginput, FALSE,UNKNOWN UNITS presentValue

3000119 PreheatTemperature PreheatTemperature No limits. analoginput, FALSE UNKNOWN UNITS presentValue

3000108 DischargeAirStaticPressure DischargeAirStaticPressure, No limis. analoginput, FALSE, UNKNOWN UNITS presentValue

_images/32-registry-saved.png
) The registry fl devicel.csv was successiuly saved
Device Config

Betelgeuse /10.0.2.4170

“Campus
“Buiding

Uit

Pain

Driver Type oacret
Intervl (seconds)

Timezone

Heartbeat Point

Miimum Prory e
Maximum Objects pr Request

Maximum Objects per Read

Publish Breadth-First o

_images/37-device-added-b.png
Q

»J[e]-Je]

€ cp127.00.1:22916
» Performance

Buildings.

Campus1: Buidingl

Devices
Uni.

Points

O o oog

GoolingValveOul
DischargeArstal
MixedWaterTem
PreheatTempera

RetumAirHumidi

Install Devices

Platform: tcp:/127.00.1:22916.

v

Method: | Sean forDeices G || pacnet proxy Agent [bacnet pronyegent02 7| ®
Device ID Range Min: Max:
Advanced Options

Address. Name Description Device ID Vendor ID. Vendor
10024 Betelgeuse 70 15 Comell University
Volttron Point Name ¥+~ &~ Writable Units
RetumairTemperature FALSE UNKNOWN UNITS
RetumAirumidity FALSE UNKNOWN UNITS.
CoolingValveOutputCommand FALSE UNKNOWN UNITS.
MixedWaterTemperature FALSE UNKNOWN UNITS.
‘OutdoorAitHumidity FALSE UNKNOWN UNITS
PrenheatTemperature FALSE UNKNOWN UNITS.
DischargeAirTemperature FALSE UNKNOWN UNITS
DischargeAirStaticPressure FALSE UNKNOWN UNITS.

OoooDoooooaoQ

bacnet & L O

<

_images/37-device-added.png
Q

»J[e]-Je]

v t0pu127.00.1:22016
» Performance

» Agents

Platform: tcp/Li 7

The device configuration was successfuly created for

Method: | Scan EPEHBUIdgLYnic 2 || #
Device D Range i Max
Advanced Options
Address Name Descrption Deviceld VendorD Vendor
v 10024 Betogense 3 15 ComellUnversiy
O Volttron Point Name ¥+~ + Writable #* Units &
O RetumAirTemperature FALSE UNKNOWN UNITS
O | RetumAirHumidity FALSE UNKNOWN UNITS
O | CoolingValveOutputCommand FALSE UNKNOWN UNITS
O | MixedWaterTemperature FALSE UNKNOWN UNITS
O OutdoorAitHumidity FALSE UNKNOWN UNITS
O | PreneatTemperature FALSE UNKNOWN UNITS
[DischargeAirTemperature FALSE UNKNOWN UNITS
O | DischargeirStaticPressure FALSE UNKNOWN UNITS
> 10026 MacGyver 19 TAC AB

bacnet | & O

bacnet [&

<

_images/35-subdevice-path.png
'|

“Campus
“Buiing

“Unit

Pain

Driver Type:

Intervl (seconds)

Timezone

Heartbeat Point

Miimum Prory

Maximum Objects pr Request
Maximum Objects per Read
Publish Breadih-First

Publish Breadth-First Al

Campus1

Buiingl

unit,

subdevice

lbacnet

60

‘

_images/36-subdevice2.png
ST T

Campus.
Buiding

Uit

Pan

Diver Type

Interval (seconds)

Timezone

Heartbeat Point

Minimum Priory

Maximum Objects per Request
Maximum Objects per Read
Pubish Breadin-First

Publish Breadin-First All

(Campus1
Buiding1

Ui,
subdevicelsubdevice?
bacnet

60

Console &

Cancel

_images/38-select-saved-registry-file.png
Install Devices

Platform: tcp:/127.00.1:22916.

a PIelle] s [scomporpemes o

BACNet Proxy Agent | bacnet_proxyagent-0.2

<

€ cp127.00.1:22916

Device ID Range Min: Max:

» Performance
Advanced Options

Buildings
Select Registy
Campust: Buidingl .
Devices Address Name Description Device D Vendor ID Vendor s
unia v 10024 Betelgeuse o 15 Comell University bt 20
Points. [volttron Point Name 7 +— Writable # Units &
0 CoolingValve O RewmaiTemperature FALSE UNKNOWN UNITS - =
(] Dischargei O | RetumAittumiy FaLsE UNKNOWN UNITS -
& = O | CoolngValveOufputCommand FaLsE UNKNOWN UNITS -
. O | MixedWaterTemperature FaLsE UNKNOWN UNITS -
O OudoorairHumidiy FALSE UNKNOWN UNITS -
[Retumairtu
O | PreheatTemperature FaLsE UNKNOWN UNITS -
- Agents
O DischargeAirTemperature FALSE UNKNOWN UNITS -
O | DischargeAirStaticPressure FaLsE UNKNOWN UNITS -
» 10026 MacGwver 19 TAC AB bacnet & 4

_images/linux-mint.png
Linux Mint 18.3 Sylvia

A VirtualBox A VMware @ Info

Cinnamon Version

VirtualBox (VD) 32bit Size:

SHA2S6: 1c524021037d5163303cF67655dad105 1a38503bd0bFFEFFoCC31c3707ea5C

2568

VirtualBox (VD) 64bit Size: 1.2568

SHA2S6: 17630726b673711de0a6a2e5cebed2a565b0adaa221422952723325346cE9abd.

_images/39-saved-registry-selector.png
Previously Configured R

Console &

_images/load-topics.png
Add Chart

Topics

imes_percent/nice (Platform 2)
imes_percent/softirg (Platform 1)
KG (CAMPUS2 > BUILDING3 > AC-3)
mpleLong3 (CAMPUS2 > BUILDINGA > HEATERA > HEATER-SUB2)
mpleLong2 (CAMPUS2 > BUILDINGA > HEATERA > HEATER-SUB2)
mpleLong1 (CAMPUS2 > BUILDINGA > HEATERA > HEATER-SUB2)
imes_percent/guest_nice (Platform 2)
mpleLong3 (CAMPUS2 > BUILDING3 > AC-3)
mpleLong2 (CAMPUS2 > BUILDING3 > AC-3)
imes._percent/guest_nice (Platform 1)
pu/percent (Platform 2)
imes._percent/iowait (Platform 2)
mpleBoolT (CAMPUS2 > BUILDINGA > HEATERY) <

_images/load-chart.png
Add Chart

Topics.

imes_percent/system (Platform 1)

DASHBOARD
(JPin to dashboard

REFRESH INTERVAL (M)

o

Y-AXIS RANGE

Omit either to determine from data

_images/login-screen.png
VOLTTRON™" Central

Funded by DOE EERE BTO

_images/load-tree-item.png
VOLTTRON" Central Funded by DOE EERE BTO

«
Dashboard

a el
&P\al%on'm

» Platform 2

_images/github-image.png
E VOLTTRON / volttron @Watch~ 49 Kstar 237 | YFork 130

<> Code Issues 305 Pull requests 9 Projects 0 Security Insights

VOLTTRON Distributed Control System Platform

buldings bacnet modbus python messagebus office-hours volttron volttron-applications

£ 7.564 commits 18 branches © 22 releases 28 43 contributors s View license

Branch: develop ~

Create newfile | Upload files | Find File

_images/filter-status.png
VOLTTRON™ Central

Q status: bad|

© Platform 1

<

Dashboard

e

© Performance

°

©0000000O0O0

times_percent /irq
cpu/ percent
times_percent / guest nice
times_percent /idle
times_percent / iowait
times_percent / guest
times_percent / nice
times_percent / softirq
times_percent / steal
times_percent / system

times_percent / user

Funded by DOE EERE BTO

_images/go-to-charts.png
Funded by DOE EERE BTO Dashboard Platforms CP\ES Logout

Dashboard

_images/github-zip-image.png
28 43 contributors s View license
——————————————

Create newfile | Upload files | Find File | [0t T s

Clone with HTTPS @ Use sk
Use Git or checkout with SVN using the web URL.

nttps:/ /github. con/VOLTTRON/valttron. git | B3

Open in Desktop Download ZIP

ests.

r-add

_images/jupyter_notebooks.jpg
Jupyter Notebooks for VOLTTRON

Ethemet (TCP)

AGGREGATOR
SaLHistoran Datapuler
Fomard Agent Agent
Fstoran
gent
COLLECTOR OBSERVER
satte
Datatese
Waster
Do Wessage
Roent sassarn Masszge
e

"

Device Communications
(Etheret, Modbus, RS485, etc.)

saLte Message
SEViCE Database Viewer
(Thermostat,
EVSE,

Server, etc.)

_images/inspect-charts.png
times_percent / idle

@Piatom 1 @Platiorm 2

_images/02_set_project_interpreter.png
Editor
» Codestyle
Inspections
ile and Code Templates.
File Encodings
Live Templates
File Types
Emmet
Images
Intentions
Language Injections
spelling
ToDO
Plugins
» Version Control
v Project: volttron

Project Structure

v Build, Execution, Deployment
» Debugger

Python Debugger
Buildout Support
> Console

Settings

@)| Prlece vlthron Prjece Iemprear B e crrent et

- sy

Package

Version

L Latest [T+

Babel
Jinja2
Markupsafe
Pygments
Sphinc
Twisted
alabaster
argparse
bacpypes.
docutils
enum3s

pyserial
pytest

296
10
220
163
1641
0710
121
0150
0131
116
102
112
0410
074
200
12
1.100
9041
39
431
1434
120
311
313

240
296

10

220
163

= 1750
0710

= 140

= 0.14r2
116
102

» 122
=» 0412
074
200
13
» 311
9041
=310
» 522
1434
131
»34
320

_images/03-start-scan.png
VOLTTRON™ Central

Q

»J[e]-Je]

v t0pu127.00.1:22016
» Performance

» Agents

Funded by DOE EERE BTO

Install Devices

Platform: tcp:/127.00.1:22916.

Dashboard

Scanfor Devices &

BACNet Proxy Agent

Device ID Range

bacnet_proxyagent-0.2

Min:

Max:

Advanced Options

Console &

(23

Platforms

Charts

Log out

1

_images/01_load_volttron.png
[~/volttron] - PyCharm Community Edition 2017.2

Fle Edit View Navigate Code Refactor Run

1 volttron) ' bootstrap.py)

B velttron ~/voltiron

integration

s confi

s configs

B docs

env

s examples

s scripts,

I services

Ex vottron

s volttron eggrinfo

£ volttrontesting

& gitignore
gitmodules
project

& pydevproject

77 travis.yml

YYvvvvyvvvyvvvyg

& conftestpy
2 COPYRIGHT
optional requirements json

pytesti

& READMEmd

& RELEASE NOTES.md

& remove allpl
requirements ot

i setuppy

& startvoltron
stop-volttron
TERMS.md

Il External Libraries

Tools VCs Window Help

|*v®o|m|q

Git develop: & & O

_images/02-install-devices.png
VOLTTRON™ Central Funded by DOE EERE BTO Dashboard Platforms ~ Charts Log out

<
Install Devices

Platform: tcp:/127.00.1:22916.

Method: | Scan for Devices {

BACNet Proxy Agent [bacneL poryagen02 7| ®

v g oz 002016

Device ID Range Min: Max:

- Performance

» Agents

Advanced Options

Console &

_images/03_run_settings.png
ame: | volttron (0 share (] single instance only

_ux;s\

script: Ihome/mikenvolttron/envibinvolttron

Scriptparameters: | -w

El

~ Environment

Environment variables: | PYTHONUNBUFFERED=1

Pythoniinterpreter: | Project Defautt (Python 2.7.6 virtualenv at ~/volttron/eny)

L= xml]

Interpreter options:
Working directory: home/mikenvolttron

‘Add content roots to PYTHONPATH
Add source roots to PYTHONPATH
() Emulate terminalin output console:
(O Show command line afterwards

~ Before launch: Activate tool window

+

_images/4-simulation-out.png
Simulation Output
Time Net Power kW Load Power kW PV Power kW Storage Power kW Storage SOC kWh Dispatch Power kW

1:00:30 PM 364.312 460.5 -171 74.812 450.249 150

1:05:00 PM 356.374 460.5 -171 66.874 455.528 150

1:05:15 PM 139.5 460.5 -171 -150 454.778 -150

1:07:46 PM 139.5 460.5 -171 -150 448.528 -150

1:08:31 PM 139.561 460.5 -171 -149.939 446.778 -149.9395474

1:09:16 PM 140.148 460.5 -171 -149.352 444.781 -149.3529006

1:09:31 PM 140.398 460.5 -171 -149.102 444.283 -149.1024863

1:09:46 PM 140.565 460.5 -171 -148.935 443.536 -148.9355433

2:38:49 PM 173.918 463.8 -199.5 -90.382 269.315 -90.38282894

2:39:34 PM 174.272 463.8 -199.5 -90.028 268.107 -90.02849427

2:39:49 PM 174.424 463.8 -199.5 -89.876 267.807 -89.87663656

2:41:34PM 175.276 463.8 -199.5 -89.024 265.117 -89.02415495

2:41:49 PM 175.426 463.8 -199.5 -88.874 264.819 -88.87430859

2:44:35PM 176.812 463.8 -199.5 -87.488 260.692 -87.48881646

2:44:50 PM 176.91 463.8 -199.5 -87.39 260.254 -87.39093025

2:45:05 PM 190.256 477 -199.5 -87.244 259.962 -87.24410094
500
400
300
200
100
0
-100
-200

1:00:30 1:05:00 1:05:15 1:07:46 1:08:31 1:09:16 1:09:31 1:09:46 2:38:49 2:39:34 2:39:49 2:41:34 241:49 2:44:35 2:44:50 2:45:05
PM M PM M PM M PM M M M M M M PM M PM

———Storage Power kW ~ =——Storage SOCkWh === Dispatch Power kW

_images/40-file-import-button.png
Install Devices

Platform: tcp:/127.00.1:22916.

a PIelle] s [scomporpemes o

BACNet Proxy Agent | bacnet_proxyagent-0.2

<

28 tcp1127.0.0.1:22016 el i e
+ Performance
Advanced Options
Buildings
Import Registy
Campust: Buidingl e
Devices Address Name Description Device D Vendor ID Vendor Type
unia v 10024 Betelgeuse o 15 Comell University LT
Points. [volttron Point Name 7 +— Writable # Units &
0 CoolingValve O RewmaiTemperature FALSE UNKNOWN UNITS - =
(] Dischargei O | RetumAittumiy FaLsE UNKNOWN UNITS -
& = O | CoolngValveOufputCommand FaLsE UNKNOWN UNITS -
. O | MixedWaterTemperature FaLsE UNKNOWN UNITS -
O OudoorairHumidiy FALSE UNKNOWN UNITS -
[Retumairtu
O | PreheatTemperature FaLsE UNKNOWN UNITS -
- Agents
O DischargeAirTemperature FALSE UNKNOWN UNITS -
O | DischargeAirStaticPressure FaLsE UNKNOWN UNITS -
» 10026 MacGwver o 19 TAC AB bacnet & 4

_images/4-1_Example_DR_Agent_Configuration_File.jpg
"exec": "DemandResponseagent-0.l1-py2.7.egg --config \"$c\" --sub \"%$s\" --pub \"%p\""

| 1]

#Agent Parameters
"agentid": "DRAGENT1", #Agent ID used by actuator agent for control of RTU

"campus": "campus", #campus name as known by Volttron
"building”: "building", #Building name as known by Volttron
"unit": "device"”, #RTU/Controller name as known by Volttron

"smap_path": "datalogger/log/testing/campus/device" , #/datalogger/log/your path here

#Catalyst Controller point names
"cooling_stpt": "CoolingTemperatureStPt", # second value in quotes in name from your controller

"heating_stpt": "HeatingTemperatureStPt",
"min_damper_stpt": "MinimumDamperPositionStPt",
"cooling_stage_diff": "CoolingStageDifferential",
"cooling_fan_spl": "CoolSupplyFanSpeedl",
"cooling_fan_sp2": "CoolSupplyFanSpeed2",
"override_command": "VoltronPBStatus",
"occupied_status": "Occupied",

"space_temp": "SpaceTemp",

"volttron flag": "VoltronFlag",

_images/4-2_Example_DR_Agent_Configuration_File.jpg
#DR cooling Set Points
"csp_pre”: 65.0, #Pre-cooling zone temperature set point

"csp_cpp": 80.0, #CPP event zone temperature set point

#Normal set points
"normal_firststage_fanspeed": 90.0,

"normal_secondstage_fanspeed": 90.0,
"normal_damper_stpt": 5.0,
"normal_coolingstpt”: 74.0,

"normal_heatingstpt": 67.0,

#DR Parameters
"fan_reduction": 0.1, #fractional reduction 10% = 0.1

"damper_cpp": 0, #minimum damper command during CPP event
"timestep_length": 900, #number of seconds between CSP modifications|in Pre and After event (default 900 sec. = 15 min.)
"max_precool_hours": S, #maximum pre-cooling window in hours
"building_thermal constant”: 4.0, #Building thermal constant F/hr
"cooling_stage_differential": 1.0,

"Schedule": [1,1,1,1,1,1,1] #[Mon, Tue, Wed, Thu, Fri, Sat, Sun]

_images/00_open_pycharm.png
Welcome to PyCharm Community Edition

=

PyCharm Community Edition

_images/43-reconfigure-device-button.png
VOLTTRON™ Central

<

a +Je]=]e

€ cp127.00.1:22916
» Performance

Buildings.

& unity
Points

o
o
o
o
o

» Agents

GoolingVale
DischargeAi
MiedWater”
Preneatem

RetumAirHu

Dashboard

Funded by DOE EERE BTO

Dashboard

Platforms

Charts

Log out

1

_images/01-add-devices.png
VOLTTRON™ Central

v Empmzm.n.; 22016
= performance

» Agents

<

[e]E]

Funded by DOE EERE BTO Dashboard Platforms Charts Log out

Dashboard

1

_images/44-reconfiguring-device.png
VOLTTRON™ Central

Q

» Performance

Buildings.

<

[e]=]e

€ cp127.00.1:22916

&Y

ni
Poi

it

ints

O o oog

GoolingVale
DischargeAi
MiedWater”
Preneatem

RetumAirHu

Reconfigure Device

Physical Device: Betelgeuse /100.2.4170

Registry Config: devicel.csv [2 s

Device Config: CampusL/BuildingL/Unitl

File to Edit: Registry Conig

Volttron Point Name T +~ &~
RetumAitHumidity
GoolingValveOutputCommand
MiedWaterTemperature

PreheatTemperature

L s s s Y

DischargeAirStaticPressure.

Funded by DOE EERE BTO

Writable
FALSE
FALSE
FALSE
FALSE

FALSE

Console &

Units
UNKNOWN UNITS
UNKNOWN UNITS
UNKNOWN UNITS
UNKNOWN UNITS

UNKNOWN UNITS

Dashboard

Platforms

Charts

Log out

_images/40-message-debugger.jpg
Router

1pC:/ISVOLTTRON_HOME run/messagedebug (PUB/SUB)

VOLTTRON Control

(started with —msgdebug)

Python class methods

MessageViewer

Command-ine Ul

>

s d

Streamed messages:

ipc:/ISVOLTTRON_HOMEJrun/messageviewer (PUB/SUB)

MessageDebuggerAgent

SaL Alchemy
ORM

VOLTTRONRPC
Queries and commands

sqlte:ISVOLTTRON_HOME/data/messagedebugger.salite

———1
SQLite Database

DebugMessage,
DebugMessageExchange,
DebugSession

_images/41-reload-points-from-device.png
Install Devices

Platform: tcp:/127.00.1:22916.

a PIelle] s [scomporpemes o

BACNet Proxy Agent | bacnet_proxyagent-0.2

<

€ cp127.00.1:22916

Device ID Range Min: Max:

» Performance
Advanced Options

Buildings
Reload Poinis
Campust: Buidingl Reload Pors
Devices Address Name Description Device D Vendor ID Vendor Type
unia v 10024 Betelgeuse o 15 Comell University et B2
Points. [volttron Point Name 7 +— Writable # Units &
0 CoolingValve O RewmaiTemperature FALSE UNKNOWN UNITS - =
(] Dischargei O | RetumAittumiy FaLsE UNKNOWN UNITS -
& = O | CoolngValveOufputCommand FaLsE UNKNOWN UNITS -
. O | MixedWaterTemperature FaLsE UNKNOWN UNITS -
O OudoorairHumidiy FALSE UNKNOWN UNITS -
[Retumairtu
O | PreheatTemperature FaLsE UNKNOWN UNITS -
- Agents
O DischargeAirTemperature FALSE UNKNOWN UNITS -
O | DischargeAirStaticPressure FaLsE UNKNOWN UNITS -
» 10026 MacGwver 19 TAC AB bacnet & 4

_images/45-reconfigure-option-selector.png
VOLTTRON™ Central

Q

<

[e]=]e

€ cp127.00.1:22916

» Performance

Buildings.

Campus1: Buidingl

Devices

Uni.

Points

O o oog

GoolingVale
DischargeAi
MiedWater”
Preneatem

RetumAirHu

Funded by DOE EERE BTO

Reconfigure Device

Physical Device: Betelgeuse /100.2.4170
Registry Config: devicel.csv [2 s
Device Config: CampusL/BuildingL/Unitl

File to Edit: Regsiy Cortg_ %

L s s s Y

Registry Config
Volttron Poif

Device Config
RetumAirHumidy

CoolingValveOutputCommand
MixedWaterTemperature.
PreheatTemperature

DischargeAirStaticPressure.

Writable
FALSE
FALSE
FALSE
FALSE

FALSE

Cansole &

Units
UNKNOWN UNITS
UNKNOWN UNITS
UNKNOWN UNITS
UNKNOWN UNITS

UNKNOWN UNITS

Dashboard

Platforms

Charts

Log out

_images/filter-and-select.png
Add Chart

Topics

syst

E\mes percent/system (Platform 2) -

[TPinto dashboard

REFRESH INTERVAL (MS)
15000 mit to disat

CHARTTYPE

~Selecttype — v

Cancel

_images/federation.png
upstream
- queue

upstream link

pub

upstream

E exchange

pub

federated

E exchange

queue
bindings

_images/filter-name.png
VOLTTRON" Central Funded by DOE EERE BTO

<
Dashboard

e)=e)

¥ BUILDING3
 Devices
v AC3
 points,
» [OutsideAirTem
» [OutsideAirTem
» [OutsideAirTem
¥ BUILDING4
 Devices
v HEATERA
 points,
» [OutsideAirTem

» (] OutsideAirTem

() OutsideairTemy,

_images/filter-button.png
VOLTTRON" Central Funded by DOE EERE BTO

<

Dashboard
Llelglel
Platform 1
Agents
bacnet_proxyagent-0.1

listeneragent-3.0

_images/3_Sample_of_CSV_Data.jpg
Timestamp, OutsideAirTemp, ReturnAirTemp, MixedAirTemp, CompressorStatus, HeatingStatus, FanStatus, Damper
5/19/2012 6:00,48.902,56.43727273, 58.68472222,0,0,0,0

5/18/2012 7:00,51.12316667,59.47933333,59.58916667,0,0,0,0

5/19/2012 8:00,54.70866667, 61.1625, 64.34266667,0,0,0,0

_images/add-charts.png
VOLTTRON" Central Funded by DOE EERE BTO Begipen BEiae @ lGger

<

chares

times_percent /idle

»J[e]-Je]

®Platform 2
Platform 1

¥ Platform 2
 Performance

» (] times_percent /irq afew seconds ago

v

() cpu/percent

» (1] times_percent / guest_nice
times_percent / nice

v

@ times_percent / idle
®Platform 2

» [times_percent / iowait 19

» [times_percent / guest x

» @ times_percent / nice

» [times_percent / softrq afew seconds ago

» (] times_percent / steal

» (] times_percent / system

» (1] times_percent / user

_images/aggregate_historian.jpg
N
(2)

Q/\ Query device data for given

Stores scrapped time period
device [data
i v

Historian Agent Data Aggregate Historian Agent

i Store

Tk
Query for aggregate dala_ by
Eggl n;Eg and aggregation Store computed aggregate for
P @) the given time period

®

_images/VOLLTRON_Logo_Black_Horizontal_with_Tagline.png
&/ voLTTROM

EEEEEEEEEEEEEEEEEEE

_images/add-charts-button.png
“TA Funded by DOE EERE BTO Dashboard Platforms Charts Log out

Charts m

_images/central_pending.png
Certificate Requests. P+

“)> C @ https://central:8443/admin/pending_auth_reqs.html neoegR =

\Y/vOoLTTRON

Devices Decisions

Certificate Requests

Status: PENDING
Common Name: central.central.platform.agent
Remote IP: 192.168.56.101

ZMQ Keys Pending Authorization

No ZMQ keys requiring authorization at this time.

Approve Deny Delete

_images/chart-multiple-lines.png
VOLTTRON" Central Funded by DOE EERE BTO prfiime) FEimme @ (g

<

chars

»[[o][=e] times_percent / idle

@Platorm 1 @ Platform 2

170

Platform 1
 Performance

» (] times_percent /irq
afew seconds ago

v

() cpu/percent

» (1] times_percent / guest_nice

v

@ times_percent / idle
» [times_percent / iowait
» [times_percent / guest
» (] times_percent / nice
» [times_percent / softirg
» [times_percent / steal
» [times percent / system
» [times_percent / user
Agents

¥ Platform 2

 Performance

» (] times_percent /irq

v

() cpu/percent

» (] times_percent / guest_nice

v

@ times_percent / idle

» (] times_percent / iowait

_images/bacnet_cov.png
Master

Driver
BACnet
cov
Forwarding
Function

BACnet

Proxy
Typical BACnet cov COV Subscription
Communication Notifcation Request

Device (COV
Device Enabled)

BACnet ‘ ‘ BACnet ‘

_images/central_no_pending.png
Certificate Requests

RN

ety

Certificate Requests - Mozilla Firefox

s://central:8443/admin/pending_auth_regs.html

*/voLTTRON

Certificate Requests

No Certificate Requests

ZMQ Keys Pending Authorization

No ZMQ keys requiring authorization at this time.

noeR

_images/node-red-flow.png
Node-RED - Mozilla Firefox -+
& Node-ReD x|+

€ 127,001 e E wBe 9 3 A4 =

EINews~

MostVisited¥ @ LinuxMint '@ Community @ Forums @ Blog

a Flow1 info debug

input

Neagers’: { “Lale”: "20L/-U1-12
inject 00:26:05.201190Z",

max_compatible_version

catch min_compatible_versior
Type": textiplain” }, "message
status "2017-01-12 00:26:05.201190Z"
s artbeatlisteneragent-3.2_1",
‘Date"™
hitp "2017-01-12T00:26:08.538388+00:00",
“max_compatible_version
. “min_compatible_version’: "3.0" },
"message": { "status": "GOOD",
o “last_updated"
"2017-01-11T23:54:53.535175+00:00",
“context”: "hello”
= N
voltiron input msg payioad : Object

eartbeat/listeneragent-3.2_
‘Date"™

"2017-01-12T00:26:13.541004+00:00",
max_compatible_version

N = | i Compatle versont=".

“message”: { "status” "GOOD",

~ output

I3

fink “last_updated”
matt "2017-01-11T723:54:53.535175+00:00",
“context” "hello” }}
tp response
g paions : O
websocket {"topic™: "heartbeat/NodeRedSubscriber",
“headers": { "Date™: "2017-01-12
tcp 00:26:15.200535Z",
“max_compatible_version
wp “min_compatble_versio

Type": textiplain” }, "message
volttron "2017-01-12 00:26:15.200535Z" }

_images/pin-chart.png
Charts

times_percent / idle

o1 @Stacked OSteam O Expanded @Piatom 1 @Platiorm 2

Pin to Dashboard

afew seconds ago

_images/node-red.png
Node-RED - Mozilla Firefox

= NodeReD x|+

€ 127001

Most Visited v @ Linux Mint '@ Community '@ Forums @ Blog | EJNews ¥

info debug

a Flow1
~ input
inject
catch
status
tink

matt

websocket
tcp

udp

volttron input

~ output

link
matt
hitp response
websocket
top
uwp

volttron

_images/problems-found.png
VOLTTRON" Central Funded by DOE EERE BTO

<

Dashboard
Platform 1: Platform Unreachable. |
°

© plagrm1

¥ Platform 2
+ Performance
» Buildings
 Agents
» forwarderagent3.5
» veplatformagent-3.5.1

_images/platforms.png
Dashboard Platforms Charts Log out

VOLTTRON" Central Funded by DOE EERE BTO

Platforms

Platform 1
‘aae27d82-d66b-4c72-0899-be6166a44bST | Agents: 3 running, O stopped, 5 installed

Platform 2
785067054604 -4b5b-82b-4018780228b8 | Agents: 2 running, O stopped, 2 installed

_images/pubsub.png
Agent_B
VIP ID: “agent_b"”

Agent_A
VIP ID: “agent_a”

User
PUBSUB message
handler

Publish Message:

: Subscribe:
Routing Key: subisib . “yolttronl. *”
“__pubsub__.volttronl.devices.hvacl” oty queu_e' Yo uons
Routing Key:

Pika properties:
Type:”pubsub”
user_id: "volttronl.agent_a”
Message_id: result.ident
Body: message arguments

“__pubsub__.volttronl.devices.#”
Message_id: message id
Callback handler: user pubsub
message handler

Topic

Exchange

_images/proxy_router.png
V2 runs on RMQ V1 runs on ZMQ
message bus message bus

Message

Translation layer ZMQ
ZMQ g Router
4

v
|__RMQ__|
Message Message
Translation layer Translation layer

Wz

V3 runs on XYZ message bus

_images/multiplatform_shovel_pubsub.png
VOLTTRON -1 (behind NAT) PUBSUB over NAT Multiplatform VOLTTRON - 2

Message:

Key: op
“__pubsub_ e
_.volttron.d ovel Ke pubsub olttron1.device
evices.pnl.is
b1.hvacl”

on for shovel

'

_images/multiplatform_rpc.png
VOLTTRON - 1

RPC Multiplatform

VOLTTRON - 2

Agent_A
VIP ID: “agent_a”
RMQ User ID:
“volttronl.agent_a”

Agent_B input queue
Binding Key:
“volttronl.agent_a”

Agent_B
VIP ID: “agent_b”
RMQ User ID:
“volttronl.agent_b"”

Agent_B input queue
Binding Key:
“volttroni.agent_b”

Agent_B
VIP ID: “agent_b"”
RMQ User ID:
“volttron2.agent_b”

Agent_B input queue
Binding Key:
“volttron2.agent_b"”

Topic Topic
Exchange] Exchange

_images/multiplatform_ssl.png
Mult-Platform Connection with SSL certificates

VoLTTRON 1 vourTRoN 2

Rabitma Server -1
1. CA cert file - contains CAL public key
and A2 publickey
2. Server cert signed by CAL
3. Server private ey

Rabbitmgserver -2
1. CA certfle - contains public key of CAZ
public key and CA1 public key
2. Server certsigned by CA2

3. Server privatekey

Shovel

Presents volttron2 user cert, key

Presents agentL.crt
andagentt.pem

Presents agent2.crt
andagent2pem

Federation
Presents volttron2 user cert, key

_images/multiplatform_shovel_rpc.png
VOLTTRON - 2

Shovel Key: “volttronl.agent a”
Topic Topic
Exchange Exchange
. A I

ttron2.agent b”

Shovel Key: “vo

| TCP connection for shovel

_images/46-reconfigure-device-config.png
VOLTTRON™ Central

<

Q >

Je]-Je

€ cp127.00.1:22916
» Performance

Buildings.

Campus1: Buidingl

Devices
Uni.
Points

O o oog

» Agents

CoolingValve

MixedWater”
PreheatTem

RetumAirHu

Reconfigure Device

Funded by DOE EERE BTO

Physical Device: Betelgeuse /100.2.4170

Registry Config: devicel.csv [2 s

Device Config: CampusL/BuildingL/Unitl

File to Edit: Device Config {0
“Campus (Campust
“Buiking Buiding
“Unit Unitt
Pah
Diver Type bacnet
Interva (seconds) 50
Timezone
Heartbeat Point
Minimum Prory s
Maximum Objects per Request (10000
Maximum Objects per Read

Dashboard

Platforms

Charts

Log out

1

_images/47-file-export-button.png
VOLTTRON™ Central

Q

<

[e]=]e

€ cp127.00.1:22916

» Performance

Buildings.

Campus1: Buidingl

Devices

Uni.

Points

O o oog

GoolingVale
DischargeAi
MiedWater”
Preneatem

RetumAirHu

Reconfigure Device

Physical Device: Betelgeuse / 10.
Registry Config: devicelcsv [2

Device Config: CampusL/BuildingL/ i1

File to Edit: Registry Conig

Volttron Point Name T +~ &~
RetumAitHumidity
GoolingValveOutputCommand
MiedWaterTemperature

PreheatTemperature

L s s s Y

DischargeAirStaticPressure.

Funded by DOE EERE BTO

Writable
FALSE
FALSE
FALSE
FALSE

FALSE

Console &

Units
UNKNOWN UNITS
UNKNOWN UNITS
UNKNOWN UNITS
UNKNOWN UNITS

UNKNOWN UNITS

Dashboard

Platforms

Charts

Log out

_images/csr-login-page.png
Administration Login - Mozilla Firefox

Administration Login x |+

<« c @ Oh central

- w n @

\Y/vOoLTTRON

Devices Decisions

Authentication
Username: admin

Password; ssese

Login

_images/csr-sequence-approval.png
: |nstnce
| |
result is not None J :

connect_remote_platfor

POST

[}
|
|
|
|
|
|
|
|
|
|
|
volttron-server/new_csr :
|

PENDING
Appprove remotg-agent access

SUCCESS

Signed Certificate

Connect To Remote
Using Signed Certificate

_ agent connectedto
remote volttron instance

_images/cmd-image_2.png
D ® Fitters \/

Quick match

Command Prompt
App

Apps
& Visual C++ 2008 64-bit Command Prompt
& Visual C++ 2008 32-bit Command Prompt

& Visual C++ 2008 64-bit Cross Tools
Command Prompt

Search the web

£ emd-see

_images/csr-initial-state.png
VOLTTRON Default Page - Mozilla Firefox -0

VOLTTRON Default Page x |+

<« c @

Oh central 4 - @

\Y/vOoLTTRON

Devices Decisions

You are accessing the default page of a web enabled voltiron node. This content s located in the voltiron/platformAvebistatic directory in the volttron
distribution. You may use or remove this folder to make it un-available.

Your volttron comes with

« Login to Admininstration Area

_images/driver_flow.png
VOLTTRON Platform

VOLTTRON Message Bus :

Platform e Actuator

Driver 3

Device Device
Driver Driver
5] 6 5/ 6
Device

Device

_images/csr-sequence-deny.png
remote volttron
instance

posT
olttron-server/new st

PENDING

DENIED- -

Dery A

_images/csr-set-admin.png
Master Password Creation - Mozilla Firefox -0

Master Password Creation x|+

<« c @

central i

n @

\Y/VOLTTRON

Devices | Data | Decisions

Master Administration Password
Username: admin

Password: -

Re-Password.

Set Master Password

_images/multiplatform-external-address.png
2 2] /bin/bash 64x5.
(volttron)volttron@volttron-VirtualBox ~/git/volttron-2 $ cat ~/.volttronl/external (volttron)volttron@volttron-VirtualBox ~/git/volttron-2 § cat ~/
address. json .volttron2/external_address.json
["http://127.0.6.2:8080", "http://127.6.0.3:8080"] ["http://127.0.6.1:8080", "http://127.6.0.3:8080"]

(volttron)volttron@volttron-VirtualBox ~/git/volttron-2 $ |:| (volttron)volttron@volttron-VirtualBox ~/git/volttron-2 § |:|

(volttron)volttron@volttron-VirtualBox ~/git/volttron-2 $ cat ~/.volttron3/external
address. json

["http://127.0.6.1:8080", "http://127.6.0.2:8080"]
(volttron)volttron@volttron-VirtualBox ~/git/volttron-2 § |:|

_images/multiplatform-discovery-config.png
(volttron)volttron@volttron-VirtualBox ~/git/volttron-2 $ cat ~/.volttronl/external platform discovery.json

("platform2":{"vip-address": "tcp://127.0.0.2:22916", "instance-name": "platform2", "serverkey" : "Qbj -BezSubBuBh30cn2nIdMHBS9inFYCQII3ctcylln"},
"platform3 "vip-address":"tcp://127.0.0.3:22916", "instance-name": "platform3", "serverkey":"1 fc30-fUGIveh 33Pg7nwlBHEoDgwDifPO8QzInhxY"}}
(volttron)volttron@volttron-VirtualBox ~/git/volttron-2 §

(volttron)volttron@volttron-VirtualBox ~/git/volttron-2 §

(volttron)volttron@volttron-VirtualBox ~/git/volttron-2 §

(volttron)volttron@volttron-VirtualBox ~/git/volttron-2 §

(volttron)volttron@volttron-VirtualBox ~/git/volttron-2 $ cat ~/.volttron2/external platform discovery.json
("platform3":{"vip-address":"tcp://127.0.0.3:22916", "instance-name": "platform3", "serverkey":"1_fc30-fUGIveh 33Pg7nw1BHE0DQWDifPO8QZInhxXY"},
"platforml”: {"vip-address”: "tcp://127.0.0.1:22916", "instance-name": "platforml”, "serverkey" : "bbBFTKXTmXGzIezVC47scqhwbdlyc3WSBTCUZLDQynA" }}
(volttron)volttron@volttron-VirtualBox ~/git/volttron-2 §

(volttron)volttron@volttron-VirtualBox ~/git/volttron-2 §

(volttron)volttron@volttron-VirtualBox ~/git/volttron-2 §

(volttron)volttron@volttron-VirtualBox ~/git/volttron-2 §

(volttron)volttron@volttron-VirtualBox ~/git/volttron-2 $ cat ~/.volttron3/external platform discovery.json

("platform2":{"vip-address": "tcp://127.0.0.2:22916", "instance-name": "platform2", "serverkey" : "Qbj -BezSubBuBh30cn2nIdMHBS9inFYCQII3ctcylln"},
"platforml”: {"vip-address”: "tcp://127.0.0.1:22916", "instance-name": "platforml”, "serverkey" : "bbBFTKXTmXGzIezVC47scqhwbdlyc3WSBTCUZLDQynA" }}
(volttron)volttron@volttron-VirtualBox ~/git/volttron-2 §

(volttron)volttron@volttron-VirtualBox ~/git/volttron-2 §

(volttron)volttron@volttron-VirtualBox ~/git/volttron-2 $ nano ~/.volttron3/external platform discovery.json
(volttron)volttron@volttron-VirtualBox ~/git/volttron-2 $ []

_images/multiplatform-setupmode-auth-screen.png
(volttron)volttron@volttron-VirtualBox ~/git/volttron-2 § volttron-ctl auth list

INDEX: ©

{
“domain”: null,
“user_id": "platforn’,
“roles": [],
“enabled": true,

"mechanism”: "CURVE",

“capabilities’: [],

“groups”: 1,

“address”: null,

"credentials”: "bbBFTKXTmXGzIezVC47scqhwbdlyc3wSBTCUZLDQynA",
“comments": "Automatically added by platform on start”

¥

INDEX: 1
{
“domain”: null,
“user id": "platforn.driver”,
“roles": [I,
“enabled": true,
"mechanism”: "CURVE",
“capabilities’: [],
“groups”: 1,
“address”: null,
"credentials”: "Xjv88AeESTQ3VzI6YRKZInemORmMIAiYdzQkiyAHCa3I",
“comments": "Automatically added on agent install”

¥

INDEX: 2
{
“domain*: *vip",
"user_id": "ccb2b3a5-512c-4969-907a-aa7a3ce07663",
“roles’: [1,
“enabled": true,
"mechanism”: "CURVE",

“capabilities’: [],

“groups®: [1,

“address": "127.0.0.1",

“credentials”: "Qbj-BezSubBUBh30CN2nIdMHBSjnFYCQIT3ctcyllu" ,
“comments”: "Auth entry added in setup mode"

}
INDEX: 3
{
“domain*: *vip*,
"user_id": "al65d753-25d4-43e7-ad6a-25cel762a575",
“roles*: (1,
“enabled": true,

“mechanisn”: "CURVE",
"capabilities": [],

on-ctl auth list

INDEX: ©

i
“domain”: null,
“user_id": "platforn’,
“roles": [],
“enabled": true,

"mechanism”: "CURVE",

“capabilities’: [],

“groups”: 1,

“address”: null,

"credentials "Qbj -BezSuDBuBh30cn2nIdMH8s9jnFYCQII3ctcyllw”,
“comments": "Automatically added by platform on start”

i

TnoEx: 1
i

“domain”: null,

“user id": “listeneragent-3.2 1",

“roles": [],

“enabled": true,

“mechanisn”: "CURVE",

“capabilities’: [],

“groups®: [,

“address”: null,

“credentials”: "a@SfzQRfgl61]uexTkfIPpZMKBDAIxkedZEdGIiy70A" ,

“comments”: "Automatically added on agent install®

i

INDEX: 2
[
“domain*: *vip",
"user_id": "19c6b615-3db2-4dac-be36-ef83c4109f48",
“roles’: [1,
“enabled": true,
"mechanism”: "CURVE",

“capabilities’: [],

“groups®: [1,

“address": "127.0.0.1%,

“credentials”: "bbBFTKXTmXGZIezVC47scqhubdlyc3WSBTCUZLDGynA" ,
“comments”: "Auth entry added in setup mode"

i
INDEX: 3
[
“domain*: *vip",
"user_id": "982cc32e-399d-40fc-ad45d-c3e34534881",
“roles’: [1,
“enabled": true,

“mechanisn”: "CURVE",
"capabilities": [],

(volttron)volttron@volttron-VirtualBox ~/git/volttron-2 § volttron-ctl auth list

INDEX: ©
i
“domain”: null,
“user_id": "platforn’,
“roles": [I,
“enabled": true,
"mechanism”: "CURVE",
“capabilities’: [],
“groups”: 1,
“address”: null,
"credentials "1 fc30-fUGIveh 33Pg7nwlBHE0DgWDifPO8QzInhxY",
“comments": "Automatically added by platform on start”

i

[INDEX: 1

i
“domain”: null,
“user_id": "listeneragent-3.2 1"
"roles": [],

“enabled": true,

“mechanisn”: "CURVE",

“capabilities’: [],

“groups®: [,

“address”: null,

“credentials”: "pi-DWV04eITTV zV8ln6QadAAg)CIdKFjKZKGd3jujY" ,
“comments”: "Automatically added on agent install®

i

INDEX: 2

[
“domain*: *vip*,
"user_id' "ccles8fl4-e271-4d36-88f5-695d9fas 387",
“roles’: [1,

“enabled": true,
“mechanisn”: "CURVE",
“capabilities’: [],
“groups®: [1,
“address": "127.0.0.1",

“credentials”: "Qbj-BezSubBUBh30CN2nIdMHBSjnFYCQIT3ctcyllu" ,
“comments”: "Auth entry added in setup mode"

i
INDEX: 3
[
“domain*: *vip*,
"user_id": "3ec89c38-9e67-451c-9c7b-4dc4641cdsad",
“roles’: [1,
“enabled": true,
"mechanism”: "CURVE",

“capabilities*: 1,

_images/multiplatform-pubsub.png
binvb
(volttron)volttron@volttron-VirtualBox ~/git/volttron-2 $ volttron-ctl status
“CKeyboardInterrupt
(volttron)volttron@volttron-VirtualBox ~/git/volttron-2 $ volttron -v -1 11.log&
(1] 17668
(volttron)volttron@volttron-VirtualBox ~/git/volttron-2 $ volttron-ctl status

AGENT IDENTITY TAG STATUS

) master_driveragent-3.1.1 platforn.driver master driver
(volttron)volttron@volttron-VirtualBox ~/git/volttron-2 $ volttron-ctl start --tag
aster_driver
tarting 9ff4674d-60de-4c9c-8653-13cf9d308e25 master driveragent-3.1.1
(volttron)volttron@volttron-VirtualBox ~/git/volttron-2 $ []

binb

pat
617-10-62 16:04:24,416 () volttron.platform.auth INFO: authentication success: dom
in="vip', address='localhost:1000:1000:17692', mechanism='CURVE', credentials=['bb
SFTKXTMXG2TezVC475cqhwbdlyc3WSBTCUZLDGynA'], user_id='platform

617-10-62 16:04:52,273 () volttron.platform.auth INFO: authentication success: dom
in="vip', address='localhost:1000:1000:1774", mechanism='CURVE', credentials=['bb
SFTKXTMXG2TezVC475cqhwbdlyc3WSBTCUZLDGynA'], user_id='platform

617-10-62 16:04:52,280 () volttron.platform.aip INFO: starting agent /home/volttro
1/ .volttronl/agents/9f4674d-60de-4c9c-8653-13cf9d308e25/master_driveragent-3.1.1
617-10-62 16:04:52,351 () volttron.platform.aip INFO: agent /home/volttron/.volttr
n1/agents/9ff4674d-60de-4c9c-8653-13cfId308e25/naster_driveragent-3.1.1 has PID 17
/54

617-10-62 16:04:52,514 () volttron.platform.auth INFO: authentication success: dom
in="vip', address='localhost:1000:1000:17754", mechanism='CURVE', credentials=['X;
/88ACESTQ3VZI6YRKZINEMORNIAL YdZQkiyAHCa3T], user_id='platform.driver

617-10-62 16:04:52,526 (master driveragent-3.1.1 17754) volttron.platform.vip.agen
.core INFO: Connected to platform: router: ae7b621-e22a-4bd3-a996-6ceSad4lbazf ve
sion: 1.0 identity: platform.driver

617-10-62 16:04:52,540 (master_driveragent-3.1.1 17754) master driver.agent INFO
naximum concurrently open sockets limited to 680060 (derived from system limits
617-10-62 16:04:52,541 (master_driveragent-3.1.1 17754) master_driver.agent INFO
naximum concurrent driver publishes limited to 10000

617-10-62 16:04:52,541 (master driveragent-3.1.1 17754) master_driver.agent INFO:
Starting driver: fake-campus/fake-building/fake-device

(volttron)volttrongvolttron-VirtualBox ~/git/volttron-2 § volttr

on -v -1 12.l0g&

[1] 17605

(volttron)volttrongvolttron-VirtualBox ~/git/volttron-2 § volttr

on-ct1 status
AGENT

IDENTITY TAG STATUS

b listeneragent-3.2 listeneragent-3.2 1 listener
(volttron)volttrongvolttron-VirtualBox ~/git/volttron-2 § volttr
on-ctl start --tag listener

Starting ba5age29-ebo7-40a6-be7a-4a393bb4201 listeneragent-3.2
(volttron)volttronguolttron-VirtualBox ~/git/volttron-2 § []

‘PowerState': {'type': ‘tz': 'Us/Pacific’, 'units
'1/0'},
‘Valvestate': {'type’

'1/0'}

‘integer',

‘integer’, 'tz': 'US/Pacific’, 'units

“temperature’: {'type': 'integer’
‘tz': 'Us/Pacific’
‘units': 'Fahrenheit'}}]

2017-16-02 16:05:45,012 (listeneragent-3.2 17780) listener.agent
INFO: Peer: 'pubsub’, Sender: ‘platform.driver':, Bus: u'*, Top
ic: 'devices/fake-campus/fake-building/fake-device/all’, Headers
: {'Date’: '2017-10-62T23:05:45.002978+00:00' , 'TimeStamp': '201
7-10-02723:05:45.002978+00: min_compatible version': '3.0"
‘max_compatible version': u''}, Message:
[{'Heartbeat': True, 'PowerState': 0, 'ValveState
ure": 50.0},
{'Heartbeat"
on/0ff'},
‘PowerState’: {'type': 'integer', 'tz': 'US/Pacific’, 'units'
'1/0'},
‘Valvestate': {'type': 'integer’, 'tz': 'US/Pacific’, 'units'
'1/0'},
“temperature’: {'type': 'integer’
‘tz': 'Us/Pacific’
‘units': 'Fahrenheit'}}]

*temperat

{'type': ‘integer', 'tz': 'US/Pacific’, 'units'

(volttron)volttrongvolttron-VirtualBox ~/git/volttron-2 § volttron -v -1 13.log&
[1] 17630
(volttron)volttrongvolttron-VirtualBox ~/git/volttron-2 § volttron-ctl status

AGENT IDENTITY TAG STATUS
o listeneragent-3.2 listeneragent-3.2 1 listener
(volttron)volttrongvolttron-VirtualBox ~/git/volttron-2 § volttron-ctl start --tag 1
istener
Starting 942648e2-884-49c0-bdf1-e9eobed42000 Listeneragent-3.2
(volttron)volttrongolttron-VirtualBox ~/git/volttron-2 § []

2017-10-62 16:05:40,017 (listeneragent-3.2 17819) listener.agent INFO: Peer: 'pubsub
", Sender: ‘platform.driver':, Bus: u'', Topic: 'devices/fake-canpus/fake-building/f
ake-device/all’, Headers: {'Date’: '2017-10-62T23:05:40.001987+00:00", 'TimeStamp
'2017-10-62T23:05:40.001987+00:00°, 'min_compatible version': '3.0", 'max_compatible
version': u''}, Message:

[{'Heartbeat': True, 'PowerState': @, 'ValveState': 0, 'temperature’: 50.6}
{'Heartbeat': {'type': 'integer’, 'tz': 'US/Pacific’, 'units': 'On/0ff'}
‘PowerState’: {'type': 'integer', 'tz': 'US/Pacific’, 'units': '1/0'}
‘Valvestate': {'type': 'integer', 'tz': 'US/Pacific’, 'units': '1/0'}
‘temperature’: {'type': 'integer
‘tz': 'Us/Pacific’

‘units': 'Fahrenheit'}}]
2017-10-02 16:05:45,008 (listeneragent-3.2 17819) listener.agent INFO: Peer: 'pubsub
*, sender: 'platform.driver':, Bus: u'', Topic: 'devices/fake-campus/fake-building/f
ake-device/all’, Headers: {'Date’: '2017-10-02T23:05:45.002978+00:00', 'TimeStamp'
*2017-10-02T23:05:45.002978+00:00" , 'min_compatible version': '3.0", 'max_compatible
version': u''}, Message:
[{'Heartbeat': True, 'PowerState

6, 'ValveState': 0, 'temperature': 50.0}

{'Heartbeat': {'type': 'integer’, 'tz': 'US/Pacific’, 'units': 'On/0ff'}
‘PowerState’: {'type': 'integer', 'tz': 'US/Pacific’, 'units': '1/0'}
‘Valvestate': {'type': 'integer', 'tz': 'US/Pacific’, 'units': '1/0'}
“temperature’: {'type': 'integer

‘tz': 'Us/Pacific’
‘units': 'Fahrenheit'}}]

_images/multiplatform_pubsub.png
VOLTTRON - 1 PUBSUB Multiplatform VOLTTRON -2

Agent_B VIP queue Agent_B VIP queue Agent_B VIP queue
Binding Key: Binding Key: Binding Key:
“volttronl.agent_a” “volttronl.agent_b” “volttron2.agent_b”

Topic Topic
Exchange] Exchange

_images/multiplatform-terminator-setup.png
(volttron)volttron@volttron-VirtualBox ~/git/volttron-2 $ source env/bin/activate
(volttron)volttron@volttron-VirtualBox ~/git/volttron-2 § source env/bin/activate
(volttron)volttron@volttron-VirtualBox ~/git/volttron-2 $ export VOLTTRON_HOME
(volttron)velttron@volttron-VirtualBox ~/git/volttron-2 § volttron-cfg

Your VOLTTRON_HOME currently set to: /home/volttron/.volttronl

Is this the volttron you are attempting to setup? [Y]
ihat is the external instance ipv4 address? [tcp://127.0.0.1]:

ihat is the instance port for the vip address? [22916]:

Is this instance a volttron central? [N]:

iill this instance be controlled by volttron central? [Y]: n

iould you like to install a platform historian? [N]:

iould you like to install a master driver? [N]: y

Configuring /home/volttron/git/volttron-2/services/core/MasterDriverAgent
Install a fake device on the master driver? [N]: y

should agent autostart? [N]: n

iould you like to install a listener agent? [N]: n

Finished configuration

You can now start the volttron instance.

If you need to change the instance configuration you can edit
the config file at /home/volttron/.volttronl/config

(volttron)volttron@volttron-VirtualBox ~/git/volttron-2 § |

/.volttronl

(volttron)volttron@volttron-VirtualBox ~/git/volttron-2
Inv/bin/activate

(volttron)volttron@volttron-VirtualBox ~/git/volttron-2
bin/activate

(volttron)volttron@volttron-VirtualBox ~/git/volttron-2
export VOLTTRON_HOME=~/.volttron2
(volttron)volttron@volttron-VirtualBox ~/git/volttron-2
$ volttron-cfg

[Your VOLTTRON_HOME currently set to: /home/volttron/.vo
Lttron2

15 this the volttron you are attempting to setup? [Y]

unat is the external instance ipv4 address? [tcp://127
0.0.1]: tcp://127.0.0.2
unat is the instance port for the vip address? [22916]:

Is this instance a volttron central? [N]:

Juill this instance be controlled by volttron central? [
[Yl: n

Jwould you like to install a platform historian? [N]:
would you like to install a master driver? [N
Jwould you like to install a listener agent? [N]
configuring examples/ListenerAgent

[Should agent autostart? [N]:

Finished configuration

[You can now start the volttron instance.

17 you need to change the instance configuration you ca
h edit
the config file at /home/volttron/.volttron2/config

(vnﬁttrnn)vnlttrnn@vnlttrnn-virtualsnx ~/git/volttron-2
$

bin/bash 84x52
(volttron)volttron@volttron-VirtualBox ~/git/volttron-2 $ source env/bin/activate
(volttron)volttron@volttron-VirtualBox ~/git/volttron-2 $ source env/bin/activate
(volttron)volttron@volttron-VirtualBox ~/git/volttron-2 $ source env/bin/activate
(volttron)volttrongvolttron-VirtualBox ~/git/volttron-2 § export VOLTTRON HOME=-/.vo
Lttron3

(volttron)volttron@volttron-VirtualBox ~/git/volttron-2 § volttron-cfg

[Your VOLTTRON_HOME currently set to: /home/volttron/.volttron3

Is this the volttron you are attempting to setup? [Y]

Junat is the external instance ipv4 address? [tcp://127.0.0.1]: tcp://127.0.0.3
uhat is the instance port for the vip address? [22916]:

15 this instance a volttron central? [N]:

Will this instance be controlled by volttron central? [Y]: n

would you like to install a platform historian? [N]:

Jwould you like to install a master driver? [N
would you like to install a listener agent? [N]
configuring examples/ListenerAgent

Should agent autostart? [N]:

Finished configuration

[You can now start the volttron instance.

1f you need to change the instance configuration you can edit
[the config file at /home/volttron/.volttron3/config

(volttron)velttron@volttron-VirtualBox ~/git/volttron-2 § []

_images/manage-platforms.png
VOLTTRON™ Central

Funded by DOE EERE BTO

Platforms / Platform 1 (aae27d82-d66b-4c72-9899-be6166a44b5f)

Agents
Name
bacnet_proxyagent-0.1
listeneragent-3.0
sqlhistorianagent3.5.0
veplatformagent-3.5.1
volttroncentralagent-3.5.3

Install agents

‘Choose Files | No file chosen

vup
6a3be214-27a7-4760-21d3-3aatc66db6e
0385b12e-2a53-4d8a-abbf-6c3bebablach
1fcb2c10-chBe-4715-b248-69b4ad5d62b2
dc720b2a-4032-4961-b316-742064e5038

f3210b1-2472-4763-933b-d03cfcd81500

status
Never started
Never started
Running (PID 14296)
Running (PID 14263)

Running (PID 12033)

Dashboard Platforms Charts.

move
L
SO

Logout

_images/logout-button.png
A Funded by DOE EERE BTO Dashboard - Platforms Charts Logout

Pin a chart to have it appear on the dasht

_images/matlab-archi.png
DrivenAgent

MATLAB Data Readings MATLAB

Interface Control Actions Controller

VOLTTRON Message Bus

Simulated
Device

_images/matlab-agent-diagram.png
Linux | Windows

StandAloneMatLab Directory

VOLTTRON

Configuration Store

settings.py
matlab/to_matlab/1

StandAloneMatLab.py
MatLabAgent_V2

volttron.log

matlab/to_volttron/1

_images/multiplatform-config.png
B bin 5

B bin/bas 6 2
(volttron)volttronguolttron-VirtualBox ~/git/volttron-2 § cat ~/.volttronl/config (volttron)volttronguolttron-VirtualBox ~/git/volttron-2 (volttron)volttronguolttron-VirtualBox ~/git/volttron-2 § cat ~/.volttron3/config
[volttron] $ cat ~/.volttron2/config [volttron]
vip-address = tcp://127.0.0.1:22916 [volttron] vip-address = tcp://127.9.0.3:22916
instance-name = “platfornl vip-address = tcp://127.9.0.2:22916 instance-name = “platforn3;
bind-web-address = http://127.6.9.1:8080 [instance-name = “platforn2* bind-web-address = http://127.6.9.3:8080
bind-web-address = http://127.6.0.2:8080
(volttron)volttronguolttron-VirtualBox ~/git/volttron-2 $ [] (volttron)volttronguolttron-VirtualBox ~/git/volttron-2 (volttron)volttronguolttron-VirtualBox ~/git/volttron-2 $ []

sl

_images/charts-window.png
Add Chart

(5 Pin to dashboard
REFRESH INTERVAL (MS)

CHARTTYPE

[zselecype= 7]

_images/cmd-image.png
D ® Fitters \/

Quick match

Edit environment variables for your
account
Control panel

Settings
Edit the system environment variables

3 Change brightness automatically when
lighting changes

Search the web

£ env-

Documents - This PC (5+)

_images/chart-type.png
Charts

times_percent / idle

Stacked OStream O Expanded @Platiorm 1 @Platform 2
Chart Type
x
Stacked Area v
10 minutes ago = ago

_images/05-get-device-points.png
VOLTTRON™ Central

<

a [e]E]

v t0pu127.00.1:22016

» Performance

» Agents

Install Devices

Funded by DOE EERE BTO

Platform: tcp:/127.00.1:22916.

Dashboard ~ Platforms

Scanfor Devices &

I 0024

>

10026

MacGyver

BACNet Proxy Agent | bacnet_proxyagent0.2 B
Device IDRange M Max:
Advanced Options
Description Deviceld VendoriD Vendor
o 15 Comell University
1000 1 TACAB

bacnet

bacnet

Charts Log out

LIS
LIS

_images/05_run_listener.png
Ele Edit View Navigate Code Refactor Run

volttron) [examples) I ListenerAgent

Alerter

AlertMonitor

DDSAgent
deprecated-rem
ExampleDrivenControlAgent
ampleMatiabApplication
xampleSubscriber

erAgent

tener

4 _init_py

+ agentpy

eneragentlaunch
etuppy
ilityExample
ultiNodeExample
NodeRed

2017-68-61 15:50:09,286 _main

2017-08-61 15:59:69,301 volttron.platforn.vip.agent.core INFO: Connected to platfor: router: db37c971-9f6e-43f4-b52d-c3505b9a6552 version: 1. identity: f8c77edf-c34b-46e7-8311-b7358891d300

volttron - [~/volttron] - /examples/ListenerAgent/listener/agent.py - PyCharm Community Edition 2017.2

Tools VCS Window
listener) 4 agent py

4 agentpy

fron _future__ import absolute_inport

inport logging
import sys

from pprint inport pformat

from volttron. platforn.nessaging.health inport STATUS GOOD
from volttron.platforn.vip.agent import Agent, Core, Pubsub, compat
from volttron.platform.agent inport utils

utils.setup_logging()
_log - logging.getLogger(_name_)
—_version__

DEFAULT_MESSAGE

DEFAULT_AGENTID
'DEFAULT_HEARTBEAT_PERTOD - 5

class (Agent)

def _init (self)
super (ListenerAgent, <e17). _init_()
self.config - utils.load_config()
self._agent_id - sci7.config.get(
sel7._message - scl7.config.get(
sel7._heartbeat_period - sc17.config.get(
'DEFAULT_HEARTBEAT_PERTOD)

DEFAULT_AGENTID)
DEFAULT_MESSAGE)

try
sel7._heartbeat_period - int(sel?._heartbeat_period)
except
Tog.warn(

INFO: hello

2017-08-61 15:59:69,301 volttron.platforn.vip.agent. core DEBUG: Running onstart methods

2017-08-61 15:59:09,301 _main
2017-08-61 15:59:69,305 _main
{'context': "hello’,
*last_updated': '2017-08-01T22
‘status': '600D'}

DEBUG: VERSION IS: 3.2
INFO: Peer: 'pubsub’, Sender: 'f8c77edf-c34b-46e7-8311-b7358891d300"

Bus: u'', Topic

50:09.391925+00:00,

2017-08-61 15:59:89,306 volttron. platforn.vip.agent. subsystens. configstore DEBUG: Processing callbacks for affected file:

2017-08-61 15:59:14,307 __main
{'context': "hello’,
*last_updated': '2017-08-01T22
‘status': '600D'}
2017-08-61 15:59:19,329 __main
{'context': "hello’,
*last_updated': '2017-08-01T22
‘status': '600D'}

=}

INFO: Peer: 'pubsub’, Sender: 'f8C77edf-c34b-46e7-8311-b7358891d300":, Bus: u'', Topic

50:09.391925+00:00,

INFO: Peer: 'pubsub’, Sender: 'f8C77edf-c34b-46e7-8311-b7358891d300" :, Bus: u'', Topic

50:09.391925+00:00,

NN) & B volron - [-Avoltron . /exa..| B /bin M /binfbash

12017-68-01722

12017-68-01722

12017-68-01722

50:09.302179+00:00",

50:14.305576+00:00",

50:19.305561+00:00",

‘max_conpatible_version'

‘max_conpatible_version'

‘max_conpatible_version'

Git: develop

_images/04-devices-found.png
VOLTTRON™ Central

Q

»J[e]-Je]

v t0pu127.00.1:22016
» Performance

» Agents

Funded by DOE EERE BTO Dashboard Plattorms Charts Log out
Install Devices
Platform: tcp/127.0.0.1:22916
Methoa: [scanorDevices || pacyet prowy Agent [bacnepronyagento2 7| ®
Device ID Range Min Max:
Advanced Options
Address Name Description Device ID Vendor ID. Vendor Type
> 10024 Beteigeuse 0 15 ‘Comell University bacnet L
> 10026 MacGyver 1000 19 TAC AB bacnet L

<

Console &

1

_images/04_listener_settings.png
() share (] Single instance only

Script parameters:

~ Environment

Environment variables:

home/mike/volttron/scripts/pycharm-launch.py (]

Ihome/mikeAvolttron/examples/ListenerAgent/listener/agent.py (]

P_IDENTITY-listener,PY THONUNBUFFERED=1,AGENT_CONFIG=examples/ListenerAgent/confiy ||

Python 2.7.6 virtualenv at ~Avolttron/env H

Python interpreter:
Interpreter options: (]
Working directory: home/mikeAvolttron (]

Add content roots to PYTHONPATH Environment Variables + x

‘Add source roots to PYTHONPATH Name Value s

. AGENT_VIP_IDENTITY listener
() Emulate terminalin output console:
PYTHONUNBUFFERED 1
‘Show commandine afterwards

o AGENT_CONFIG ‘examples/ListenerAgenticonfig &

 Before launch: Activate tool window Include parent environment variables Show

+

o e

_images/07-select-point-a.png
VOLTTRON™ Central

a [e]=]e

€ cp127.00.1:22916

<

Funded by DOE EERE BTO

Install Devices

Method: | Scan for Devces &

v

0000 O0O0OF OO0

Dashboard

BACNet Proxy Agent | bacnet_proxyagent-0.2

Device IDRange M Mac
Advanced Opions
Address Name Description Device ID Vendor D Vendor
10024 Betelgeuse o 15 omell University
Volttron Point Name T +~ &~ Writable Units
RetumAITemperature FALSE UNKNOWN UNITS
RetumAitHumidity FALSE UNKNOWN UNITS
GoolingValveOutputCommand FALSE UNKNOWN UNITS
MicedAiTemperature FALSE UNKNOWN UNITS
OutdoorAiHumidity FALSE UNKNOWN UNITS
PreheatTemperature FALSE UNKNOWN UNITS
DischargeAiTemperatre FALSE UNKNOWN UNITS
DischargeAiStaicPressure FALSE UNKNOWN UNITS

Console &

Platforms Charts Log out

bacnet & L O

_images/07-select-point-b.png
VOLTTRON™ Central

a [e]=]e

€ cp127.00.1:22916

<

Funded by DOE EERE BTO

Install Devices

Method: | Scan for Devces &

v

0O0OO0O0OO0OOof@oo

Dashboard

BACNet Proxy Agent | bacnet_proxyagent-0.2

Device IDRange M Mac
Advanced Opions
Address Name Description Device ID Vendor D Vendor
10024 Betelgeuse o 15 omell University
Volttron Point Name T +~ &~ Writable Units
RetumAITemperature FALSE UNKNOWN UNITS
RetumAitHumidity FALSE UNKNOWN UNITS
GoolingValveOutputCommand FALSE UNKNOWN UNITS
MicedAiTemperature FALSE UNKNOWN UNITS
OutdoorAiHumidity FALSE UNKNOWN UNITS
PreheatTemperature FALSE UNKNOWN UNITS
DischargeAiTemperatre FALSE UNKNOWN UNITS
DischargeAiStaicPressure FALSE UNKNOWN UNITS

Console &

Platforms Charts Log out

bacnet & L O

_images/06_run_tests.png
CrateHistorian

DataMo gy, LT AGENTID
emaiert PR .1 e perion - 5
ut tiex
External o o
copy cisc
Failover)
e copypath Crisshifc
lewatc
e CopyRelaivepath CrlsAlsShiftiC
orvar
ey paste cuisv
ogstati
Voserg FindUsages A7
mag FindinPath CrisshiftsF
teie ReplaceinPath CrlsshifR
foke, Inspect Code EE e
“heartbeat_perio
IDEN Refactor >
Clean Python Compiled Files
mast v e _heartbeat_period
dsetu AddtoFavorites - T
. Tog.varn(
Message beshif _log
0t ShowImage Thumbnais Clsshift fornt Inval
Mongod pejete, Delete g config.g
Mongod g CulsshifFi0 . p
MQTTHi < Logerr
¥ Debug py.estintests (3).. eLif log T
Muliui logfn - _log
opentrs % Select pytesintests 3. elif 1og Ty
<wapH] Local Hstory - R T
SQuagg Git » _logfn - _log

SQLHiste &) Synchronize 'tests’

_images/07-edit-points.png
VOLTTRON™ Central

<

a [e]E]

v t0pu127.00.1:22016

» Performance

» Agents

Funded by DOE

Install Devices

Platform: tcp:/127.00.1:22916.

Method: | Scan for Devces &

v

OooDooo0ooao

EERE BTO

Dashboard

BACNet Proxy Agent | bacnet_proxyagent-0.2

Device IDRange M Max
Advanced Optons
Address Name Description Device ID Vendor D Vendor
10024 Betelgeuse i) 15 Comell Uniersiy
Volttron Point Name T+~ Writable units
RetumAlTemperature FALSE UNKNOWN UNITS
RetumAltHumidity FALSE UNKNOWN UNITS
CoolingvaveOupuCommand [FALSE UNKNOWN UNITS
MbedAiTemperature FALSE UNKNOWN UNITS
OudoorAtHumidity FALSE UNKNOWN UNITS
PreneatTemperature FALSE UNKNOWN UNITS
DischargeAirTemperature UNKNOWN UNITS
DischargeAiStatcPressure UNKNOWN UNITS

Platforms

Charts Log out

bacnet § & O

_images/07-select-point-c.png
VOLTTRON™ Central

<

a [e]=]e

€ cp127.00.1:22916

Funded by DOE EERE BTO

Install Devices

Platform: tcp:/127.00.1:22916.

v

Ooo0ODo0oo0ooBe 0o

Dashboard

Method: | Sean forDeices G || pacnet proxy Agent [bacnet pronyegent02 7| ®
Device ID Range Min: Max:
Advanced Options

Address. Name Description Device ID Vendor ID. Vendor
10024 Betelgeuse 70 15 Comell University
Volttron Point Name ¥+~ &~ Writable Units
RetumairTemperature FALSE UNKNOWN UNITS
RetumAirHumidity FALSE UNKNOWN UNITS
CoolingValveOutputCommand FALSE UNKNOWN UNITS
MixedAirTemperature FALSE UNKNOWN UNITS
‘OutdoorAitHumidity FALSE UNKNOWN UNITS
PreheatTemperature FALSE UNKNOWN UNITS
DischargeAirTemperature FALSE UNKNOWN UNITS
DischargeAirStaticPressure. FALSE UNKNOWN UNITS

Console &

Platforms Charts Log out

bacnet & L O

_images/07_run_forwarder.png
Name: | forwarder Allow parallel run store as project file

Configuration Logs

Script path: ~ | /home/roshan/Desktop/volttron/scripts/pycharm-launch.py

Parameters: :/roshan/Desktop/volttron/services/core/ForwardHistorian/forwarde

~ Environment

Environment variables: oshan/Desktop/volttron/config/forwarder.con!

;VOLTTRON_HOME=/home/roshan/v¢ -]

Python interpreter: @ Python 3.7 (volttron) -/Desktop/volttron/env/bin/python ~
Interpreter options:
Working directory: /home/roshan/Desktop/volttron/forwarder

Add content roots to PYTHONPATH
Add source roots to PYTHONPATH
~ Execution

Emulate terminal in output console
Run with Python Console

Redirect input from:

~ Before launch

a5

ok NIRRT
Environment Variables

User environment variables:

Name

Value
PYTHONUNBUFFERED 1
AGENT_VIP_IDENTITY

"
AGENT_CONFIG ([/home/roshan/Desktop/volttron/config/forwarder.config) a

VOLTTRON_HOME /home/roshan/volttron_home

_images/08-filter-points-button.png
VOLTTRON™ Central

<

a [e]E]

v t0pu127.00.1:22016

» Performance

» Agents

Install Devices

v

OoooDoooooaoQ

Funded by DOE EERE BTO =i
Platform: tcp1127.00.1:22916
Methoa: | Scanfor Devices G| | gacwet proxy Agent | bacnet pronyagen-02 7| &
Device IDRange M Max:
Advanced Options
Address Description Device D Vendor ID Vendor
10024 o 15 Comell University
Votron Poin Namg;y -~ Writable Units
RetumAirTemperature FALSE UNKNOWN UNITS
RetumAitHumidiy FALSE UNKNOWN UNITS
CoolngValveOutputCommand FALSE UNKNOWN UNITS
MixedAirTemperature FALSE UNKNOWN UNITS
OutdoorAirHumidiy FALSE UNKNOWN UNITS
PreheatTemperature FALSE UNKNOWN UNITS
DischargeAirTemperature UNKNOWN UNITS
DischargeAirStaticPressure UNKNOWN UNITS

Platforms

Charts Log out

bacnet § & O

nav.xhtml

 Table of Contents

 		
 VOLTTRON™ documentation!

_images/1-simulation-out.jpg
Simulation Output

Time Dispatch Power kW Storage Power kW Storage SOC kWh PV Power kW Net Power kW Load Power kW
2/2/2017 13:42 0.0 0.0 25.0 -1.0 485.1 486.1
2/2/2017 14:30 15.0 15.0 38.5 -5.9 476.6 467.5
2/2/2017 15:15 15.0 10.5 46.2 -11.7 473.0 474.2
2/2/2017 16:00 -15.0 -15.0 32.7 -9.4 4451 469.5
2/2/2017 16:45 -15.0 -15.0 23.7 -14.7 473.6 503.3
2/2/2017 17:33 -15.0 -15.0 10.1 -16.1 475.5 506.5
2/2/2017 18:18 -15.0 -8.5 3.1 -18.5 439.8 466.8
2/2/2017 19:03 15.0 15.0 16.6 -18.3 476.8 480.1
2/2/2017 19:48 15.0 15.0 25.6 -21.8 460.6 467.4
2/2/2017 20:33 15.0 15.0 39.1 -19.8 434.1 438.9

© Dispatch Power kW © Storage Power kW © Storage SOC kWh

50.0
37.5
25.0
125

0.0
-12.5
-25.0

2/2/2017 13:42

2/2/2017 15:15

2/2/2017 16:45

2/2/2017 18:18

2/2/2017 19:48

_images/10-clear-filter.png
VOLTTRON™ Central

<

Install Devices

Platform: tcp:/127.00.1:22916.

Funded by DOE EERE BTO

Dashboard

Q

Method: | Scan for Devices {

v t0pu127.00.1:22016
» Performance

» Agents

RetumAITemperature
RetumATHumidiy
GoolingValveOutputCommand
MicedAiTemperature
OutdoorAiHumidity
PreheatTemperature
DischargeAiTemperatre
DischargeAiStaicPressure

OoooDoooooaoQ

Volttron Point Name ¥ +~ &~

BACNet Proxy Agent | bacnet_provyagen-0.2 7| ®
Min Max:
Advanced Options
Device ID Vendor ID. Vendor
i 15 ‘Comell University
Writable & units #
FALSE "UNKNOWN UNITS
FALSE "UNKNOWN UNITS
FALSE "UNKNOWN UNITS
FALSE "UNKNOWN UNITS
FALSE "UNKNOWN UNITS
FALSE "UNKNOWN UNITS
"UNKNOWN UNITS
"UNKNOWN UNITS

Platforms

Charts Log out

bacnet § & O

_images/08_run_historian.png
Name: historian

Allow parallel run store as project file
Configuration Logs
Script path: ~ | /home/roshan/Desktop/volttron/scripts/pycharm-launch.py
Parameters: op/volttron/services/core/SQLHistorian/sqlhistorian/historian.py

~ Environment
Environment variables: :sktop/volttron/config/sqlite.config;VOLTTRON_HOME=/home/roshan/volttron_home [
Python interpreter: % Python 3.7 (volttron) -/Desktop/volttron/env/bin/python

Interpreter options:

Working directory: /home/roshan/Desktop/volttron/historian

Add content roots to PYTHONPATH
Add source roots to PYTHONPATH

~ Execution

Emulate terminalin output console
Run with Python Console

Redirect input from:

~ Before launch

s

Environment Variables

User environment variables:

Name Value +
PYTHONUNBUFFERED 1
AGENT_VIP_IDENTITY platform.historian

AGENT_CONFIG

[/home/roshan/Desktop/volttron/config/sqli
VOLTTRON_HOME

7home/roshan/volttron_home

Ja

_images/09-filter-set.png
VOLTTRON™ Central

<

a [e]E]

v t0pu127.00.1:22016

» Performance

» Agents

Funded by DOE EERE BTO

Install Devices

Platform: tcp:/127.00.1:22916.

Dashboard

Metnod: | Scan forDevces G | | gacnet proxy Agent [sacnet_pronyagento2 7| &
Min: Max:
Advanced Options
Address Device D Vendor ID Vendor
v 10024 o 15 Comell University
T Volttron Point Name ¥ +~ #- Writable Units
O DischargeAirTemperature FALSE UNKNOWN UNITS
O DischargeArStatcPressure FALSE UNKNOWN UNITS
> 10026 MacGyver 19 TAC AB

Platforms

Charts

Log out

ExoO

LIS

_images/13-remove-points-button.png
VOLTTRON™ Central

<

Install Devices

Platform: tcp:/127.00.1:22916.

Funded by DOE EERE BTO

Dashboard

Q S
Metnod: | Scan forDevces G | | gacnet proxy Agent [sacnet_pronyagento2 7| &
¥ 98 cp/127.0.0.1:22916 el i e
+ Performance e
Advanced Options
- Agents
Address Description Device D Vendor ID Vendor
Remove Points
v 10024 o 15 Comell University
£ Votwon poit Name' +5. Writable Units
O RewmaiTemperature FALSE UNKNOWN UNITS
O Rewmaitumidy FALSE UNKNOWN UNITS
O CoolngValveOutputCommand FALSE UNKNOWN UNITS
O MixedAirTemperature FALSE UNKNOWN UNITS
O OudoorairHumidiy FALSE UNKNOWN UNITS
O PreheatTemperature FALSE UNKNOWN UNITS
O DischargeAirTemperature UNKNOWN UNITS
O DischargeArStatcPressure UNKNOWN UNITS

Platforms

Charts Log out

bacnet § & O

_images/14-confirm-remove-points.png
Remove Points
Are you sure you want to delete these points? CoolingValveOutputCommand

4 cancel [IEEEY

-

_images/11-add-new-point.png
VOLTTRON™ Central Funded by DOE EERE BTO Dashboard
« -
Install Devices
Platform: tcp1127.00.1:22916
Q s
Metnod: | Scan forDevces G | | gacnet proxy Agent [sacnet_pronyagento2 7| &
6 1cpI127.0.0.1:22016 . i~ —
+ Performance pee 0 Range
Advanced Options
- Agents
Address Description Device D Vendor ID Vendor
‘Add New Point
v 10024 o 15 Comell University
O votron ol Namer - /- Writable Units
O RewmaiTemperature FALSE UNKNOWN UNITS
O Rewmaitumidy FALSE UNKNOWN UNITS
O CoolngValveOutputCommand FALSE UNKNOWN UNITS
O MixedAirTemperature FALSE UNKNOWN UNITS
O OudoorairHumidiy FALSE UNKNOWN UNITS
O PreheatTemperature FALSE UNKNOWN UNITS
O DischargeAirTemperature UNKNOWN UNITS
O DischargeArStatcPressure UNKNOWN UNITS

Platforms

Charts Log out

bacnet § & O

_images/12-add-point-dialog.png
Index
Reference Point Name
Voliron Point Name
UnitDetaits

BACnet Object Type
Notes

Writable

units

Property

Console &

‘Show in Table

[m]

oeecdcocoeEOd

_images/15-edit-column-button.png
VOLTTRON™ Central

<

a [e]E]

v t0pu127.00.1:22016

» Performance

» Agents

Install Devices

Funded by DOE EERE BTO Dashboard
Platform: tcp127.0.0.1:22016
Method: | ScanforDevices | | pachet proxy Agent [bacnet_proxyagen-0.2
Device IDRange M Max

v

OoooDoooooaoQ

Advanced Options

Address Name
10024 Betelgeuse
Volttron Point Name T +~ &~
RetumAITemperature
RetumAitHumidity
GoolingValveOutputCommand
MicedAiTemperature
OutdoorAiHumidity
PreheatTemperature
DischargeAiTemperatre
DischargeAiStaicPressure

" m ’ versit
Comell University

Wrable ¢

FALSE

FALSE

FALSE

FALSE

FALSE

FALSE

Units
UNKNOWN UNITS
UNKNOWN UNITS
UNKNOWN UNITS
UNKNOWN UNITS
UNKNOWN UNITS
UNKNOWN UNITS
UNKNOWN UNITS

UNKNOWN UNITS

Platforms

Charts Log out

bacnet & L O

_images/16-edit-column-menu.png
VOLTTRON™ Central Funded by DOE EERE BTO Dashooad
< -
Install Devices
Platform: cp127.00.1:2816
a 2
Method: | Scan o Deves S| gacerproxy Agent [pacnet provyagenio2]|
6 1cpI127.0.0.1:22016 . i~ —
» Performance ice D Range
Advanced Optons
- Agents.
Find and Replace
Address. Name Description % Vendor ID Vendor
v 10024 Beteigeuse Remove 15 Comel University
I Voltron Point Name 7+~ Writable Units
0 RetumATemperature FaLSE UNKNOWN UNITS
0 RetmAHumidty FaLSE UNKNOWN UNITS
0 CoolinguaiveOutputCommand FaLSE UNKNOWN UNITS
0 MidiTemperature FaLSE UNKNOWN UNITS
0O oudoorairHumiciy FaLSE UNKNOWN UNITS
O Preneatremperature FaLSE UNKNOWN UNITS
0 DischargeiTemperature FaLSE UNKNOWN UNITS
01 DischargenirSatcPressure FALSE UNKNOWN UNITS

Platforms

Charts Log out

bacnet § & O

_images/17-name-column.png

_images/19-find-in-column.png
VOLTTRON™ Central

<

a [e]E]

v t0pu127.00.1:22016

» Performance

» Agents

Funded by DOE EERE BTO

Install Devices

Platform: tcp:/127.00.1:22916.

«

OoooDoooooaoQ

Method: | Sean forDeices G || pacnet proxy Agent [bacnet pronyegent02 7| ®
Device DRange i e
Advanced Optons
TP
Adress | Oulcas Description DevicelD Vendord Vendor
10024 [Remove) 1 Comet Unwersty
Voltron Point Name T+~ Writable units
RetumarTemperaure Fase UNKNOWN UNITS -
Retumarkumiaty Fase UNKNOWN UNITS -
CoalinguaveOupuConmand Fase UNKNOWN UNITS -
MixeoATemperatre Fase UNKNOWN UNITS -
OudooratHumidty Fase UNKNOWN UNITS -
PreneatTemperaure Fase UNKNOWN UNITS -
DichargeArTenperatre UNKNOWN UNITS -
DichargeArStaicPressure UNKNOWN UNITS -

Dashboard ~ Platforms

Charts Log out

bacnet | & O

_images/1_Example_Passive_AFDD_Agent_Configuration_file.jpg
"agent": {

"exec": "passiveafdd-0.l-py2.7.egg --config \"%c\" --sub \"%s\" --pub \"Sp\""

.

"agentid”: "afddl",

"campus”: "campusl"”,

"building”: "buildingl"”,

"unit”: "devicel”,

"smap_path”: "datalogger/log/afddl/campusl/buildingl/devicel™ ,

¢#[(Controller point names]

"oat_point_name”: "OutsideAirTemp”,

"mat_point_name”: "MixedAirTemp", #"DischargeRirTemp"
"dat_point_name": "DischargeAirTemperature"”,
"rat_point_name": "ReturnAirTemp"”,
"damper_point_name”: "Damper"”,
"cool_calll_point_name”: "CoolCall",
"cool_cmdl_point_name": "CompressorStatus”,
"fan_status_point_name": "FanStatus”,
"heat_commandl_point_name": "Heating”,

£ [Input Variables]
"aggregate_data": 1,
"esv_input”: 1,
"EER": 10,
"tonnage": 10
"high_limit": 70,
"economizer_type": 0,
"matemp_missing”: 0,

#[oaf]
"oaf_temp_threshold": 4.0,

#[OAE1])
"mat_low": SO0,
"mat_high": 90,
"rat_low": S0,
"rat_high": 90,
"oat_low": 30,
"ocat_high": 120,

$#[0A=2)]
"cae2_damper_threshold": 30.0,
"ocae2_ocaf_threshold": 0.25,

#[0AE3)
"damper_minimum”: 20,

$#[OAE4)
"minimum oca": 0.1,
"oae4_oaf_threshold": 0.25,

#[OA=S]
"oaeS_caf_threshold": 0.0,

#[OA=6)

"Sunday": ([0,23], #this schedule is 24 hours
"Monday": [0,23],

"Tuesday":[0,23],

"Wednesday": [0,23],

"Thursday”: (0,23],

"Friday": (0,231,

"Saturday": [0,23],

$/datalogger/log/yocur sMAP path here

_images/18-duplicated-column.png
Q

¥ 08 1cpUI127.0.0.1:22016
» Performance

» Agents

[e]E]

Install

Devices

Platform: tcp:/127.00.1:22916.

«

OooOo0oooooaog

SeanforDeices G || pachet roxy Agent [bacnet pronyegent02 7| ®
Device ID Range Min: Max:

Advanced Options
Address. Name Description Device ID Vendor ID. Vendor
10024 Betelgeuse 70 15 Comell University
Volttron Point Name Y +~ #* \iritable +~ Readable Units
RetumairTemperature FALSE FALSE UNKNOWN UNITS.
RetumAirHumidiy FALSE FALSE UNKNOWN UNITS.
CoolingValveOutputComman FALSE FALSE UNKNOWN UNITS.
MixedAirTemperature FALSE FALSE UNKNOWN UNITS.
‘OutdoorAitHumidity FALSE FALSE UNKNOWN UNITS.
PreheatTemperature FALSE FALSE UNKNOWN UNITS.
DischargeAirTemperature FALSE FALSE UNKNOWN UNITS.
DischargeAirStaticPressure FALSE FALSE UNKNOWN UNITS.

bacnet | & O

_images/19-find-in-column-b.png
VOLTTRON™ Central

Q

»J[e]-Je]

v t0pu127.00.1:22016
» Performance

» Agents

Funded by DOE EERE BTO

Install Devices

Platform: tcp:/127.00.1:22916.

Dashboard

Method: | Scan for Devces &

«

bacnet_proxyagent-0.2

OoooDoooooaoQ

Max:

Advanced Options

Platforms

15 Comell University

Units
UNKNOWN UNITS
UNKNOWN UNITS
UNKNOWN UNITS
UNKNOWN UNITS
UNKNOWN UNITS
UNKNOWN UNITS
UNKNOWN UNITS

UNKNOWN UNITS

Charts Log out
Type
bacret I £ O
=

<

1

_images/21-edit-point-button.png
VOLTTRON™ Central Funded by DOE EERE BTO Dashboard Platforms ~ Charts Log out

<

Install Devices

Platform: tcp:/127.00.1:22916.

Q

Method: | Scan for Devices {

BACNet Proxy Agent [bacneL poryagen02 7| ®

v t0pu127.00.1:22016

Device ID Range Min: Max:

» Performance
Advanced Options

+ Agents
Address Name Description Device D Vendor ID Vendor Type
v 10024 Betelgeuse o 15 Comell University banet B £ o
' Voltron Point Name 7+~ » Writable Units
O RewmaiTemperature FALSE UNKNOWN UNITS - =
O Rewmartumidiy FALSE UNKNOWN UNITS 5
O CoolngValveOutputCommand FALSE UNKNOWN UNITS -
O MixedWaterTemperature FALSE UNKNOWN UNITS -
O OudoorairHumidiy FALSE UNKNOWN UNITS -
O PreheatTemperature FALSE UNKNOWN UNITS -
O DischargeAirTemperature FALSE UNKNOWN UNITS -
O DischargeArStatcPressure FALSE UNKNOWN UNITS -

,

_images/22-edit-point-dialog.png

_images/2-simulation-out.png
Charts

100

power_kw
: campus1 > building1 > simstorage

0

\

-100

-200

2 minutes ago

22| X ||~

456
455

\

soc_kwh
: campus1 > building1 > simstorage

454
453
452

2 minutes ago

[#]ie][x]~]

a few seconds ago

a few seconds ago

_images/20-replace-in-column.png
VOLTTRON™ Central

Q

»J[e]-Je]

v t0pu127.00.1:22016
» Performance

» Agents

Install

Funded by DOE EERE BTO

Devices

Platform: tcp:/127.00.1:22916.

«

OoooDoooooaoQ

Dashboard ~ Platforms

scaniorDevices 3 [gacwet prosy

powews—m—
\neaeenpee fase
Gusoasiumasy | e
J— fase
OugeATops s

e

bacnet_proxyagent-0.2

Max:

Advanced Options

15 Comell University

Units

UNKNOWN UNITS -

UNKNOWN UNITS -

UNKNOWN UNITS -

UNKNOWN UNITS -

UNKNOWN UNITS -

UNKNOWN UNITS -

UNKNOWN UNITS -

UNKNOWN UNITS -

Charts Log out
Type

bacret I £ O
=

<

1

_images/24-keyboard-highlight.png
/[VOLTTRON™ Central B x __|

<+ # 0 ([localhost:8080/index htmi#/configure-devices?_k=eSjdc5 A =
VOLTTRON™ Central Funded by DOE EERE BTO Dashboard Plaiorms ~ Charts Log out
« -
Install Devices
B0E Platform: tcp1127.00.1:22916
Q s
Metnod: | Scan forDevces G | | gacnet proxy Agent [sacnet_pronyagento2 7| &
6 1cpI127.0.0.1:22016 . i~ —
+ Performance
Advanced Options
+ Agents
Address Name Description Device D Vendor ID Vendor Type
v 10024 Betelgeuse o 15 Comell University banet B £ o

I Volttron Point Name 7+~ - Writable Units
O RewmAiTemperatre FALSE UNKNOWN UNITS -
O RewmAitumidty FALSE UNKNOWN UNITS -
O CoolngValveOutputCommand FALSE UNKNOWN UNITS -
O MixedWaterTemperature FALSE UNKNOWN UNITS -
O OudoorairHumidiy FALSE UNKNOWN UNITS -
O PreheatTemperature FALSE UNKNOWN UNITS -
O DischargeAirTemperature FALSE UNKNOWN UNITS -
O DischargeArStatcPressure FALSE UNKNOWN UNITS -

Console &

_images/25-keyboard-select.png
VOLTTRON™ Central Funded by DOE EERE BTO Dashboard Plaiorms ~ Charts Log out

<
Install Devices

a [e]E]

v t0pu127.00.1:22016

2] | machetprory agent [pacnet pronyagenioz 7| ®

Device ID Range Min: Max:

» Performance
Advanced Options

+ Agents
Address Name Description Device D Vendor ID Vendor Type
v 10024 Betelgeuse o 15 Comell University banet B £ o
' Voltron Point Name 7+~ » Writable Units
O ReumAiTemperatre FALSE UNKNOWN UNITS -
O RewmAntumidty FALSE UNKNOWN UNITS -
O CooingValveOutpuCommand FALSE UNKNOWN UNITS -
O MixedWaterTemperature FALSE UNKNOWN UNITS -
O OudoorairHumidiy FALSE UNKNOWN UNITS -
O PreheatTemperature FALSE UNKNOWN UNITS -
O DischargeAirTemperature UNKNOWN UNITS -
O DischargeArStatcPressure UNKNOWN UNITS -

_images/23-start-keyboard-commands.png
VOLTTRON™ Central Funded by DOE EERE BTO Dashboard Plaiorms ~ Charts Log out

<
Install Devices

a [e]E]

v t0pu127.00.1:22016

2] | machetprory agent [pacnet pronyagenioz 7| ®

Device ID Range Min: Max:

» Performance
Advanced Options

+ Agents
Address Name Description Device D Vendor ID Vendor Type
v 10024 Betelgeuse o 15 Comell University banet B £ o
' Voltron Point Name 7+~ » Writable Units
O RewmAiTemperatre FALSE UNKNOWN UNITS -
O RewmAitumidty FALSE UNKNOWN UNITS -
O CoolngValveOutputCommand FALSE UNKNOWN UNITS -
O MixedWaterTemperature FALSE UNKNOWN UNITS -
O OudoorairHumidiy FALSE UNKNOWN UNITS -
O PreheatTemperature FALSE UNKNOWN UNITS -
O DischargeAirTemperature UNKNOWN UNITS -
O DischargeArStatcPressure UNKNOWN UNITS -

_images/28-save-registry-button.png
/[VOLTTRON™ Central B x __|

<« #» O |3 localhost:8080/index.html#/configure-devices? k=e5jdc5

a [e]E]

v t0pu127.00.1:22016
» Performance

» Agents

Platform: tcp:/127.00.1:22916.

Methoa: | Scanfor Devices G| | gacwet proxy Agent | bacnet pronyagen-02 7| &
Device IDRange M Max:
Advanced Options
Address Name Description Device D Vendor
v 10024 Betelgeuse o 15 Comell University
I Volttron Point Name 7+~ - Writable Units
O RewmaiTemperature FALSE UNKNOWN UNITS
O ReumAntumidty FALSE UNKNOWN UNITS
O CoolngValveOutputCommand FALSE UNKNOWN UNITS
 P—— e wwoun s
O OudoorairHumidiy FALSE UNKNOWN UNITS
O PreneatTemperature FALSE UNKNOWN UNITS
] DischargeAirTemperature FALSE UNKNOWN UNITS
O DischargeArStaticPressure FALSE UNKNOWN UNITS
o
> 10026 MacGyver 1000 TAC AB

bacnet & X O

bacnet [&

_images/29-registry-preview-table.png
Save this registry configuration?

Betelgeuse /10.0.2.4170

table / csv

CSV File Name:

3000124

3000107

3000116

3000119

Reference Point Name

RetumAirHumidiy

CoolingValveOutputCommand

MixedAirTemperature

PreheatTemperature

Volttron Point Name

RetumAirHumidiy

CoolingValveOutputCommand

MixedWater Temperature.

PreheatTemperature

Details

No limits.

No limits

No limits.

No limits

analoginput

‘analoginput

analoginput

‘analoginput

FALSE

FALSE

FALSE

FALSE

Cancel
Units. Property
UNKNOWN

presentvalue
UNITS
UNKNOWN

presentValue
UNITS
UNKNOWN

presentvalue
UNITS
UNKNOWN

presentValue
UNITS

_images/26-keyboard-shortcuts-button.png
VOLTTRON™ Central Funded by DOE EERE BTO Dashboard Platforms ~ Charts Log out

<
Install Devices

Platform: tcp:/127.00.1:22916.

a [e]E]

v t0pu127.00.1:22016

Method: | Scan for Devices {

BACNet Proxy Agent [bacneL poryagen02 7| ®

Device ID Range Min: Max:

» Performance
Advanced Options

+ Agents
Address Name Description Device D Vendor ID Vendor b
Keyboard
v 10024 Betelgeuse o 15 Cometumwersty | et 2D
' Voltron Point Name 7+~ » Writable Units
O RewmaiTemperature FALSE UNKNOWN UNITS - R
O RewmAitumidty FALSE UNKNOWN UNITS -
O CoolngValveOutputCommand FALSE UNKNOWN UNITS -
O MixedWaterTemperature FALSE UNKNOWN UNITS -
O OudoorairHumidiy FALSE UNKNOWN UNITS -
O PreheatTemperature FALSE UNKNOWN UNITS -
O DischargeAirTemperature UNKNOWN UNITS -
O DischargeArStatcPressure UNKNOWN UNITS -

_images/27-keyboard-shortcuts.png
VOLTTRON™ Central

<

Install Devices

a [e]E]

v t0pu127.00.1:22016

» Performance

» Agents

«

Funded by DOE EERE BTO Dashboard Platoms Charts
Pltform:1cp127.00.122916
. z |
wetnoa: [Se200020555 5] [gncnerprony »
Keyboard Shortcuts
Device D
cm Actatekeyboard commands for devic tabe tha has fcus.
esc Deactivate eyboard commands.
w Move keyboard seection up e ro.
Down Space Move keybosrd slecton dou one row.
daress name Descrl| SHtsUp Extend keybosrd seecton up one ow.
ShiftsDown Extend keyooard selection down one ow,
L0028 Bede Enter Lock in keyboard selections
Voltron Point Name T+ - Wi T
RetumATemperatire Fase UNKNOWN UNITS -8
RetumAumidty Fase UNKNOWN UNITS -
CaninguaiveOupuCommand Fase UNKNOWN UNITS -
MixedWaterTemperaure Fase UNKNOWN UNITS -
Ouoratumity Fase UNKNOWN UNITS -
Prehcattemperatire Fase UNKNOWN UNITS -
DichargeAirTemperature UNKNOWN UNITS -
DichargeArSatcPressure UNKNOWN UNITS -

OoooDoooooaoQ

bt

Log out

ExoO

_images/30-preview-registry-csv.png
Save this registry configuration?

Betelgeuse /10.0.2.4/70
table /csv

CSV File Name: Cancel

Index Reference Point Name,Volttron Point Name Unit Details BAChet Object Type,Notes Witable,Units, Property.
3000124 RetumAirHumidity,RetumAirHumidity,No imits. analoginput, FALSE,UNKNOWN UNITS presentValue

3000107 CoolingVaiveOutputCommand, CoolingValveOutputCommand,No limits. analoginput, FALSE UNKNOWN UNITS presentValue
‘3000116 MixedAirTemperature MixedWaterTemperature,Nofimits. analoginput, FALSE,UNKNOWN UNITS presentValue

3000119 PreheatTemperature PreheatTemperature No limits. analoginput, FALSE UNKNOWN UNITS presentValue

3000108 DischargeAirStaticPressure DischargeAirStaticPressure, No limis. analoginput, FALSE, UNKNOWN UNITS presentValue

_images/2_File_Selection_Dialog_Box.jpg
choose csv file for AFDD.

Directory: /homepvolttrondevjworkspace/rtunetwork

1 .hg Bl AFDDtestlog

1 seitings B) basic_mercurial_instructions.txt
|&1 Agents B bootstrap

|& bin B bootstrap.py

|& contrib B bootstrap.pyc

€1 develop-eggs B buildout.cfg

&3 eggs B CoPriNG

& b B dev-config.ini

&3 parts B driver.ini

&1 volttron B examplehgre

| volttronite.egg-nfo Bl example-pylintrc
|B .AFDDtest.txt B logger_driver.ini
|® -haignore B modbus.ni

|B .hgtags B modbus2.ini

B .installed.cfg) README

B project) RELEASE_NOTES.txt
B pydevproject B setup.py

) 9dc72c72-250-49a1-2590-66642b071490 B setup.pyc

B activate.n B twistd.pid

B actuator_state.pickle B volttron.log

File name: |

_images/3-simulation-out.png
@ Baseline Power (kw) @ Measured Power (kw)
207.74
200.00

180.00

160.00

140.00

120.00

Power(kW)

100.00

80.00

60.00

50.00
11:20 AM 11:21 AM 11:23 AM 11:25 AM 11:26 AM 11:28 AM 11:30 AM 11:31 AM 11:33 AM 11:35AM 11:36 AM

Time

q)

1M1:11AM 11:13 AM 11:16 AM 11:20 AM 11:23 AM 11:26 AM 11:30 AM 11:33 AM 11:36 AM 11:40 AM

_static/down.png

_static/file.png

_static/plus.png

_static/minus.png

_static/up-pressed.png

_static/up.png

_images/vtn_site_with_ven_id.png
Overview

Headquarters

Report

Admin

Customer

Globex Corp.
Name

Headquarters
ID
SID04
Location code
LOC04
IP Address
178.121.5.166

DR Programs

Capacity Bidding
Direct Load Control
Peak Day Pricing

Hold down "Control", or "Command"
on a Mac, to select more than one.

Utility OpenADR Application

ven03

Address Line 1
2232 Allen Meadows

Address Line 2

City

East Andrea

VEN Name

VEN ID

State

WA

Contact Name

Irma Gural

Phone Number

9999999999

Zip

83431

Welcome superuser ¥

_images/vtn_site_detail_screen.png
Overview

Add New Site

Report

Utility OpenADR Application

Admin

Customer

Site ID Address Line 1

Location code

IP Address State Zip

ing Contact Name

Control

Hold down "Control", or "Command"

on a Mac, to select more than one.

Welcome superuser ¥

_images/zmq_pending_credential_2.png
zilla Firefox

Certificate Requests. +

“)> C @ https://central:8443/admin/pending_auth_reqs.html neoegR =

\Y/vOoLTTRON

Devices Decisions

Certificate Requests

Status: APPROVED
Common Name: central.central.platform.agent
Remote IP: 192.168.56.101

ZMQ Keys Pending Authorization

Status: PENDING
Public Key: fb30249d-b267-4bdd-b29a-d9112e6a6082
Remote IP: 127.0.0.1

Deny Delete

Approve Deny Delete

Status: APPROVED
Public Key: 68ef33c4-97bc-4e1b-b5f6-2a6049993b65
Remote IP: 127.0.0.1

Deny Delete

_images/zmq_pending_credential_1.png
zilla Firefox

Certificate Requests. +

“)> C @ https://central:8443/admin/pending_auth_reqs.html neoegR =

\Y/vOoLTTRON

Devices Decisions

Certificate Requests

Status: APPROVED
Common Name: central.central.platform.agent
Remote IP: 192.168.56.101

ZMQ Keys Pending Authorization

Deny Delete

Status: PENDING
Public Key: 68ef33c4-97bc-4e1b-b5f6-2a6049993b65
Remote IP: 127.0.0.1

Approve Deny Delete

_static/ajax-loader.gif

_static/comment-close.png

_static/comment-bright.png

_static/down-pressed.png

_static/comment.png

